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Economic Model 
For my final project, I decided to build upon the Risk vs Return portfolio model from 

Chapter 7. The chapter presents a Markowitz mean-variance model written in 

MATLAB, with an alternative model presented in the appendix of the text written in 

GAMS. 

The models use measures of mean return and variance to either maximize return 

subject to a variance penalty, or minimize variance subject to a desired return. The 

model therefore requires input data of return, variance, and co-variance for each 

stock to be used in the portfolio. 

While doing my research for this project, and in my reading of the Mathematica 

documentation, I came across a set of Financial Data functions for Mathematica that 

would allow me to use actual data for real US stocks instead of hypothetical values, 

and do so dynamically ‘on the fly’. Information on these functions can be found at  

 http://reference.wolfram.com/mathematica/ref/FinancialData.html 

I became excited by this, and challenged myself to write a Markowitz mean-variance 

model in Mathematica from scratch that would select an optimal portfolio given a 

set of stocks of interest, and a historical time horizon from which to gather data. 

Doing so required a great deal of becoming accustomed to Mathematica’s 

programming structure and methods. Thankfully, the documentation provided 

online was very helpful. It can be found at: 

http://reference.wolfram.com/ 

For my model, I elected to write it such that given a desired return, the model would 

find the optimal bundle of stocks that would provide for the minimum amount of 

risk. An alternative would have been to select a comfortable amount of risk, and 

maximize return. I chose to not to write the model this way as I think selecting a 

given return is more realistic for my own purposes. 

Given a set budget, the model will then quickly tell you how many shares of each 

stock should be purchased given their current price, and how much your total 

expenditure would be on each. It will also graph all the possible bundles, to provide 

a quick visual representation of what other bundles of risk an return are possible. 

It should be noted that there is a major weakness with the methodology I am using 

here, in that we are using data from the past to conveniently paint a picture of the 

future. The statistical relationship between these two time-periods may simply not 

exist as we have assumed. As well, our measure of risk (in the case of my model, 

standard deviation) also does not distinguish between downward and upward price 

movements. A more in-depth analysis of input data problems can be found at: 

http://www.effisols.com/basics/MVO.htm#SinglePeriodMVO 
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Computational Model 

When writing my model, I attempted to provide a narrative of what is happening 

using the text notes feature of Mathematica’s notebook files. The model, including all 

comments, can be found in the appendix, but I will go into a bit more in-depth 

analysis of a few components here. 

Input Data Selections 

I tried to make this model as simple as possible for the user. Therefore, there are 

only 6 input variable necessary to run the model, and Mathematica either computes 

or pulls the rest of the necessary data from the Internet in the subsequent sections. 

These six variables are stock1, stock2, stock3, timehorizon, money, and 

desannualreturn. The use of an annual return as compared to a horizon specific 

return is necessary to compare returns when varying the time periods, and ensures 

the user is comparing “apples with apples”.  

Measuring Return 

To measure mean return, I use the simple formula: 

 (Current Price – Original Price)/(Original Price) 

The resulting return is then converted to an annualized return by dividing it by: 

 (timehorizon/365) 
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Measuring Volatility 

My chosen measure of volatility in this model is Standard Deviation. To measure the 

standard deviation, I simple ask Mathematica to find the cumulative return for our 

stocks over our given time horizon. I then ask it to find the standard deviation of the 

list that is returned, and round that to two decimal points. 

 

Measuring Correlation 

To measure the correlation of movements in the stock prices for each of our stocks, I 

ask Mathematica to again find the list of Cumulative Returns for each stock over our 

given time horizon. I then ask it to find the correlation between these lists for each 

set of stocks 1 & 2, 2& 3, and 1 & 3. I then ask Mathematica to round the output to 2 

decimal points. 

 

Finding Possible and Optimal Proportions 

Now that we have found all our input data, the model begins to do its real work by 

finding all the different possible portfolios given varying weights (proportions). This 

is done in preparation to graph these points, and the variable xmin finds the point to 

the left of the absolute minimum variance given all possible portfolios. This is then 

used when graphing the points to establish the boundaries for which we draw the 

graph. The code I used here to draw the graph was adapted from a Three-Asset 

Efficient Frontier demonstration by Fiona Maclachlan, which can be found on 

Wolfram’s website at: 

 http://demonstrations.wolfram.com/ThreeAssetEfficientFrontier/ 

Once the graph is drawn, we must solve for the optimal weights (proportions). To 

do so, we must first find the closest return value for which we have established an 

optimal bundle. The variable return does just that, finding the next closest return 
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value as defined by the points that make up the efficient frontier. The variable 

volatility then finds the value for the minimum volatility at this return. 

Portfolio is then defined to be the list of weights at this given amount of return, 

where pstock 1 through 3 are the individual weights for each stock as extracted 

from portfolio. The following variables find the amount to be spent on each stock, 

and how many shares that equates at current prices. 
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Reporting our Optimal Portfolio 

The next block of code creates a report of what the model has found. I relied heavily 

on the Print function, but revisions may include the use of Export function to output 

data directly to an Excel file, or create a better looking PDF, perhaps providing a 

comparative analysis of multiple portfolios automatically. In addition to reporting 

its findings, the summary presents the input details and pulls the actual name of 

each stock for the ease of the reader. 
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Experiments 

Each day the model is run, results will be different as more data becomes available. 

That said, there are only a few possible experiments: changing the stocks of interest, 

changing the time horizon for input data, changing the required return, and 

changing the budget. 

Changing the budget is not a good experiment, as proportional composition of our 

portfolio is what we are really after, and computations for a given budget are really 

just provided to make life simple for the user. The relative underlying trade-offs 

would not change. 

That said, below I will examine the effects of changing the stocks of interest, 

changing the time horizon of input data, and changing the required rate of return. 

1: Changing the stocks of interest 

When changing the stocks of interest, we introduce to the model a varied set of 

returns and volatilities. The composition of our optimal portfolio will change 

depending on the relative return and volatility of the stocks we introduce. 

I will assess the following 3 sets of stocks over a time horizon of 180 days at a 

desired return of 30%, except for the last portfolio, in which I specify a desired 

return of 40% as 30% is not one of the graphed optimal bundles: 

 (AAPL, GOOG, YHOO),  (AAPL, MSFT, DELL),  (AAPL, MSFT, YUM) 

2: Changing the time horizon 

The time horizon of input data is important, as every week day contained in the time 

horizon is another data point. The longer our time horizon, the more input data we 

have to use to base our predictions upon. But there is a trade off, as the further into 

the past we go, the less related the data is to current market circumstances. 

Therefore, there is a trade-off between relative long-term and short-term trends. 

Depending on your investment strategy (short term vs medium term vs long term) 

you may want to change the time horizon used when running the model.  

Using the portfolio (AAPL, GOOG, YHOO) I will assess the effects of varying the time 

horizon from 60, to 180, and to 360 days. For these experiments I will compute an 

optimal bundle based on a desired return of 50%. 

3. Changing the required rate of return 

When we are given a different rate of return, the composition of our optimal 

portfolio will change to reflect the “least risky” weights  (proportions) required to 

obtain that rate of return given our input data. Using the portfolio (AAPL, GOOG, 

YHOO) I will assess the effects of varying the required rate of return from 30% to 

40% and 50%.
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Results & Discussion 

1: Changing the stocks of interest 

Bundle A: AAPL, GOOG, YHOO 

The relative volatilities of the portfolio were: 0.07, 0.05, and 0.04, meaning AAPL 

was the most volatile, followed by GOOG, then YHOO. The mean returns were: 54%, 

16%, and 9%.The possible portfolios are graphed below: 

 

Given our time horizon of 180 days, and required return of 30%, the model makes 

the following recommendations: 

 

The volatility of this optimal portfolio is: 0.0512789
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Bundle B: AAPL, MSFT, DELL 

The relative volatilities of the portfolio were: 0.07, 0.05, and 0.05, meaning AAPL 

was the most volatile, followed by equally risky MSFT and DELL. The mean returns 

were: 54%, 39%, and 5%. The possible portfolios are graphed 

below:  

 

Given our time horizon of 180 days, and required return of 30%, the model makes 

the following recommendations: 

 

The volatility of this optimal portfolio is: 0.0441701



 10 

Bundle C: AAPL, MSFT, YUM 

The relative volatilities of the portfolio were again: 0.07, 0.05, and 0.05, meaning 

AAPL was the most volatile, followed by equally risky MSFT and YUM. The mean 

returns were: 54%, 39%, and 34%. The possible portfolios are graphed below: 

 

Given our time horizon of 180 days, and required return of 40%, the model makes 

the following recommendations: 

 

The volatility of this optimal portfolio is: 0.0435597 
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Discussion 

By changing the stocks in each of our bundles, we can vary our portfolio to result in 

even lower volatility. For example, by switching from bundle A (AAPL, GOOG, YHOO) 

to bundle B (AAPL, MSFT, DELL) we were able to lower our risk (portfolio volatility) 

from 0.0512789 to 0.0441701.  

In both bundle A and bundle B, the assets YHOO and DELL provided for mean 

returns that were less than 10%. But in bundle C, no asset had a mean annualized 

return over the last 180 days that was less than 30%. Infact, our desired return of 

30% was no longer present on the efficient frontier, and so we optimized for a 

desired return of 40% instead. 

Interestingly, in bundle C, we were able to optimize for a higher annualized return 

(40% instead of 30%) but still got the lowest portfolio volatility of all the 

experiments, at 0.0435597. 

 

2: Changing the time horizon 

Horizon A: 60 days  
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Horizon B: 180 days  

 

Horizon C: 360 days  
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Discussion 

As can be seen in the graphs above, changing the time horizon of input data creates 

for drastic changes in the predictions of the graph. In the first instance, with a time 

horizon of 60 days, the model tells us to allocate 0% of our shares to AAPL. But, with 

a time horizon of 180 days, the model tells us to allocate 90% of our shares to AAPL, 

and with 360 days of data, only 8%. These drastic changes are due to the variations 

of relative returns and volatility over the different time horizons. 

There is a lesson to be learnt here, as I foreshadowed in my discussion of the 

Economic model above. The model is only as good as its input data, and our 

predictions are made under the assumption that this data is a good predictor for the 

future. But, the past few years have shown us just how swiftly the stock market can 

change, and as the above experiment shows, these changes in our input data will 

create equally drastic variations in our model’s output. 

One more example of this is the range of mean returns possible on the y-axis of the 

graphs above. In the first horizon returns vary from approximately 0.4 to 1.4, in the 

second from 0.1 to 0.55, and in the third from 0.2 to 1.1. 

Given our desired return of 50%, the volatility of the optimal portfolio has gone up 

as the time horizon has increased. This is especially true given the wild fluctuations 

in the market of late. But, that said, this will likely always be true, as a greater time 

horizon allows for the possibility of greater swings in price than does a shorter time 

horizon. Therefore, these volatilities should not be compared to each other as to be 

measures of the same thing. Volatility over one time period is not the same as 

volatility over another. Volatility should only be compared across different 

portfolios or desired returns given a consistent time horizon. 
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3. Changing the required rate of return 

Using a 180 day time horizon and stock bundle of AAPL, GOOG, and YHOO. 

 

 

Return (AAPL,GOOG,YHOO)   Volatility (AAPL,GOOG,YHOO) 
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Return: 30% 

 

Return: 40% 

 

Return: 50% 

 

 

Discussion 

Changing the required rate of return is a simple experiment, but should confirm to 

us that a higher rate of return will result in a greater amount of risk. This is 

confirmed by the example above, as risk (portfolio volatility) increases from 0.0427 

to 0.0643 as the desired return increases from 30% to 50%. 

This is also confirmed individually by each stock’s return VS volatility as shown on 

the page above. AAPL, with a return of 0.54 has the highest return, but also the 

highest volatility, at 0.07. The converse is the same for YHOO, with GOOG placing in 

the middle. 

In conclusion, the portfolios determined above for our varying desired returns, in 

order for the portfolios to obtain a higher return, they had to incorporate higher 

risk, and therefore increase the risk of the portfolio as a whole. 
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