Economics 363C Statistics and Scientific Computation 339 Computational Economics Fall 2013

David Andrew Kendrick BRB 3.134E kendrick@austin.utexas.edu http://www.utexas.edu/cola/depts/economics/faculty/dak2 Office Hours MW 1 pm, F 11 am

TA: Qian (Chian) Feng qianfeng.qf@utexas.edu

This course provides an introduction to computational economics for undergraduates. It will cover the application of computational methods to economic models in fields such as sectoral economics, environmental economics, macroeconomics, financial economics, growth theory and others. The computational methods will include both simulation and optimization approaches as well as databases. A variety of computer languages will be used including MATLAB, GAMS and Mathematica.

Previous knowledge in economics, mathematics and computational methods is useful though strength in one or two of these areas can more than accommodate for little or no background in one or two of the others.

There are weekly computer exercises as well as a term paper.

Text

David A. Kendrick, P. Ruben Mercado and Hans M. Amman, *Computational Economics,* Princeton University Press, Princeton, NJ, 2006. (KMA)

Web Sites

The web site containing the input files that are used for most of the experiments as well as pointers to web sites for the applications used in the course is

http://www.laits.utexas.edu/compeco/

In addition, the TA for the class will maintain a web site for the course which is at

http://www.laits.utexas.edu/compeco/Courses/index363.html

Outline

Macroecono	mics			
1.	Growth Model in Excel			
Microecono	mics			
4.	Transportation in GAMS			
Estimation				
5.	Database Systems in Access			
Microecono	mics			
3.	Partial Equilibrium in Mathematica			
Finance				
6.	Thrift in MATLAB			
Finance				
12.	2. Portfolio Model in MATLAB			
Big Data				
Big Data with Python				
	Part II Once More			
	-			

Microeconomics

8. General Equilibrium Models in GAMS

Agent-Based

14. Agent-based Models in MATLAB

Macroeconomics

13. Macroeconomics in GAMS

Game Theory

11. Genetic Algorithms and Evolutionary Games in MATLAB

Environmental Economics

15. Global Warming in GAMS

Finance 12

Genetic Algorithms and Portfolio Models in MATLAB

Estimation

2.

Neural Nets in Excel

Dynamic Optimization

16. Dynamic Optimization in MATLAB

Schedule

Aug	30	Lecture Introduction to Growth Models: Verbal and Mathematical	
Sept	2	Labor Day	
Sept	4	Lecture Growth in Excel – Ch. 1 in KMA	
Sept	6	Lab Excel – Modify and solve the growth model.	
Sept	9	Lecture Transportation in GAMS – Ch. 4 in KMA Lab Transportation in GAMS Due Experiment on the growth model in Excel	
Sept	16	Lecture Database in Access – Ch. 5 in KMA Partial Equilibrium in Mathematica – Ch. 3 in KMA Lab Database in Access Partial Equilibrium in Mathematica Due Experiment on transportation in GAMS	
Sept	23	Lecture Thrift in GAMS – Ch. 6 in KMA Lab Thrift in GAMS Due Experiment on database in Access or partial equilibrium in Mathematica	
Sept	30	Lecture Portfolio in MATLAB – Ch. 7 in KMA Lab Portfolio in MATLAB Due Experiment on thrift in GAMS	

Oct	7	Lecture General Equilibrium Models in GAMS – Ch. 8 in KMA Lab General Equilibrium Model in GAMS	
		Due Experiment on portfolio in MATLAB	
Oct	14	Lecture Agent-Based Model in MATLAB – KMA 14 Lab Agent-based model in MATLAB Due (Oct 18) Short Paper	
Oct	21	Lecture Big Data – Python – Tom Roderick Lab Big Data - Python Due General equilibrium model in GAMS or agent based model in MATLAB	
Oct	28	Lecture Macroeconomics in GAMS – Ch. 13 in KMA Lab Macroeconomics in GAMS Due Experiment on big data with Python	
Nov	4	Lecture Genetic Algorithms and Evolutionary Games in MATLAB – Ch. 11 in KMA Lab Genetic Algorithms and Evolutionary Games in MATLAB Due Experiment on Macroeconomics in GAMS	
Nov	11	Lecture Global Warming in GAMS – KMA Ch. 15 Lab Global Warming in GAMS Due (Nov 15) Progress Report on Long Paper	

Nov	18	Lecture Genetic Algorithms and Portfolio Models in MATLAB – Ch. 12 in KMA Lab Genetic algorithms and portfolio model in MATLAB Due Experiment on genetic algorithms and evolutionary games in MATLAB or on global warming
Nov	25	Lecture First lecture on Neural Nets – Ch. 2 in KMA
		Week of Thanksgiving Holiday
Dec Mon	2	Lecture Second Lecture on Neural Nets in Excel – Ch. 2 in KMA
Dec Wed	4	Lab Neural Nets in Excel While in lab do an experiment on neural nets, and write up a couple of paragraphs and turn it in before leaving the lab.
Dec Friday	6	Long Paper - Turn in at 4 th floor lab by 1 pm Reminder – No late papers! – Loss of letter grade per nanosecond late!

This course carries the Quantitative Reasoning flag. Quantitative Reasoning courses are designed to equip you with skills that are necessary for understanding the types of quantitative arguments you will regularly encounter in your adult and professional life. You should therefore expect a substantial portion of your grade to come from your use of quantitative skills to analyze real-world problems.

Since there are a considerable number of weekly exercises (experiments) you can claim a "skip" on one of them during the semester by turning in that week a sheet with only your name, the experiment name and the word "skip" on it. If you do not use the skip then the last exercise will be entered as skipped on the grade spreadsheet.

		Grades		
1.	Short Paper	25	Oct 18	
2.	Experiments	40		
3.	Progress Report on Long Paper 5		Nov 15	
4.	Term Paper	<u>30</u>	Dec 6	
	Total	100		

This class is like a job. You can miss a day's work here and there with no problem; however, more than that has consequences. More than four unexcused absences in the semester will results in a loss of one point on the final course grade for each additional unexcused absence.

I will make myself available to discuss appropriate academic accommodations that you may require as a student with a disability. Also students with disabilities may request appropriate academic accommodations from the Division of Diversity and Community Engagement, Services for Students with Disabilities, 471-6259, http://www.utexas.edu/diversity/ddce/ssd/

See the UT Honor Code at:

http://registrar.utexas.edu/catalogs/gi09-10/ch01/index.html

By UT Austin policy, you must notify me of your pending absence at least fourteen days prior to the date of observance of a religious holy day. If you must miss a class, an examination, a work assignment, or a project in order to observe a religious holy day, you will be given an opportunity to complete the missed work within a reasonable time after the absence.