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Part I: Solow Growth Model and the Human Capital
Dimension

Introduction

Developed by Robert Solow in 1956, the Solow growth model explains how
economies achieve growth through capital accumulation. The Textbook Solow
Model considers only physical capital, while a key publication by Mankiw, Romer,
and Weil brings the accumulation of human capital into the picture (1992). While
the Textbook Solow does an excellent job of modeling growth in the developed
nations over the past five centuries or so, the MRW interpretation of the Solow

model is pivotal in explaining the massive income disparities across countries.

In this project, I use Mathematica first to model the Textbook Solow Model, and
second to model MRW’s interpretation of the Solow Model. That is, in my second
notebook I add human capital as a factor of production and as a new dimension in
the classic investment vs. capital Solow Model diagram. This is where use of a
computational method becomes extremely valuable, if not a complete necessity. Itis
easy to draw the Textbook Solow Model diagram on paper, but very difficult to
visualize and draw MRW’s interpretation. Such a diagram is not presented in
MRW’s critical 1992 paper, perhaps because the computational methods were not

readily available at that time.
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Economic Model

Model 1: Textbook Solow Model

The Textbook Solow Model is essentially the Basic Solow Model with the
introduction of technical progress. [ use the Cobb-Douglas form of the production
function, although the model may be generalized to any production function that has
constant returns to scale and relies only on physical capital and technology-

augmented labour (i.e. “effective labour”).
F (K, AL) = K*(AL)(1- (1.1)
Equation 1.1 is the aggregate production function. Our diagram will examine the

labour-intensive production function, so we need things in per effective labour units

form:

1 F&AL) = F(K/ 4, 1) = f() (1.2)
Where 1.2 will always be true so long as the production function exhibits constant
returns to scale (i.e. is homogeneous of degree one). Now, we must consider the

capital accumulation function, the backbone of the Solow model.

K = yY(t) — SK(t) (1.3)
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Where y is the savings rate and § is the depreciation rate on physical capital. One of
the assumptions of our model is that both of these parameter values are constant
through time. Another critical assumption is that everything that isn’t spent on
consumption in the model is saved and converted to domestic investment. That is,
the economy is closed. From here, we must again express our aggregate equation in
the form of a state variable (in this case, labour intensive units of capital). Using

derivatives and the fact that k is just K /AL, we have:

K/ one = Y00 = 8k(®)

k= yf(k)—(8+n+g)k(t) (1.4)

According to Solow, the economy will tend towards a balanced growth path where
k = 0 (mathematically, a “steady state”) which it will always achieve if given initial
capital levels greater than zero and enough time (the exact time can be found using

dynamics, but is outside the scope of this paper). While on the balanced growth

path, breakeven investment is equal to actual investment, as follows:

(6 +n+g)k(t) = yvf(k) (1.5)

That is, investment in capital equals the rate that capital is being “used up” by the
economy. The above relationship gives rise to the Solow Model diagram that

commonly appears in macroeconomic textbooks (and is likewise presented in this
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report’s results section). Solving for k yields the balanced growth path level,

denoted k*:

o ¥ 1/(1-a)
- [(8+n+g)] (1.5)
Also of importance, k*that maximizes consumption is:
o a 1/(1-a)
GR ™ [(6+n+g)] (1.6)

Where GR stands for Golden Rule. Since, in this story of the Solow Model, output
depends on only one endogenous variable (physical capital), the balanced growth
path diagram is two-dimensional. As we will see, this is not the case in Mankiw,

Romer, and Weil’s Solow growth story.

Model 2: MRW’s Version of the Solow Model with Human Capital

The MRW version of the Solow Model is essentially the Textbook Model with human
capital added as a factor of production. The key to MRW’s addition is that they
chose to make human capital endogenous. That is, it has it's own accumulation
function which depends on output. The reader should notice that human capital

resembles physical capital in many respects (more on this later).
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With human capital, our production function becomes:
F (K, AL) = K*HB(AL)(1-«-p) (2.1)

Where H is human capital. Similar, to physical capital, human capital per effective

unit of labour is denoted h and has an accumulation function:

h= ¢f(k,h) — (5 +n+ g)h(t) (2.1)

Like physical capital, A = 0 while the economy is on a balanced growth path. This

gives rise to k* and h* as follows:

1/A-a-p)

k= [%] 2.2)

b= [ya¢1—a]1/(1—“—3)

(5+n+g9) (2'3)

Mankiw, Romer, and Weil used real world data to prove that adding human capital
helps to explain the huge income disparities between countries with similar sized

labour forces and levels of physical capital.

Now that we have a basic theoretical understanding of both models, we can move on

to this report’s main objective: computational representation.
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Experiments

The goal of this report is to explore a new visualization of an old model, not to
develop and illustrate a new model. That is to say, the goal of experimentation is to
develop the reader’s understanding of an important and well understood

macroeconomic model, not to prove the robustness of a new model.

This being the case, no explicit experiments were performed. Instead, let me invite
the reader to explore the Mathematica files provided by dragging the manipulator
back and forth, observing the effects on values such as k* and h*. Also of interest
are how the break even lines change in the MRW model as g, n, and 6 are adjusted. I
would also encourage the reader to explore how output and actual investment
change as a result of alteration to the factor shares devoted to physical and human

capital.

Results

Model 1: Textbook Solow Model

The Textbook Solow Model model is presented below, adapted from a basic version
(which can be found on Mathematica's demonstration website) to include technical
change (with the option of adjustment), as well as the option of adjusting capital’s
factor share, a (rather than fixing it at 1/3). Mathematica code can be found in the

appendix, entry Al.



Wes Hartman Econ 353 Applications of Mathemetica, MATLAB, and GAMS

)

rate of saving « { ) 0.5
depreciation 4 » 22 0.1
labor-force growth :G » 2 0.03
rate of technical progress :G » £ 0.03
capital’s factor share « ) 0.33
ar
3 -
2k
1k
1 1
kK cr K

Figure 1.1 Textbook Solow Model

This is the familiar diagram that makes an appearance in nearly every introductory
macroeconomic textbook. The code for generating figure 1.1 was relatively
straightforward, and writing it was a useful steppingstone to figuring out the code

that generated figure 2.1.
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Model 2: MRW'’s Version of the Solow Model with Human Capital

This model has much more computational value than the previous diagram. That is,
figure 2.1 is relatively hard to draw or visualize without the aid of a tool like
Mathematica. It uses a 3D plot to represent how output is affected endogenously by

both physical and human capital.

rate of savings on physical capital ¢ G 0.455
rate of savings on human capital « G 0.46
physical capital's factor share ¢ G 0.3
human capital's factor share ¢ G 0.293
labor-force growth —G » & 0.03
rate of technological progress « G » & 0.0566
depreciation of physical or human capital —G » &2 0.073

Figure 2.1 MRW Solow Including Human Capital

This figure looks a rather complicated at first glance. But I would encourage the

reader to experiment with the Mathematica file in order to understand how
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changing parameter values like n, g, and & changes the balanced growth path values
of k* and h*. Changing the rate of savings on either physical or human capital also

has significant effects on the values of k* and h* (respectively).

Figure 2.1 is the first of its kind that I have seen, and provides valuable insight into
how balanced growth paths are affected by changes in the parameters specified in
Mankiw, Romer, and Weil’s critical 1992 paper. Although it is an eyeful on paper,
figure 2.1 makes perfect sense in Mathematica thanks to the manipulate function
and Mathematica’s mouse-over labels. The code for figure 2.1 is fairly complex, and

is presented in the appendix under A2.

Discussion

Mathematica proved to be a powerful tool for creating visualizations of relatively
complex economic stories. The Textbook Model diagram, although nothing new, is
useful because it allows for manipulation of parameter values. For instance, the

user can change v, the savings rate on physical capital, until k* = k.

The MRW model visualization, potentially something new, is a useful aid to
understanding how production can be affected endogenously by two different
variables. Being able to represent both k* and h* on the same diagram allows the

learner to see how alterations in parameter values affect the balanced growth path.

10
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One limitation to the representation of MRW in figure 2.1 is that things get very busy
very quickly. Since k* depends on h* and vice-versa (see equations 2.2 and 2.3),
their effects on production cannot be separated into two different diagrams. As a
result, a busy diagram like figure 2.1 is our only option. The diagram takes some
getting used to, and is very hard to grasp without manipulating the values of g, n, 6,
etc. and watching what happens to the values of k* and h*. For this reason, [ don’t
think there would be much value to including figure 2.1 (or a similar figure) in a

growth or macroeconomic textbook.

Part II: The Effect of a Trade Sanction on an
International Environmental Agreement Game

Introduction

Barrett argues that international environmental agreements (IEA) must be self-
enforcing in order to work (1994). In his pivotal paper, "Self Enforcing
Environmental Agreements," he points out that "no country can be forced to sign an
IEA, and signatories to an IEA can always withdraw from the agreement” (p. 878).
But this view is at odds with the one that Sir Nicholas Stern expresses in the Stern

Report.

When asked during COP16 at Cancun whether Canada should slow development in
the oil sands, Stern replied "if Canada stays dirty, it will be forced to co-operate at a

later date by international trade sanctions" (presentation by Elizabeth May at UVic,

11
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03/11/2011). Barrett seems to feel that trade sanctions are too harsh a penalty for
failing to meet international environmental standards, but [ think may have
reconsidered since his paradigm paper was published in 1994. That is, the looped
game that he presents in the latter part of his analysis could probably use some

amendment when applied to an issue as serious as climate change.

In this paper I try to adapt Barrett's analysis so it accurately reflects Stern's opinions
about the seriousness of climate change. In order to do this, I build functional forms
for the costs and benefits of carbon abatement into a prisoner's dilemma program
developed by Nourri Najjar (2010). Ithen loop the program in order to find the
efficient sanction level that will induce player 1 (Canada in our case) to accede to the

IEA on carbon emissions.

Economic Model

Base Model: Prisoner's Dilemma

One of the paradigm models in game theory, the Prisoner's Dilemma (PD), is used to
explain why co-operative outcomes do not necessarily prevail over competitive

outcomes, even when the cooperative outcome is more beneficial for both players.

The PD is a two-player, two strategy static game. It has a pure Nash equilibrium

where both players have a dominant strategy. That is, both players' best strategy is

to defect, regardless of what decision the other player makes. This has the

12
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counterintuitive result that, although the co-operative outcome is better for both

players, the competitive outcome still results.

In Economics 381, Alan Mehlenbacher uses this game to explain why IEAs are
helpful in trying to reduce pollutants across country boundaries. Without the [EA,
both countries can do better by free riding off the abatement made by the other
country (i.e. both countries' dominant strategy is to defect). But with the IEA, both
countries can be induced to co-operate for fear of spoiling future relations. This co-
operative outcome results in higher pay-offs (i.e. better net benefits) for both

players.

Developed Model: Sanctions and International Environmental Agreements

As stated earlier, Nicholas Stern seems to reject Barrett's idea that IEA's cannot be
enforced. In order to model this sentiment, [ have included a trade sanction in

player one's pay-off matrix that ratchets up with each loop of the game.

[t is important that player 1 is only punished with a trade sanction when it defects
(i.e. when it does not conform to the abatement levels agreed upon for developed
nations). In order to code this, player one's pay-off matrix must contain a constant
term, S, that is subtracted from it's net benefits whenever it chooses to defect. This

is explained in more detail within the code.

12
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The cost and benefit functions presented in the model are taken from Alan
Mehlenbacher's Economics 381 course notes. The important point to take from the
equations below is that a country benefits not only from the abatement it does itself,
but also from the abatement done by other countries; a country's costs, on the other
hand, are determined solely by its own level of abatement. This creates a classic
free-rider problem.

benefits; = B(Xa+ Xb) i =a,b (D

cost; =CX; i=a,b (2)

Where X, is the abatement done by player 1, and X}, is the abatement done by
player 2. In our example, this means that X, is the carbon reduction made by
Canada, while X, is the reduction made by the rest of the world. B is a scalar that
multiplies up the reduction amounts to find a benefit, and C is likewise a scalar that
multiplies up the reduction amounts to find a cost. Notice that C differs across

players. This will be important to our analysis later on.

Next I make an addition to the benefit and cost functions provided in Economics
381. I add a constant term, S, which represent a sanction levied against player 1 if it
does not accede to the agreement. Player 1's cost function and benefit functions,

given it has chosen to defect, are now given by:

benefits, = B(Xa+ Xb) — S (3)

cost, = Co X, — S (4)

14
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This should provide a disincentive against defecting (a stick rather than a carrot, as
Stern predicts), and the hypothesis is that at some S* player 1 will switch from

choosing to defect to choosing to co-operate.

Computational Method

Our first step is to create a game matrix that uses equations 1 to 4. From this matrix
we can deduce the payoff matrix for each player. In our case, these are not

symmetric since player 1 can suffer from trade sanctions if it chooses to defect.

Next, we need an isolated payoff vector (IPV) to help us determine which decision
each player will make (i.e. co-operate or defect) in response to the other player's
decision. We call these IPVs C1 and D1 for player 1 where C1 is the IPV for when
player 2 chooses to co-operate, and D1 is the IPV for when player 2 chooses to

defect. Similarly, we also have C2 and D2, to make a total of four IPVs.

Now that we have IPVs, we can form a best response function for each player. In
other words, we can pick the highest scalar in C1 and D1 for player 1, and in C2 and
D2 for player 2. This allows us to find the Nash equilibrium, which requires an
organized stream of if and elseif statements; I invite the reader to investigate the

Matlab code provided.

15
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Data

The critical information contained in the model and taken from real world data is
the value of C;. The fact that Canada has an incentive to defect from the IEA in the
first place suggests that its abatement costs are relatively high. Indeed, this is what
Stern was referring to indirectly when he called Canada "dirty." Canada's abatement
costs are high because of activity in the Alberta oil sands, shale gas fields in B.C., and
other unconventional oil and gas extraction efforts. This is in contrast to EU nations,
who generally express a high willingness to abate carbon emissions because their

abatement costs are relatively low.

In order to incorporate this relationship (between Canada and the rest of the world)
into my model, I use carbon intensity data from the World Bank. Since the European
Union has historically been the biggest proponent of GHG reduction agreements and
the most likely body to impose trade sanctions on Canada, I used its GDP/emissions
data to represent player 2 (i.e. the rest of the world). I then performed a simple

calculation where:

(5)

GHG intensity of b] C
GHG intensity of al ¢

-

Please look under references for a link to the International Energy Associations
public document on CO; emissions, titled "CO2 Emissions from Fuel Combustion -

Highlights" (2008).

1A
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Experiments

Role of the Sanction in Inducing Player 1 to Co-operate

The central point of this model is to show that when a sanction is levied against a
non-cooperative player in an [EA game, that player will eventually switch their
strategy in order to avoid the sanction. Determining the correct level at which this
sanction should be set is crucial in order to avoid efficiency losses from actually
having to impose the sanction. This is where Matlab comes in. By looping the game
with a larger value of S in each successive loop, we can observe from the output at
which point player 1 switches its strategy from defect to co-operate. Let's call the

first value of S that induces player 1 to switch strategies S*.

In our specific example, S* is easy to calculate by hand. But this is not necessarily
the case for all functional forms. If more complicated cost-benefit equations were
used than the ones provided in Economics 381, then S* could become very difficult
to calculate by hand. But with the aid of Matlab and the looped algorithm built into

our model, S* is quick and easy to determine.

This paper only examines the value of S* with the simple cost-benefit expressions
provided in Economics 381, but I would invite the reader to try inputing more

complex expressions, such as the ones provided by Barrett (1994).

__ $3712GDP/tonne
$2348 GDP/tonne

Experiment 1: Set C, C, =1.581C, =3

17



Wes Hartman Econ 353 Applications of Mathemetica, MATLAB, and GAMS

As outlined in the data section, set C;, the cost of abatement to the rest of the world,
according to data from the International Energy Association. For other values,

arbitrarily set:

Experiment 2: Set C, = 2C,, = 4

Under this experiment, we assume that the carbon intensity of Canada's economy
relative to the world's will increase dramatically in the future. This doesn't seem
completely unreasonable when one considers the pace of oil sands development in
relation to the steps other countries are taking (for instance, China has included a
carbon tax in its latest five year plan). The values for X,, X;,, and B do not change

between experiments.

Experiment 3: Set C, = C, = 2

Under this scenario, there has been widespread global technology sharing and
Canada has moved away from oil sands extraction and other fossil fuel heavy
industries. There would also have to be important low carbon transportation

breakthroughs in Canada.

Results

The program is coded to return the Nash equilibrium and the value of S for each

loop. That is, the output consists of what looks like a 3x1 matrix: the first two

1R
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columns give the decision choices of player 1 and player 2, and the third gives the
corresponding value of S. The reader can then browse through the output, stopping
where player 1's choice switches from 2 (defect) to 1 (co-operate). The value of S*

can be read from this point in the output.

__$3712GDP/tonne
$2348 GDP/tonne

Experiment 1: Set C, C, =1.581C, =3

Looking down the Matlab output, we see that S* = 2.00. That is, a sanction of value
2.00 levied against Canada every time it defects from an IEA will create enough
incentive to stop it from deferring. This of course assumes that the threat of a

sanction is credible. See the Appendix or attached USB stick for Matlab code.

Experiment 2: Set C, = 2C,, = 4

When it costs Canada twice as much to abate than the rest of the world, we can see
from the Matlab output that S* = 4.00. We can conclude that it takes a larger
sanction to induce Canada to co-operate when it costs them more to abate. That is
to say, the policy choices of today (e.g. the rate at which we develop the oil sands)

can have an important effect on the teeth required of future IEAs.

Experiment 3: Set C, = C, = 2

Encouragingly, we see that §* = 0 in this case. So when Canada and the rest of the
world are on par for the cost of emissions reductions, sanctions are unnecessary.
Again, the policy choices of today (e.g. the development of a green economy) effect

how harsh future IEAs will have to be in order to work.

19
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Discussion

Initially, my vision for this paper was very grand. I had plans to write a program
that could accept any functional forms for costs and benefits then return neat graphs
showing players' decision based on each possible value of S. Manipulating Matlab to
return useful diagrams proved much more difficult than [ had imagined (and much
more difficult than generating roughly equivalent visuals in Mathematica). Although
[ am still happy with my algorithm's abilities, my initial experiences with Matlab
have been less than optimal; in preparing my Excel and Mathematica projects, I can't
think of any instances when I spent eight-plus hours in the lab with nothing to show

for my efforts.

In summary, although the visual representations created by my algorithm are not
very flashy, it still solves simple problems and provides some insight into how trade
sanctions might make an [EA more enforceable, and how getting S right can avoid

economic inefficiencies.

Part III: The Effect of Adding Natural Resources to a
Computable General Equilibrium

Introduction
Nordhaus argues that natural resource do not impose any limits to growth, but
instead create rather undesirable “growth drags” (Romer 2006). A growth dragis a

reduction in the growth rate of the economy, which is not to be confused with a

20
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“limit to growth,” which is a level effect that caps the size of output at some finite
value. That s, a limit to growth need not have any effect on the growth rate, just as a
growth drag does not in itself imply any upper bound on the scale of economic

activity.

Critically, Nordhaus contends that the size of the drag on growth created by the
finite nature of earth’s natural resources is very small (Romer 2006). Not negligible,
but certainly not substantial either. This view has generated some protest from
ecological economists and environmentalists, but continues to be taken very
seriously by most “mainstream” economists (Romer 2006). In light of this, | have
attempted to factor natural resources into a simple general equilibrium model of the
economy in a very simple way. This modification to the model that was presented in
class will, I hope, help to explain how Nordhaus settled on the conclusion that

natural resources are not actually all that important.

Economic Model

Model 1: Simple General Equilibrium with Natural Resources

Since the general equilibrium model was presented in class and covered in the
textbook, I will only take space here to explain the simple modifications [ made to it.
These were made following the lead of Brock and Taylor (2009), who build what
they call the “Green Solow Model” in order to explain how monotonic convergence
to the steady state leads to the generation of an Environmental Kuznets Curve (EKC)

type relationship between income per capita and pollution. Although I do not plan

21
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on modeling an EKC in this paper, the production function Brock and Taylor use is

still relevant.

Our production function will look as follows:

Y, = (1 - 9) F(Kt'BtLt'Nt)

Y, = 1-96) Ktl_a_CNtC(BtLt)a = bt(l —-0) Ktl_a_CNtCLta

where 6 is the level of abatement, and B; is the productivity of labour, K, is capital,
L, is labour, and N; is natural resources. Including 8 (between 0 and 1) imposes
costs to abatement, which are very high for values of 8 close to 1. The second line of
the equation applies a Cobb-Douglas production specification, which follows the
example set by the simple general equilibrium model presented in class. Notice that
we maintain constant returns to scale, and that the factor share paid to labour is a,

natural resources is ¢, and capital is (1 - a - c).

As a result of this adjustment to the goods supply equation, we must now specify
equations for a natural resource market (in order for GAMS to solve the new general
equilibrium). For this model, I assume we are looking at the very short term (i.e.

and instant in time), so I fix the supply of natural resources as follows:

ns = @(nsbar)

727
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Notice that 8 shows up in order to reflect the level of abatement. This means that as

0 increases, the cost of abatement goes up, but so does the supply of natural
resources. A story we might tell to justify this representation is that when we

choose to abate (i.e. use fewer resources, in this case) we must develop

technological substitutes, which divert research and development funds from uses

that might increase output or economic growth.

Next, we must specify a demand function for natural resources. [ won’t go into any

detail here because I simply follow the lead of the general equilibrium model
presented in class and define demand for resources similarly to how demand for

capital and labour are specified:

nd = cXY; X <?>

Where p is price of the good produced, and f is the unit price of natural resources.

Next, we simply run GAMS and find the optimum level of income.

Model 2: Johansen General Equilibrium with Natural Resources

[ made some very simple modifications to the Johansen model in order to explore

the effects that natural resources have on growth rates. Experiments with the

simple general equilibrium model should give a nice reflection of the level effects of

modeling resources as shown above, but can only give linear approximations of the

effects of resources on growth rates (and would require at least two runs of GAMS

for each linear approximation).

722
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Since I modified the production function by following the lead of Brock and Taylor
(as shown previously under Model 1), the growth rate of production will also

change from the one presented in class. This is illustrated below:

InY;,=In(1-0)+(1—-—a—-c)lnK;+cInN;,+alnlL;

Yt—(l )Kt+ Nt+ L,
Y, TR TN, T L

Notice the absence of the (1 — 8) term in the growth rate of output/goods supply
function. This is because 8 does not vary with time, and so is a level effect only (as
explained earlier). This will facilitate the Nordhaus-type conclusions that we are

aiming to model.

Next, we simply write equations for the growth rate of natural resource supply and
natural resource demand, following the method already used in the model for
capital and labour. This will allow us to vary the growth in resources—more on this
later in the experiments section. Finally, we run GAMS and find the optimum growth

rate of income.

Computational Method

If any of the computational method remains unclear after reading the model

descriptions above, I invite the reader to investigate the GAMS code provided (on
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the USB stick). Our method for solving the general equilibrium is equivalent to the

one used in class, so no further comment is necessary in this section.

Data

The issue of what factor shares to put in labour, natural resources, and capital is an
important one. I use the Mankiw, Romer, and Weil (1992) values for capital and
labour (1/3 and 2/3, respectively, which assumes that labour is technology-
augmented). The question of what factor share to put on natural resources is
potentially more contentious, but I use the Nordhaus value of approximately 0.05.
Many would argue that this value is too small, but for the sake of convenience and
because of the empirical rigor which Nordhaus arguably employed to settle on this

value, I'll use it anyways.

Experiments

Model 1: Simple General Equilibrium with Natural Resources

Experiment 1.1: Abatement Effort

Since the proportion 8 scales up the amount of resource we have and scales down
our level of production, we can think of it as the amount of abatement effort society
is exerting. At high levels of 8, we are spending a large portion of GDP on developing
abatement technology, and as a result we have greater access to natural resources
(i.e. natural resource supply is high). Atlow level of 8, we are only spending a small

portion of GDP on abatement, but natural resource supplies are being impacted
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harshly. So there is a trade-off between natural resource supplies and the cost of
abatement. We will experiment with this relationship by taking three levels of 8 (a

low, medium, and high value) and seeing what the effect is on income.

Experiment 1.2: Natural Capital Pool

Many economists have begun to think of natural resources as a kind of capital. We
will embrace this concept and examine the effects of exogenous resource “shocks.”
That is, we will run two different levels of natural resource supply (ns) and see how

income is affected.

Model 2: Johansen General Equilibrium with Natural Resources

Experiment 2.1: Resource Regeneration

By definition, renewable resources have the potential to regenerate, while non-
renewable resources either do not regenerate, or regenerate on time scales that are
too large to be significant to society. We will model this with three experiments: the
first will impose a positive level of resource growth (this would apply in a case
where society was more than sustainable; we are using resources at a rate lower
than they are growing back); the second will have zero resource growth (in this
case, we have nailed sustainability spot on); and the third case will have negative

resource growth, or resource degradation.
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Results

Model 1: Simple General Equilibrium with Natural Resources

Experiment 1.1: 6 = 0.10,0.50,0.90

theta 0.10 0.50 0.90
good supply/demand 0.798 0.754 0.183
labour supply/demand 2 2 2
capital supply/demand 1 1 1
resource supply/demand 0.2 1 1.8
price 1 1 1
wage 0.132 0.124 0.03
cost of capital 0.271 0.256 0.062
resource cost 1.317 0.249 0.034
income 0.798 0.754 0.183

Table 1. How Theta Affects Variables Including Income

As we can see, income is highest when theta is 0.10, and lowest when it is 0.90. This

suggests that the tradeoff between natural capital levels and abatement costs lies in

favour of avoiding abatement costs and having fewer natural resources. This
conclusion seems appropriate given our Nordhaus type approach. We also notice
that resource supply (and thus, demand) is highest when we do the most
abatement—this is encouraging. Finally, we discover that the price of resources is
lowest when we abate the most and they are the most abundant. This also seems

consistent with what we might have predicted.
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Experiment 1.2:ns=1,2,5

nsbar 1 2 5
good supply/demand 0.635 0.798 1.08
labour supply/demand 2 2 2
capital supply/demand 1 1 1
resource supply/demand 0.1 0.2 0.5
price 1 1 1
wage 0.105 0.132 0.178
cost of capital 0.216 0.271 0.367
resource cost 2.095 1.317 0.713
income 0.635 0.798 1.08

Table 2. How nsbar Affects Variables Including Income

Encouragingly, income is highest when nsbar is 5. We should keep in mind that

nsbar is the unadjusted resource supply, which is multiplied by theta to obtain the

Applications of Mathemetica, MATLAB, and GAMS

actual resource supply/demand (which is presented in the table). Notice also that

the price of resources goes down as they become more abundant. This is a good

sign.

Model 2: Johansen General Equilibrium with Natural Resources

Experiment 2.1: Gns = 0.25,0,—0.25
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Growth rates x100 for Percent

ns 0.25 0 -0.25
good supply/demand 0.013 0 -0.013
labour supply/demand 0 0 0
capital supply/demand 0 0 0
price 0 0 0
wage 0.013 0 -0.013
cost of capital 0.013 0 -0.013
resource cost -0.237 0 0.237
income 0.013 0 -0.013

Table 3. How the Growth Rate of ns Affects Variables Including Income

Since capital accumulation is assumed to be nonexistent and it is assumed that
population is stable, all growth is generated from growth in natural resources. As a
result, we can see exactly the effect that resources have on growth. As expected, we
see modest growth when resources are growing continuously at a rate of 25%. Also
encouraging is the fact that income growth is zero when growth in ns is zero, and
that income falls when resources are depleted at a rate of 25%. These results are in
line with the Nordhaus school of thought, because even very large swings in natural
resources cause only modest changes in the growth of income. This is due to the
fact that we gave resources s factor share of only 0.05 - a value Nordhaus would

probably think of as very generous.
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Discussion

What I have presented in this paper is a very simple way to model how natural
resource levels interact with production. Itis alarming to observe that even the
“cutting edge” in growth theory is not much more sophisticated in its treatment of
natural resources. Nordhaus uses some relatively advanced econometrics to prove
that the factor share of resources are very small (and have actually been dropping in
the recent past), but provides very little evidence that this trend will continue. He
also does little to explain how technology, labour, and capital can be substituted
indefinitely for natural resources. That is to say, he subtly makes the claim that as
long as we have enough technology, we really do not need any natural resources

whatsoever.

This paper makes the claim that although Nordhaus’ findings can be confirmed
using a general equilibrium computational approach, they still may be based on
some very shaky assumptions. [ would be interested to see future research that
modeled the substitutability of technology (or labour or capital) for resources as
having decreasing returns once a certain point is reached, or even approaching zero

at some point.
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Appendix
PartI:

A1 - Code for Model 1 (Textbook Solow)

SetAttributes [n, Constant]
SetAttributes [g, Constant]
SetAttributes [§, Constant]
SetAttributes [a, Constant]
SetAttributes [y, Constant]

Clear(n, g, 6, a, B, ¥, k]

Manipulate [

Shw[Plot[{Tooltip[(é +n+g) k, "break-even investment, (5 + n + g)k"],

Tooltip[k”“a, Row[{"output per worker, ", Style["f(k)", Italic]}]],
Tooltip[yk“a, Row[{"investment, ", Style["sf(k)", Italic]}]]}, (%, 0, 20},
PlotStyle -+ {{Thickness[.005], Blue}, {Thickness[.005], Green}, {Thickness[.005], Red}},
PlotRange - {{-3.5, 20}, {-.8, 4}},
Filling -+ {1 - {3}},
ImageSize - 550,

Ticks {{{[TZ+g

a
{ (6+n+g)]

trone}}]].

{{¥, .5, "rate of saving"}, 0, .9, Appearance - "Labeled"},

{{6, .1, "depreciation"}, 0.0, .5, Appearance - "Labeled"},

{{n, .03, "labor-force growth"}, 0.001, .2, Appearance - "Labeled"},

{{g, .03, "rate of technical progress"}, 0.001, .2, Appearance - "Labeled"},

1/(1-a)
] , Style["k"", {12, Bold}]},

1/(1-a)
, Style["k'as", {12, Bold}1},

{{a, 0.33, "capital's factor share"}, 0.001, 0.75, Appearance - "Labeled"}]
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A2 - Code for MRW Solow with Human Capital

SetAttributes [n, Constant]
SetAttributes [g, Constant]
SetAttributes [§, Constant]
SetAttributes [a, Constant]
SetAttributes [8, Constant]
SetAttributes [y, Constant]
SetAttributes [¢, Constant]

Clear([n, g, 6, a, B, ¥, ¢, k, h]

Hanlpulate[

show[PlotSD[{Tooltip[(n-vg-b6) k, "break-even physical investment, (n+g+8)k"],
Tooltip[(n+g+5) h, "break-even human investment, (n+g+5)h"],
Tooltip [k(“”"“"’” n#/ (t-a-8)
Row[{"output per effective worker,", Style["f(k,h)", Italic]}]],
Tooltip [7 k(al(l-a-B)) hﬁ/(l-a-ﬁ) ,
Row[{"investment in physical capital," Style["yf(k,h)", Italic]}]],
Tooltip[¢ k!*/(1-a-)) pa/ita-s),
Row[{"investment in human capital," Style["¢f(k,h)", Italic]}]]}, {k, 0, 20},

{h, 0, 20}, PlotStyle » {{Thickness[0.005], Green}, {Thickness [0.005], Darker[Green, 0.3]},
{Thickness [0.005], Red}, {Thickness[0.005], Blue},
{Thickness [0.005], Darker[Blue, 0.3]}}, PlotRange - {{0, 20}, {0, 20}, {0, 80}},
ImageSize - 550,

1B¢G
mu“{{{[mm

¥ °1 wa Y1/ (1-a-g)
{{[ o) , Style["\!\ (\«SuperscriptBox[\(h\), \(+\)1\)", {16, Bold)]}},
n+qg+

None}]],

{{¥, 0.3, "rate of savings on physical capital"}, 0, 0.9, Appearance - "Labeled"},
{{¢, 0.3, "rate of savings on human capital"}, 0, 0.9, Appearance - "Labeled"},
{{a, 0.30, "physical capital's factor share"}, 0.1, 0.5, Appearance - "Labeled"},
{{B, 0.30, "human capital's factor share"}, 0.1, 0.5, Appearance - "Labeled"},

{{n, 0.03, "labor-force growth"}, 0.001, 0.2, Appearance - "Labeled"},

{{g, 0.03, "rate of technological progress"}, 0.001, 0.2, Appearance - "Labeled"},

1/(1-a-g)
] , Style["\!\ (\+SuperscriptBox[\(k\), \(*\)I1\)", {16, Bold}]}},

{{6, 0.1, "depreciation of physical or human capital"}, 0.033, 0.5, Appearance - ”Labeled"}]
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Part 11

B1 - Code for MATLAB

3International Environmental Agreements and Trade Sanctions

(rest of the world)

C1/C2 co-operate or accede Lo agreement
D1/D2 defect or go against agreement

P1(C,C)=B* (Xa+Xh)-Ca*Xa,

P1(D,C)=B*Xb-3,

Player 1 (Canada) and Player 2

Players

Two strategies each

o

o

P1i{C,D)=B*Xa-Ca*Xh,

Payoffs

o

o

o

P2 (D,D)=0-3

o

o

10
11

o

P2 {C,D)=B*Xa,

P2 (C,C)=B* {Xa+¥Xb) -Ch*Xh,
P2 (D,C)=B*Xb-Ch*h,

o

o

=0

P2 (D, D)

o

12
13

o

Matrix

o

o

Pz

o

14
15
16
17
18
19
20
21

o

o

o

B*Xa

BE*Xa-Ca*¥h,

B* (Xa+¥h) -Cbh*Xh

B* (Xa+¥h) -Ca*Xa,

C

o

o

Pl

g

B*Xb-Ch*Xb

B*Xh-3,

o

22
23

2%

Pl is player 1's pay-off matrix and

*Now we need pay-off matrices.

o

%P2 is player 2's.

24
25
26

o

each time adding the

3 starts at 0 and increases by

<

(world)

(Canada)

(world)

country b

[
o]
o
=
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or

for each player and each

(IPV)

s

and player two will

Cl and D1,
Each IPV takes the other player's strategy as

3given and then returns the payoffs corresponding to each strategy.

@

or

or

3Now we need the best response functions for each player:

%Best response for player 1 given player two plays C
%Best response for player 1 given player two plays D

%Best response for player 2 given player one plays C
3Best response for player 2 given player one plays D

or

%P1 has a strictly dominant strategy

%P2 has a strictly dominant strategy

%P2 does NOT have a strictly dominant strategy

.
-

.
.

~
1}
=
9
H
[}
[
[
P
oo
& U g o o o o B - -
B o o o A — ™~
o E=i o o o L ] ]
& H A o o A= - - -
& H o~ . o o o o m B - M M
P = e B | & o o o o o - a —~ Q
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o U = o o o LTSN LIS & M e —_ O M = A A
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90 — elseif (brill~=bril2) %P1l does NOT have a strictly dominant strategy
=il |= if (bri2l==bri22) %P2 has a strictly dominant strategy
92 = if (brizil==1)

=== nash=[brill brizi1]:;

94 — elseif (bri2il==2)

el = nash=[bril2 brizi]:

96 = end;

= = elseif (bri2l~=bri22) %P2 does NOT have a strictly dominant strategtjl
98 — if (brill==bri21il)

99 — if (brill==1)

100 - nashl=[brill briz1]:;

101 — elseif (brill==2)

10z — if (bril2==1)

103 — nashl=[bril2 brizi]:
104 — elseif (brilz==2)
Tz |= nashl=[0 0];

106 — end;

Al | = end;

108 — elseif (brill~=brizl)

109 — nashl=[0 0];

110 - end;

111

LI (= if (bril2==bri22)

ALILE} = if (brilz==2)

114 - nash2=[bril2z briz2]:

LIS (= elseif (bril2==1)

116 — if (brill==2)

LT = nashZz=[brill brizz]:;
118 — elseif (brill==1)

ALl = nashz=[0 0];

AL = end;

AL = end;

Iz = elseif (brilZ~=bri22)

=== nashz=[0 0];

124 — end;

125

e = if (nashl==nash)

ALz = nash=nashl;

AlZE 1= elseif (nashl~=nash2)

129 = nash=[nashl;

130 nashz] ;

ALEL (= end;

Alsi = end;

133 - end;

134
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135
136
137
138
139
140
141 — decision = [nash, 35];
142

143 — decision

144

145

146 — end

147

h Equilibriwm output. If one unicgque ecquilibrium then

a scalar, if multiple equilibriu then displa

Part III:

Please find the GAMS code used to generate the findings presented in this report on
an attached USB stick. You will also find the list files for each experiment, filed in

separate folders for experiments 1 and 2.
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