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Introduction 

 



Investors in equity markets are besieged by risk.  At times, in fact, it seems as though equity investors 

are more likely to lose money than gain it.  In order to address the perceived risk associated with 

investing, portfolio risk management was developed.  Portfolio risk management is a field of economics, 

finance and statistics that seeks to help investors manage the risk associated with the investments they 

make.  Portfolio risk management is largely predicated on the idea that there is some trade-off between 

risk and return.  Equities with higher levels of risk must also carry higher returns, in order to compensate 

owners for undertaking an elevated level of uncertainty.  Portfolio risk management attempts to 

quantify and manage this risk so as to better match investments to the needs of investors. 

This project begins with an examination of the economic nature of the metrics being examined.  The 

examination of the economic model is followed by a brief overview of the computational model being 

used.  These sections are primarily meant to provide a background for the experiments that follow, but 

are written to also be didactic.  The experiment section outlines the experiments that will be 

undertaken.  This section also provides a background for how the source data was collected and 

prepared for the purposes of the experiments.  The experiments fall mainly in two categories: portfolio 

optimization and risk management.  Since the portfolio optimization model maximizes a particular kind 

of risk-adjusted return, this project can be holistically viewed as an exercise in risk management.  The 

results of the experiment are then examined, followed by a discussion section.  An appendix that 

includes code and output is then followed by references. 

Economic Model 

 

Portfolio Optimization 

 

This portfolio optimization model builds on the Monte-Carlo simulation model used by Kendrick, 

Mercado and Amman (2006).  While the Kendrick model maximizes returns subject to a subjectively 

weighted variance function, the model proposed here maximizes the alpha that would have been 

obtained given the historic results.  Alpha, in this case, refers to the returns in the portfolio in excess of 

what the Capital Asset Pricing Model would have predicted.  For a more thorough examination of this 

criterion function, refer to the later examination of Jensen's Alpha, keeping in mind that Jensen's alpha 

is an ex-post measure, while the alpha being used in the criterion function is an ex-ante measure.  The 

Kendrick model is also extended to include a larger number of assets and to be based on statistics 

pertaining to actual equities.   

 



It should be noted that the results provided by this method of portfolio optimization could easily be 

improved by a skillful portfolio manager.  One of the stocks examined, for instance, is that of Microsoft.  

Over the period of returns being examined, Microsoft experienced phenomenal growth.  Given the fact 

that Microsoft is already one of the largest corporations in the world, it is unlikely that such phenomenal 

growth rates will continue.  A portfolio manager could therefore stand a good chance of improving on 

the results of this model, by adjusting the Monte-Carlo simulation's results in order to take into account 

real-world limits to growth.  

  

Treynor ratio 

 

The Treynor ratio is "a ratio, developed by Jack L. Treynor, to measure excess return per unit of risk, 

based on systematic risk (the beta of a portfolio versus the benchmark)" (Russell Investments, 2008).  

This ratio is used to rank portfolios based on their risk premium (return in excess of the risk-free rate), 

when weighted by the degree of risk required to obtain this return.   

The Treynor ratio is equal to: 

 

     T = (rp - rf)/βp      (1) 

 

(Russell Investments, 2008), where rp is the return of the portfolio in question, rf is the risk-free rate of 

return, and βp is the CAPM beta of the portfolio in question (Sharpe, 1964).  As a portfolio gets riskier 

relative to the market, βp increases, causing the Treynor ratio to drop.  Similarly, if the portfolio's return 

increases or the risk-free rate decreases, the Treynor ratio will increase.  It is therefore clear that when 

ranking portfolios by their Treynor ratio, the portfolio with the highest Treynor ratio should entail the 

best risk-return trade-off.  In this case, we are using the simple Treynor ratio, as we are only considering 

one portfolio.  In the case where on portfolio is being examined, the simple Treynor ratio is equal to the 

generalized Treynor ratio, a robust counterpart to the simple Treynor ratio being examined here 

(Hubner, 2003).  

 

Sharpe ratio 

 

The Sharpe ratio is a ratio of the risk premium to the standard deviation of the risk premium.  

Reminiscent of a Student t-test, this ratio attempts to measure the risk premium per unit of risk taken to 

acquire this premium.   



The Sharpe Ratio is equal to: 

 

     S = (rp - rf)/σe      (2) 

 

(Sharpe, 1994), where rp is the return of the portfolio in question, rf is the risk-free rate of return, and σe 

is the standard deviation of rp - rf.  As a simplifying assumption, and to reflect the fact that rp and rf are 

unknown on an ex-ante basis, it will be assumed that σe is equal to σp, the standard deviation of rp.  

Effectively, this assumes that the risk-free rate will be a constant throughout the life of the portfolio.  

 

Jensen's Alpha 

 

Jensen's Alpha quantifies the return of an asset or portfolio in excess of what the Capital Asset Pricing 

Model would have predicted.  In doing this, Jensen's Alpha attempts to measure the degree to which the 

returns obtained by a portfolio manager are a result of their ability to select superior stocks and not 

simply a result of a riskier portfolio.   

Jensen's Alpha is equal to: 

 

     αp = rp - (rf + βp(rm-rf))     (3) 

 

(Private Banking, 2008), where rp is the return of the portfolio in question, rf is the risk-free rate of 

return, rm is the rate of return for the market, and βp is the beta of the portfolio in question.  For a 

portfolio manager to maximize their 'alpha,' they must choose stocks they expect to outperform what 

would be historically expected of them (since the CAPM prediction is based on past performance). 

Value-at-Risk 

 

Value-at-Risk (VaR) measures the risk of loss in a specific portfolio, given a particular probability.  In 

statistical terms, VaR is a measure of tail risk at a given significance level.  The smaller the level 

significance being considered, the greater the value being put at risk.  

 

Though VaR is a widely used measure of risk, it is very flawed.  First, VaR measures typically depend on 

returns following a normal distribution.  This is clearly not the case for financial data, which is typically 

skewed and leptokurtic.  Next, "[t]he crux of being able to provide an accurate estimate for the Value-at-

Risk is in being able to accurately estimate the expected return R* associated with the portfolio value 



W*. Value-at-Risk estimation therefore requires knowing the probability distribution of the expected 

returns, which of course is unknown. Hence the various methods for estimating VaR depend on the 

assumption made about the probability distribution of the expected returns." 

 

While it is not possible to avoid making some assumption about the probability distribution of returns, it 

is possible to make a more accurate assumption than normality.  Huisman, Koedijk and Pownall (1998) 

suggest an extreme-value methodology for determining tail risk.  VaR-x models the tail risk associated 

with the returns of a distribution by examining the most extreme observations and through the usage of 

a Student's t-distribution.  VaR-x is implemented first by creating an index of tail observations based on 

the absolute value of returns, ranked by size.  The estimator of this tail index is: 

 

         (4) 

 

(Huisman, Koedijk and Pownall, 1998), where k is the number of tail observations and xi refers to the i-th 

tail observation.  Using a modified version of this estimator, we can correct for sampling-size bias by 

setting k to the sample size and then calculating the tail index as: 

 

     γ(k) = β0 + β1k + ε(k)        (5) 

   

(Huisman, Koedijk and Pownall, 1998).  Alpha is determined by taking the inverse of the intercept 

produced from this regression.  Next, a parameter, theta, is determined by: 

 

     θ = σ / (α/(α-2))
0.5

     (6) 

 

Finally, the measure for VaR-x is calculated as: 

      

     VaR-x = W0θS*      (7) 

 

(Huisman, Koedijk and Pownall, 1998), where W0 is the dollar value of the portfolio, θ is the parameter 

described in the previous steps, and S* is the t-statistic associated with a Student t-distribution with α 

degrees of freedom.   VaR-x will be equal to the dollar value at risk, given the probability level being 

taken into account and the particular nature of the extreme-values in the distribution of returns. 



 

Computational Model 

 

The computational model spans three programs: Microsoft Excel, Quantitative Micro Software's EViews 

and MathWorks' MATLAB.  First, data is collected from Yahoo! Finance, then sorted and interpreted 

while various statistics are calculated.  The Yahoo! Finance data and some of the calculated statistics are 

then put into EViews where several regressions are performed.  The Excel statistics and EViews 

regression outputs are then inputted into MATLAB.  Using a Monte-Carlo simulation, the optimal 

portfolio is then determined.  The Monte-Carlo simulation begins with a portfolio composed of ten 

percent of each of the ten available equities.  The simulation then creates several portfolios with slightly 

different compositions.  The portfolio that best meets the criterion function is then used as the starting 

point in the next iteration.  As numerous iterations are run, the portfolio will close in on the optimal 

portfolio. 

 

After an optimal portfolio is obtained, it is entered into Excel and EViews where additional statistics are 

calculated.  Finally, the results from the portfolio optimization and the statistics calculated thereafter 

are inputted into a MATLAB model that calculates the risk metrics discussed in the Economic Model 

section.  Each step of the process is described in greater detail in the experiments section that follows.    

 

The portfolio optimization model has been significantly altered from the Kendrick model.  First, the 

criterion function has been entirely changed.  As mentioned in the Economic Model section, rather than 

using a subjectively weighted measure of risk to determine the particular portfolio weightings, the new 

criterion function maximizes the 'alpha' obtained by the portfolio manager.  The model has also been 

extended to encompass a larger number of firms.  As a result of this extension, the scope of the model 

has also been increased to include a larger number of iterations and test portfolios.  This was necessary 

to obtain stable portfolio weights.  

 



Experiments 

 

Data Collection & Conditioning 

 

In order to set up the following experiments, historic stock prices must be obtained and properly 

prepared.  This data is obtained from Yahoo! Finance's historic prices (Yahoo! Finance, 2009).  For the 

sake of simplicity, the stocks of ten large-capitalization corporations are examined: 3M, Coca-Cola, 

Exxon-Mobil, Kellogg, General Electric, MacDonalds, Microsoft, Proctor & Gamble, Southwestern Energy 

and Union Pacific.  Stock prices are examined for the period January 1, 1990 to January 1, 2009.  To 

avoid the conditioning problems associated with using daily returns, weekly returns are used.  This step 

will also help the model better reflect the problems faced by long-term buy-and-hold investors.   

 

From these stock prices, weekly returns are then calculated, as is a variance-covariance matrix between 

the returns of the stocks.  Stock prices are then regressed against the weekly prices of the S&P 500, to 

determine the CAPM β-values of each individual stock.    

 

Portfolio Optimization 

 

In order to obtain a portfolio that maximizes returns, subject to the risk taken to get this return, a 

Monte Carlo simulation is performed using statistics from the stocks being examined.  The particular 

details behind Monte Carlo optimization are detailed in Kendrick, Mercado and Amman (2006).  The 

criterion function being examined in this experiment is: 

      α = rp - (rf + βp(rm-rf))     (8) 

 

Where rp is the effective weekly return of a portfolio of stocks: 

 

     E(rp) =      (9) 

 

(Bodie, Kane, Marcus, Perrakis & Ryan, 2005).  The return on each individual equity is denoted by ri. For 

the sake of this experiment we assume that the expected values of the individual stock returns and the 

portfolio are equal to the true values.  Additional parameters are rf is the risk-free rate of return, rm is 

the rate of return for the market, and βp is the beta of the portfolio in question.  Equation (8) therefore  



maximizes the portfolio's return in excess of the risk-free rate, relative to the portfolio's beta times the 

market's return in excess of the risk-free rate.   

 

Risk Management 

 

Using the portfolio weights determined in the previous step, another MATLAB program determines the 

values of a number of different risk-to-return and risk metrics discussed in the Economic Model section.  

The unified goal of the following four experiments is to compare and contrast the risk metrics that 

follow and to build an understanding of the risk behaviour of the optimal portfolio relative to the 

individual stocks. 

 

1- Treynor Ratio 

 

This experiment determines the Treynor ratio associated both with the optimal portfolio and single-

equity portfolios consisting of each of the ten input stocks.  This experiment will determine the amount 

of return obtained in excess of the risk-free rate, per unit of systematic risk.  This experiment relies on 

the portfolio β, which is calculated as: 

 

          (10) 

 

(Bodie, Kane, Marcus, Perrakis & Ryan, 2005), where the portfolio's beta is equal to the square root of 

σp
2
 and i = (1, ..., 10) refers to the ten stocks being modelled.  The portfolio with the highest Treynor 

ratio should be considered superior.  

2- Sharpe Ratio 

 

This experiment determines the Sharpe ratio associated both with the optimal portfolio and single-

equity portfolios consisting of each of the ten input stocks.   This experiment will determine the return 

obtained in excess of the risk free rate, per unit of volatility, as measured by the standard deviation of 

returns.  To calculate this ratio, the portfolio's standard deviation must be determined.  It is calculated 

as: 

 



       (11) 

 

(Bodie, Kane, Marcus, Perrakis & Ryan, 2005), where the portfolio's standard deviation is equal to the 

square root of σp
2
 and i = (1, ..., 10) refers to the ten stocks being modelled.  The Sharpe ratio of the 

optimal portfolio should be higher than the Sharpe ratios calculated for each individual stock portfolio. 

 

3- Jensen's Alpha 

 

This experiment determines the Jensen's alpha associated both with the optimal portfolio and single-

equity portfolios consisting of each of the ten input stocks.  As discussed, Jensen's alpha is a measure of 

the return of a portfolio in excess of what would be expected, given that assets systematic risk.  The 

portfolio with the highest Jensen's Alpha should be considered superior.   

 

4- VaR-x 

 

This experiment determines the VaR-x associated both with the optimal portfolio and single-equity 

portfolios consisting of each of the ten input stocks.  Since VaR-x measures the potential dollar loss 

associated with a given portfolio and significance level, the optimal portfolio hopefully has a lower VaR-x 

value than the individual stock portfolios.  If so, this would imply that the portfolio optimization process 

is implicitly minimizing the tail risk associated with the portfolio.    

 

The execution of this experiment involves numerous important steps.  First, the absolute value of 

percentage changes in stock prices is calculated.  These changes are then ranked  by size, from largest to 

smallest.  Equation (4) is then determined for k-values that range from 1 to the sample size divided by 

two.  The resulting γ(k) values are then regressed against a constant and k, as per equation (5).  The 

resulting intercept is the inverse of the alpha value used to calculate theta in equation (6).  Finally, VaR-x 

is calculated by equation (7).  The result is a numerical estimate of the dollars put at risk, given an 

equity's historic volatility characteristics. 

 



Results 

 

Data Collection & Conditioning 

 

The data collection phase began by acquiring the historic returns of the equities being examined.  The 

historic prices of ten equities and the Standard and Poors 500 index over the period January 1, 1990 

through January 1, 2009 were acquired.  Weekly percentage returns, a variance-covariance matrix, and 

the effectively weekly yield were then calculated.  

Variance-Covariance Matrix: 

All values are scaled up by 1000 for presentation purposes, and are in the units %
2
.  

Ticker GE K KO MCD MMM MSFT PG SWN UNP XOM 

GE 1.28 0.26 0.41 0.43 0.50 0.55 0.40 0.23 0.46 0.34 

K 0.26 0.94 0.38 0.22 0.29 0.20 0.37 0.26 0.28 0.24 

KO 0.41 0.38 1.19 0.40 0.40 0.31 0.57 0.36 0.29 0.35 

MCD 0.43 0.22 0.40 1.22 0.29 0.38 0.39 0.18 0.30 0.25 

MMM 0.50 0.29 0.40 0.29 0.99 0.28 0.38 0.48 0.44 0.36 

MSFT 0.55 0.20 0.31 0.38 0.28 2.01 0.23 0.24 0.32 0.27 

PG 0.40 0.37 0.57 0.39 0.38 0.23 1.25 0.23 0.29 0.26 

SWN 0.23 0.26 0.36 0.18 0.48 0.24 0.23 3.66 0.48 0.56 

UNP 0.46 0.28 0.29 0.30 0.44 0.32 0.29 0.48 1.31 0.32 

XOM 0.34 0.24 0.35 0.25 0.36 0.27 0.26 0.56 0.32 0.85 

 

Individual stock betas and effective weekly yields: 

   



 

These betas were calculated by regressing the stock returns against the returns from the S&P 500. 

 

Portfolio Optimization 

 

Next, the betas calculated in the previous step, along with the weekly returns are added to MATLAB.  A 

Monte-Carlo simulation is then performed in order to determine the percentage of the portfolio placed 

that composed of by each equity. 

  

 

 

The left-hand MATLAB output shows the Monte-Carlo simulation as it iteratively alters the portfolio so 

as to obtain the highest risk-weighted return.  The right-hand pie-chart displays the results of this 

simulation.  It should be noted that the legend on the pie chart only applies to the pie chart.  It is not 

immediately obvious from the output, but all equities began with an equal 10% portfolio weighting.   



 

 

Above is the MATLAB output from the Monte-Carlo simulation.  Wnew refers to the portfolio weights of 

GE, K, KO, MCD, MMM, MSFT, PG, SWN, UNP, and XOM, respectively.  Top refers to the risk-adjusted 

return and the actual percentage return of the portfolio, respectively.  These figures are weekly 

percentage gains.  The estimated effective weekly yield on the portfolio is 0.2914%, whereas the risk 

adjusted return is a weekly yield of 0.1607%. 

 

Risk Management 

 

Risk analysis metrics were calculated using data from the data collection and conditioning phase.  Brief 

descriptions are given alongside the computational results from the Treynor Ratio, Sharpe Ratio and 

Jensen's alpha.  A cohesive, in-depth discussion of these ratios can be found at the end of the discussion 

section.   VaR-x is given a slightly longer analysis both here and in the discussion section, reflecting the 

added complexity involved in calculating and interpreting VaR-x. 

 

1- Treynor Ratio 

 

Treynor ratios were calculated for ten theoretical portfolios consisting of 100% of each individual equity, 

as well as the overall portfolio. 



 

 

The portfolio with the highest Treynor ratio is generally considered to be the superior portfolio.  From 

the above graph it is clear that not only is the portfolio's Treynor ratio not higher than some of the 

single-equity portfolios, it is only the fifth highest ratio.   

 

2- Sharpe Ratio 

 

Sharpe ratios were calculated for ten theoretical portfolios consisting of 100% of each individual equity, 

as well as the overall portfolio. 

 

 

 



The portfolio with the highest Sharpe ratio is generally considered to be the superior portfolio.  The 

above graph suggests that the portfolio handily beats the all-equity portfolios.    

 

 

3- Jensen's Alpha 

 

Jensen's alphas were calculated for ten theoretical portfolios consisting of 100% of each individual 

equity, as well as the overall portfolio.   

 

 

 

The portfolio with the highest Jensen's alpha is generally considered to be superior.  As the above graph 

shows, the portfolio's Jensen's alpha, though above average, is not the highest.   

 

 

4- VaR-x 

 

The VaR-x calculation began with a series of regressions whose results can be viewed in Appendix 2.  

When viewing these regressions it is important to note that the coefficients of determination in these 

regressions are very low.  This is an expected result of the regressions, as they regress values 

determined by stock values against the constants k = (1, ... , n/2), where n is the sample size.  It should 

not be expected that a constant will do a particularly effective job at reducing the sum of squares 

relative to the mean model.  It is more important, however, that the p-values for each individual 



parameter estimate and the overall equations are significant.  Since all of the equations and parameter 

estimates are statistically significant at very low significance levels, these values should be viewed as 

statistically significant.   

 

The following alpha values refer to the inverse of the intercepts produced by the regressions.  These 

values are calculated using Microsoft Excel.  

 

 

 

The highest alpha value occurs from Exxon-Mobil, followed by the portfolio.  Nothing, however, can be 

inferred from this step, yet. 

 

The VaR-x calculations for the overall portfolios at the 5% probability level appears below.  The lower 

the VaR-x value, the less money is at risk at the 5% probability level.    

 



 

 

The optimized portfolio has a far lower VaR-x than the other portfolios.  This suggests that the portfolio 

has a lower tail-risk than any of the individual stocks. 

 

Below is the VaR-x calculation for a 1% significance level. 

 

 

 

Although all of the VaR-x values are higher, the portfolio's VaR-x is still the lowest.   

 

  



Discussion 

 

Portfolio Optimization 

 

The portfolio optimization process produced a portfolio that was heavy weighted in Microsoft, 

MacDonalds, Southwestern Energy and Exxon Mobil.  This is a sensible result, as over the period in 

question, these companies experienced phenomenal growth with relatively little volatility.  In fact, as is 

determined in the risk management section, these four stocks have the highest Jensen's alpha of the 

stocks being examined.  Since the portfolio's goal is to maximize alpha, this should be an intuitive result. 

 

It is questionable, however, whether the stocks picked by this portfolio will be the best stocks going 

forward.  Although opportunities for global expansion are presenting themselves, it is not clear that 

Microsoft, for instance, will be able to continue to grow at the pace they have historically grown at.  In 

fact, Microsoft has to increasingly compete not only with direct competitors like Apple and Linux, but 

with old editions of their old products.   Although far from perfect, Microsoft's software is, in many 

cases, already 'good enough' for consumers.  Additional features or upgrades may add features or 

stability, but this may not necessarily draw in new customers.  The recommendations made by the 

Monte Carlo simulation may therefore be questionable.  This is not a flaw unique to this particular 

model, however, as any portfolio model making forward-looking predictions based on past results will 

share similar deficiencies.  As an aside, this directly implies that it is incumbent on any portfolio manager 

using an optimization program to select portfolio components to adjust this output according to real-

world limits on future growth. 

 

This portfolio's weekly yield is approximately 0.2914%, or 16.3% per year.  The risk-adjusted yield is 

approximately 0.1607% per week, or 8.7% per year.  In comparison, the Standard and Poors 500 yielded 

approximately 5.2% per year over this period.  It should be noted that this difference in returns is based 

on historic data, and may change going forward.  

  

Risk Management 

 

The risk management experiments sought to find a way to quantify the amount of risk the portfolio and 

the individual stocks entailed.  Following brief discussions on the four metrics, there is a discussion on 



how these ratios provide contradictory results, and what these contradictions mean in terms of portfolio 

risk management.  

 

1- Treynor Ratio 

 

The Treynor ratio for the portfolio suggests that it is not the best portfolio in terms of excess return per 

unit of systematic risk.  In fact, the portfolio's performance is about average.    

 

2- Sharpe Ratio 

 

The Sharpe ratio of the optimal portfolio was far larger than the Sharpe ratios of the all-single equity 

portfolios.  

 

3- Jensen's Alpha 

 

The Jensen's Alpha for the portfolio is not the largest.  Similar to the results from the Treynor ratio, 

several individual equity portfolios have higher Jensen's alphas than the optimal portfolio. 

 

4- VaR-x 

 

The VaR-x for the portfolio is far smaller than the VaR-x values for the all-equity portfolios, at both the 

1% and 5% probability level.  This suggests that the portfolio has less tail risk than the individual equity 

portfolios.  This is a sensible result, given Markowitz Portfolio Theory(MPT). 

 

 

A portfolio manager trying to interpret these four ratios will be faced with a dilemma: half of the ratios 

suggest the portfolio is inferior, half will suggest that the portfolio is superior.  This problem would be 

easily resolved if it was clear that some of the metrics were superior measures.  However, this is not the 

case.  More generally, in fact, the difficulties associated with conflicting metrics and ratios is one 

typically faced by not only portfolio managers, but individual investors.  Finance and financial economics 

are rife with ratios, and these ratios often tell different stories.  As with these other cases in economics 

in finance, a careful examination can often help explain the contradictory risk metrics. 

 



In the case of this portfolio, it should first be noted that none of these ratios are intended to be used for 

the examination of single stock portfolios.  This is especially true for the Treynor Ratio and Jensen's 

alpha.  These two metrics are similar in that they rely on a stocks CAPM β as a way to measure risk.  To 

optimize this kind of portfolio in the absence of short selling, one simply has to buy a portfolio 

containing only the equity with the highest Treynor Ratio or Jensen's alpha.   This clearly would not 

produce an optimal result.  The Sharpe ratio and VaR-x measure of the portfolio, on the other hand, 

prefer portfolios that consist of a mix of different equities.  This will occur because one of the key 

benefits of diversification is a lower portfolio variance.  Since the Sharpe ratio and VaR-x depend on the 

standard deviation of the portfolio in question, and a portfolio's variance can be lower than the variance 

of its components, it is sensible that a portfolio's Sharpe ratio or VaR-x can be superior to its 

components.   

 

It is therefore clear that for the sake of comparison with component equities, the Sharpe ratio and VaR-x 

values should be viewed as relevant measures of risk, whereas the Treynor ratios and Jensen's alpha 

should be largely ignored in this instance.  When comparing against other mixed-equity portfolios, these 

two metrics will provide relevant benchmarks, so their calculation is therefore still important.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

 

Appendix 1: portfoliomax.m 

Appendix 2: EViews Output 

Appendix 3: riskmeasures.m 

Appendix 4: riskmeasures.m Output 

Appendix 5: Weekly Stock Returns 

 

 

A copy of portfoliomax.m can be found at: 

http://www.thomasthorn.com/portfoliomax.m 

 

A copy of riskmeasures.m can be found at: 

http://www.thomasthorn.com/riskmeasures.m 

 

A copy of the Excel file used to tabulate stock prices and prepare the data can be found at: 

http://www.thomasthorn.com/353final.xlsx 

 

A copy of the EViews file used for this project can be found at: 

http://www.thomasthorn.com/353final.wf1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 1: portfoliomax.m 

 
%Monte Carlo portfolio program; 
%Program name: mcportfol.m 
%Developed by Ruben Mercado with modifications by Scott Schwaitzberg,  
%David Kendrick and Thomas Thorn 

  
%number of runs and population size 
nruns = 5000; popsize = 20;  

  
%Stating the risk free rate, the market rate of return (S&P 500 over  
%the period in question) 
rf = 0.042610623; 
rp = 0.098322952; 

  
%Individual stock returns and betas 
mu = [0.159 0.147   0.191   0.228   0.161   0.366   0.240   0.362   0.170   

0.249]'; 
betas = [1.6267 0.9092  1.0310  0.9790  1.0377  1.6616  1.0456  2.7332  

1.1498  0.7899]'; 

  
%declaring starting values, constants, and vectors of constants 
const = 0.1; 
pwm = (1/10) * ones(10,popsize); 
pbr = rf * ones(1,popsize); 
rfarray = rf * ones(1,10); 

  
%Markets return in excess of the risk-free rate and the CAPM risk 
%compensation for individual equities 
riskprem = rp - rf; 
inriskprem = riskprem * betas; 

  

  

  
for k = 1:nruns; 
    % generation of vectors of returns, variance cost and criterion function 
    %setting pret to equal the alpha generated from the portfolio 
    pret = pwm' * (mu - (rfarray + inriskprem')'); 

  

     
       pcrit = pret'; 

     
    % selection of the best portfolio; 
    [top topi] = max(pcrit); 
    wnew = pwm(:,topi); 
    pwm 
    wnew 

     
    % store the best portfolio and the optimal criterion value for each run 
    wbest(:,k) = wnew; 
    pcritvec(:,k) = top; 

  
    % random generation of popsize minus one new porfolios; 
    for i = 1:popsize-1; 
        w1 = wnew(1) + rand * const; 
        w2 = wnew(2) + rand * const; 



        w3 = wnew(3) + rand * const; 
        w4 = wnew(4) + rand * const; 
        w5 = wnew(5) + rand * const; 
        w6 = wnew(6) + rand * const; 
        w7 = wnew(7) + rand * const; 
        w8 = wnew(8) + rand * const; 
        w9 = wnew(9) + rand * const; 
        w10 = wnew(10) + rand * const; 

     
        temp = w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10; 
        w1 = w1/temp; 
        w2 = w2/temp; 
        w3 = w3/temp; 
        w4 = w4/temp; 
        w5 = w5/temp; 
        w6 = w6/temp; 
        w7 = w7/temp; 
        w8 = w8/temp; 
        w9 = w9/temp; 
        w10 = w10/temp; 

         
        pwnew(:,i) = [w1;w2;w3;w4;w5;w6;w7;w8;w9;w10]; 
    end 

  
    % put the best portfolio for the run in the last column of the matrix 
    pwnew(:,popsize) = wnew ; 
    pwm = pwnew;  

  
end 

  

  
wnew 
top 

  

  
disp(mu' * wnew); 
%print and graph optimal weights and criterion value 
%wbest 

  
xaxis = [1:1:nruns]'; 

  
plot(xaxis,wbest(:,:)); 
%plot(xaxis,pcritvec(:,:)); 

 

 

 

 

 

 

 

 



Appendix 2: EViews Output 

 

VaR-X Gamma calculations (C = γ): 

 

 

 

 



 
 

S&P 500 and Optimal Portfolio Gamma Values: 

 
 

 

CAPM β-values: 

 

 



 
 

 

 
 

 
 

 



Appendix 3: riskmeasures.m 

 
%Risk Measurement Program 
%Program name: riskmeasures.m 
%Developed by Thomas Thorn 

  
%individual stock returns and their portfolio weights 
mu = [0.159 0.147   0.191   0.228   0.161   0.366   0.240   0.362   0.170   

0.249]'; 
pweights = [0.0328  0.0423  0.0262  0.1585  0.0316  0.3016  0.0485  0.22    

0.0305  0.1079];   

  
%individual stock betas and portfolio beta 
betas = [1.6267 0.9092  1.0310  0.9790  1.0377  1.6616  1.0456  2.7332  

1.1498  0.7899]'; 
pbeta = pweights * betas; 

  
%dollar value of portfolio and the t-value to be used for VaR-x calculation 
dollarval = 100000000.00; 
tval = 1.96; 

  
%alpha values calculated as input to VaR-x calculation 
alphas = [38.97571813   53.26799126 48.04689377 45.48348949 48.46604953 

40.13646398 44.64684347 20.4269 45.01462975 71.00255609]; 
palpha = 64.86346241; 

  
%Variance-covariance matrix 
sigma = [0.00128    0.00026 0.00041 0.00043 0.00050 0.00055 0.00040 0.00023 

0.00046 0.00034; 
0.00026 0.00094 0.00038 0.00022 0.00029 0.00020 0.00037 0.00026 0.00028 

0.00024; 
0.00041 0.00038 0.00119 0.00040 0.00040 0.00031 0.00057 0.00036 0.00029 

0.00035; 
0.00043 0.00022 0.00040 0.00122 0.00029 0.00038 0.00039 0.00018 0.00030 

0.00025; 
0.00050 0.00029 0.00040 0.00029 0.00099 0.00028 0.00038 0.00048 0.00044 

0.00036; 
0.00055 0.00020 0.00031 0.00038 0.00028 0.00201 0.00023 0.00024 0.00032 

0.00027; 
0.00040 0.00037 0.00057 0.00039 0.00038 0.00023 0.00125 0.00023 0.00029 

0.00026; 
0.00023 0.00026 0.00036 0.00018 0.00048 0.00024 0.00023 0.00366 0.00048 

0.00056; 
0.00046 0.00028 0.00029 0.00030 0.00044 0.00032 0.00029 0.00048 0.00131 

0.00032; 
0.00034 0.00024 0.00035 0.00025 0.00036 0.00027 0.00026 0.00056 0.00032 

0.00085]; 

  
%calculating portfolio standard deviation 
tempvar = zeros(1,10); 
    for i = 1:10; 
        for j = 1:10; 
            tempvar(i) = tempvar(i) + pweights(i)*pweights(j)*sigma(i,j); 
        end 
    end 
pvar = tempvar * ones(10,1); 
pstdev = sqrt(pvar); 



  
%Creating a vector containing the standard deviations of individual stocks 
stdevarray = ones(1,10); 
    for i = 1:10; 
        stdevarray(i) = sqrt(sigma(i,i)); 
    end 

     
%Stating the risk free rate, the market rate of return (S&P 500 over  
%the period in question) and calculating the portfolio return      
rf = 0.042610623; 
rp = 0.098322952; 
pret = pweights * mu; 

  
%Individual stock returns in excess of the risk-free rate 
excessret = zeros(1,10); 
    for i = 1:10; 
        excessret(i) = mu(i) - rf; 
    end 

  
rfarray = rf * ones(1,10); 

  
%Calculating the Treynor ratios for individual stocks, then the overall 
%portfolio 
itreynor = zeros(1,10); 
    for i = 1:10; 
        itreynor(i) = excessret(i) / betas(i); 
    end 

  
ptreynor = (pret - rf) / pbeta; 

  
%Calculating the Sharpe ratios for individual stocks, then the overall 
%portfolio 
isharpe = zeros(1,10); 
    for i = 1:10; 
        isharpe(i) = excessret(i) / stdevarray(i); 
    end 

  
psharpe = (pret - rf) / pstdev; 

  
%Calculating Jensen's alpha for individual stocks, then the overall 
%portfolio 
ijensens = zeros(1,10);  
    for i = 1:10; 
        ijensens(i) = mu(i) - (rf + (betas(i) * (rp - rf))); 
    end 
pjensens = pret - (rf + (pbeta * (rp - rf))); 

  

  
%Calculating VaR-x for individual stocks and overall portfolio 
thetaport = pstdev / sqrt(palpha / (palpha - 2)); 
thetastocks = zeros(1,10); 
    for i = 1:10; 
        thetastocks(i) = sqrt(sigma(i,i)) / sqrt(alphas(i) / (alphas(i) - 2)); 
    end 

     
varxstocks = zeros(1,10); 
    for i = 1:10; 



        varxstocks(i) = dollarval * tval * thetastocks(i); 
    end 

  
varxport = dollarval * tval * thetaport; 

  

  
%Output 
disp('XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'); 
disp('Statistics: '); 
disp('XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'); 
disp('Stock standard deviations: '); 
disp(stdevarray'); 
disp('Portfolio standard deviation: '); 
disp(pstdev); 
disp('Individual stock betas: '); 
disp(betas); 
disp('Portfolio beta: '); 
disp(pbeta); 
disp('Individual stock returns: '); 
disp(mu); 
disp('Portfolio return: '); 
disp(pret); 
disp('XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'); 
disp(' '); 
disp('Risk/Return measures: '); 
disp('Individual stock Treynor ratios: '); 
disp(itreynor'); 
disp('Portfolio Treynor Ratio: '); 
disp(ptreynor); 
disp('Individual stock Sharpe Ratio: '); 
disp(isharpe'); 
disp('Portfolio Sharpe ratio: '); 
disp(psharpe); 
disp('Jensens Alpha for individual stocks: '); 
disp(ijensens'); 
disp('Jensens Alpha for overall portfolio : '); 
disp(pjensens); 
disp('XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'); 
disp(' '); 
disp('Risk quantification:') 
disp('Individual stock betas:'); 
disp(betas); 
disp('Portfolio beta:'); 
disp(pbeta); 
disp('Individual stock VaR-x: '); 
disp(varxstocks'); 
disp('Portfolio Var-X: '); 
disp(varxport); 

  

  

 



Appendix 4: riskmeasures.m Output 

 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Statistics:  

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Stock standard deviations:  

    0.0358 

    0.0307 

    0.0345 

    0.0349 

    0.0315 

    0.0448 

    0.0354 

    0.0605 

    0.0362 

    0.0292 

 

Portfolio standard deviation:  

    0.0257 

 

Individual stock betas:  

    1.6267 

    0.9092 

    1.0310 

    0.9790 

    1.0377 

    1.6616 

    1.0456 

    2.7332 

    1.1498 

    0.7899 

 

Portfolio beta:  

    1.5802 

 

Individual stock returns:  

    0.1590 

    0.1470 

    0.1910 

    0.2280 

    0.1610 

    0.3660 

    0.2400 

    0.3620 

    0.1700 

    0.2490 

 

Portfolio return:  

    0.2914 

 



XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

  

Risk/Return measures:  

Individual stock Treynor ratios:  

    0.0715 

    0.1148 

    0.1439 

    0.1894 

    0.1141 

    0.1946 

    0.1888 

    0.1169 

    0.1108 

    0.2613 

 

Portfolio Treynor Ratio:  

    0.1574 

 

Individual stock Sharpe Ratio:  

    3.2532 

    3.4048 

    4.3016 

    5.3077 

    3.7627 

    7.2132 

    5.5830 

    5.2793 

    3.5196 

    7.0791 

 

Portfolio Sharpe ratio:  

    9.6649 

 

Jensens Alpha for individual stocks:  

    0.0258 

    0.0537 

    0.0909 

    0.1308 

    0.0606 

    0.2308 

    0.1391 

    0.1671 

    0.0633 

    0.1624 

 

Jensens Alpha for overall portfolio :  

    0.1607 

 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

  



Risk quantification: 

Individual stock betas: 

    1.6267 

    0.9092 

    1.0310 

    0.9790 

    1.0377 

    1.6616 

    1.0456 

    2.7332 

    1.1498 

    0.7899 

 

Portfolio beta: 

    1.5802 

 

Individual stock VaR-x:  

  1.0e+007 * 

 

    0.6830 

    0.5895 

    0.6619 

    0.6694 

    0.6038 

    0.8566 

    0.6773 

    1.1262 

    0.6935 

    0.5633 

 

Portfolio Var-X:  

  4.9666e+006 

 

 



Appendix 5: Weekly Stock Returns 
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