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Introduction




Investors in equity markets are besieged by risk. At times, in fact, it seems as though equity investors
are more likely to lose money than gain it. In order to address the perceived risk associated with
investing, portfolio risk management was developed. Portfolio risk management is a field of economics,
finance and statistics that seeks to help investors manage the risk associated with the investments they
make. Portfolio risk management is largely predicated on the idea that there is some trade-off between
risk and return. Equities with higher levels of risk must also carry higher returns, in order to compensate
owners for undertaking an elevated level of uncertainty. Portfolio risk management attempts to

quantify and manage this risk so as to better match investments to the needs of investors.

This project begins with an examination of the economic nature of the metrics being examined. The
examination of the economic model is followed by a brief overview of the computational model being
used. These sections are primarily meant to provide a background for the experiments that follow, but
are written to also be didactic. The experiment section outlines the experiments that will be
undertaken. This section also provides a background for how the source data was collected and
prepared for the purposes of the experiments. The experiments fall mainly in two categories: portfolio
optimization and risk management. Since the portfolio optimization model maximizes a particular kind
of risk-adjusted return, this project can be holistically viewed as an exercise in risk management. The
results of the experiment are then examined, followed by a discussion section. An appendix that

includes code and output is then followed by references.

Economic Model

Portfolio Optimization

This portfolio optimization model builds on the Monte-Carlo simulation model used by Kendrick,
Mercado and Amman (2006). While the Kendrick model maximizes returns subject to a subjectively
weighted variance function, the model proposed here maximizes the alpha that would have been
obtained given the historic results. Alpha, in this case, refers to the returns in the portfolio in excess of
what the Capital Asset Pricing Model would have predicted. For a more thorough examination of this
criterion function, refer to the later examination of Jensen's Alpha, keeping in mind that Jensen's alpha
is an ex-post measure, while the alpha being used in the criterion function is an ex-ante measure. The
Kendrick model is also extended to include a larger number of assets and to be based on statistics

pertaining to actual equities.



It should be noted that the results provided by this method of portfolio optimization could easily be
improved by a skillful portfolio manager. One of the stocks examined, for instance, is that of Microsoft.
Over the period of returns being examined, Microsoft experienced phenomenal growth. Given the fact
that Microsoft is already one of the largest corporations in the world, it is unlikely that such phenomenal
growth rates will continue. A portfolio manager could therefore stand a good chance of improving on
the results of this model, by adjusting the Monte-Carlo simulation's results in order to take into account

real-world limits to growth.

Treynor ratio

The Treynor ratio is "a ratio, developed by Jack L. Treynor, to measure excess return per unit of risk,
based on systematic risk (the beta of a portfolio versus the benchmark)" (Russell Investments, 2008).
This ratio is used to rank portfolios based on their risk premium (return in excess of the risk-free rate),
when weighted by the degree of risk required to obtain this return.

The Treynor ratio is equal to:

Tz(rp'rf)/Bp (1)

(Russell Investments, 2008), where r, is the return of the portfolio in question, r is the risk-free rate of
return, and B, is the CAPM beta of the portfolio in question (Sharpe, 1964). As a portfolio gets riskier
relative to the market, B, increases, causing the Treynor ratio to drop. Similarly, if the portfolio's return
increases or the risk-free rate decreases, the Treynor ratio will increase. It is therefore clear that when
ranking portfolios by their Treynor ratio, the portfolio with the highest Treynor ratio should entail the
best risk-return trade-off. In this case, we are using the simple Treynor ratio, as we are only considering
one portfolio. In the case where on portfolio is being examined, the simple Treynor ratio is equal to the
generalized Treynor ratio, a robust counterpart to the simple Treynor ratio being examined here

(Hubner, 2003).

Sharpe ratio

The Sharpe ratio is a ratio of the risk premium to the standard deviation of the risk premium.

Reminiscent of a Student t-test, this ratio attempts to measure the risk premium per unit of risk taken to

acquire this premium.



The Sharpe Ratio is equal to:

S =(rp-ri)/oe (2)

(Sharpe, 1994), where r, is the return of the portfolio in question, r; is the risk-free rate of return, and o,
is the standard deviation of r, - r. As a simplifying assumption, and to reflect the fact that r, and r¢ are
unknown on an ex-ante basis, it will be assumed that o, is equal to o,, the standard deviation of r,,.

Effectively, this assumes that the risk-free rate will be a constant throughout the life of the portfolio.

Jensen's Alpha

Jensen's Alpha quantifies the return of an asset or portfolio in excess of what the Capital Asset Pricing
Model would have predicted. In doing this, Jensen's Alpha attempts to measure the degree to which the
returns obtained by a portfolio manager are a result of their ability to select superior stocks and not
simply a result of a riskier portfolio.

Jensen's Alpha is equal to:

O =Tp- (rf + Bp(rm'rf)) (3)

(Private Banking, 2008), where r, is the return of the portfolio in question, r¢ is the risk-free rate of
return, ry is the rate of return for the market, and B, is the beta of the portfolio in question. Fora
portfolio manager to maximize their 'alpha,' they must choose stocks they expect to outperform what
would be historically expected of them (since the CAPM prediction is based on past performance).

Value-at-Risk

Value-at-Risk (VaR) measures the risk of loss in a specific portfolio, given a particular probability. In
statistical terms, VaR is a measure of tail risk at a given significance level. The smaller the level

significance being considered, the greater the value being put at risk.

Though VaR is a widely used measure of risk, it is very flawed. First, VaR measures typically depend on
returns following a normal distribution. This is clearly not the case for financial data, which is typically
skewed and leptokurtic. Next, "[t]he crux of being able to provide an accurate estimate for the Value-at-

Risk is in being able to accurately estimate the expected return R* associated with the portfolio value



W*. Value-at-Risk estimation therefore requires knowing the probability distribution of the expected
returns, which of course is unknown. Hence the various methods for estimating VaR depend on the

assumption made about the probability distribution of the expected returns."

While it is not possible to avoid making some assumption about the probability distribution of returns, it
is possible to make a more accurate assumption than normality. Huisman, Koedijk and Pownall (1998)
suggest an extreme-value methodology for determining tail risk. VaR-x models the tail risk associated
with the returns of a distribution by examining the most extreme observations and through the usage of
a Student's t-distribution. VaR-x is implemented first by creating an index of tail observations based on

the absolute value of returns, ranked by size. The estimator of this tail index is:

x
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(Huisman, Koedijk and Pownall, 1998), where k is the number of tail observations and x;refers to the i-th
tail observation. Using a modified version of this estimator, we can correct for sampling-size bias by

setting k to the sample size and then calculating the tail index as:
v(k) = Bo + Bak + g(k) (5)

(Huisman, Koedijk and Pownall, 1998). Alpha is determined by taking the inverse of the intercept

produced from this regression. Next, a parameter, theta, is determined by:

8=0/(af(a-2)) (6)
Finally, the measure for VaR-x is calculated as:

VaR-x = Wo0S* (7)

(Huisman, Koedijk and Pownall, 1998), where W, is the dollar value of the portfolio, 0 is the parameter
described in the previous steps, and $* is the t-statistic associated with a Student t-distribution with a
degrees of freedom. VaR-x will be equal to the dollar value at risk, given the probability level being

taken into account and the particular nature of the extreme-values in the distribution of returns.



Computational Model

The computational model spans three programs: Microsoft Excel, Quantitative Micro Software's EViews
and MathWorks' MATLAB. First, data is collected from Yahoo! Finance, then sorted and interpreted
while various statistics are calculated. The Yahoo! Finance data and some of the calculated statistics are
then put into EViews where several regressions are performed. The Excel statistics and EViews
regression outputs are then inputted into MATLAB. Using a Monte-Carlo simulation, the optimal
portfolio is then determined. The Monte-Carlo simulation begins with a portfolio composed of ten
percent of each of the ten available equities. The simulation then creates several portfolios with slightly
different compositions. The portfolio that best meets the criterion function is then used as the starting
point in the next iteration. As numerous iterations are run, the portfolio will close in on the optimal

portfolio.

After an optimal portfolio is obtained, it is entered into Excel and EViews where additional statistics are
calculated. Finally, the results from the portfolio optimization and the statistics calculated thereafter
are inputted into a MATLAB model that calculates the risk metrics discussed in the Economic Model

section. Each step of the process is described in greater detail in the experiments section that follows.

The portfolio optimization model has been significantly altered from the Kendrick model. First, the
criterion function has been entirely changed. As mentioned in the Economic Model section, rather than
using a subjectively weighted measure of risk to determine the particular portfolio weightings, the new
criterion function maximizes the 'alpha' obtained by the portfolio manager. The model has also been
extended to encompass a larger number of firms. As a result of this extension, the scope of the model
has also been increased to include a larger number of iterations and test portfolios. This was necessary

to obtain stable portfolio weights.



Experiments

Data Collection & Conditioning

In order to set up the following experiments, historic stock prices must be obtained and properly
prepared. This data is obtained from Yahoo! Finance's historic prices (Yahoo! Finance, 2009). For the
sake of simplicity, the stocks of ten large-capitalization corporations are examined: 3M, Coca-Cola,
Exxon-Mobil, Kellogg, General Electric, MacDonalds, Microsoft, Proctor & Gamble, Southwestern Energy
and Union Pacific. Stock prices are examined for the period January 1, 1990 to January 1, 2009. To
avoid the conditioning problems associated with using daily returns, weekly returns are used. This step

will also help the model better reflect the problems faced by long-term buy-and-hold investors.

From these stock prices, weekly returns are then calculated, as is a variance-covariance matrix between
the returns of the stocks. Stock prices are then regressed against the weekly prices of the S&P 500, to

determine the CAPM B-values of each individual stock.

Portfolio Optimization

In order to obtain a portfolio that maximizes returns, subject to the risk taken to get this return, a
Monte Carlo simulation is performed using statistics from the stocks being examined. The particular
details behind Monte Carlo optimization are detailed in Kendrick, Mercado and Amman (2006). The

criterion function being examined in this experiment is:

o=y - (re+ Bp(rmere) (8)

Where r, is the effective weekly return of a portfolio of stocks:
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(Bodie, Kane, Marcus, Perrakis & Ryan, 2005). The return on each individual equity is denoted by r;. For
the sake of this experiment we assume that the expected values of the individual stock returns and the
portfolio are equal to the true values. Additional parameters are r; is the risk-free rate of return, r, is

the rate of return for the market, and B, is the beta of the portfolio in question. Equation (8) therefore



maximizes the portfolio's return in excess of the risk-free rate, relative to the portfolio's beta times the

market's return in excess of the risk-free rate.

Risk Management

Using the portfolio weights determined in the previous step, another MATLAB program determines the
values of a number of different risk-to-return and risk metrics discussed in the Economic Model section.
The unified goal of the following four experiments is to compare and contrast the risk metrics that
follow and to build an understanding of the risk behaviour of the optimal portfolio relative to the

individual stocks.

1- Treynor Ratio

This experiment determines the Treynor ratio associated both with the optimal portfolio and single-
equity portfolios consisting of each of the ten input stocks. This experiment will determine the amount
of return obtained in excess of the risk-free rate, per unit of systematic risk. This experiment relies on

the portfolio B, which is calculated as:

i=1 (10)

(Bodie, Kane, Marcus, Perrakis & Ryan, 2005), where the portfolio's beta is equal to the square root of
opz andi=(1, ..., 10) refers to the ten stocks being modelled. The portfolio with the highest Treynor
ratio should be considered superior.

2- Sharpe Ratio

This experiment determines the Sharpe ratio associated both with the optimal portfolio and single-

equity portfolios consisting of each of the ten input stocks. This experiment will determine the return
obtained in excess of the risk free rate, per unit of volatility, as measured by the standard deviation of
returns. To calculate this ratio, the portfolio's standard deviation must be determined. It is calculated

as:
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i=1 i=1j=1 (12)

(Bodie, Kane, Marcus, Perrakis & Ryan, 2005), where the portfolio's standard deviation is equal to the
square root of cp2 andi=(1, ..., 10) refers to the ten stocks being modelled. The Sharpe ratio of the

optimal portfolio should be higher than the Sharpe ratios calculated for each individual stock portfolio.
3- Jensen's Alpha

This experiment determines the Jensen's alpha associated both with the optimal portfolio and single-
equity portfolios consisting of each of the ten input stocks. As discussed, Jensen's alpha is a measure of
the return of a portfolio in excess of what would be expected, given that assets systematic risk. The

portfolio with the highest Jensen's Alpha should be considered superior.
4- VaR-x

This experiment determines the VaR-x associated both with the optimal portfolio and single-equity
portfolios consisting of each of the ten input stocks. Since VaR-x measures the potential dollar loss
associated with a given portfolio and significance level, the optimal portfolio hopefully has a lower VaR-x
value than the individual stock portfolios. If so, this would imply that the portfolio optimization process

is implicitly minimizing the tail risk associated with the portfolio.

The execution of this experiment involves numerous important steps. First, the absolute value of
percentage changes in stock prices is calculated. These changes are then ranked by size, from largest to
smallest. Equation (4) is then determined for k-values that range from 1 to the sample size divided by
two. The resulting y(k) values are then regressed against a constant and k, as per equation (5). The
resulting intercept is the inverse of the alpha value used to calculate theta in equation (6). Finally, VaR-x
is calculated by equation (7). The result is a numerical estimate of the dollars put at risk, given an

equity's historic volatility characteristics.



Results

Data Collection & Conditioning

The data collection phase began by acquiring the historic returns of the equities being examined. The
historic prices of ten equities and the Standard and Poors 500 index over the period January 1, 1990
through January 1, 2009 were acquired. Weekly percentage returns, a variance-covariance matrix, and
the effectively weekly yield were then calculated.

Variance-Covariance Matrix:

All values are scaled up by 1000 for presentation purposes, and are in the units %”.

Ticker GE K KO MCD MMM MSFT PG SWN UNP XOM

GE 128 0.26 041 043 050 0.55 040 0.23 046 0.34
K 0.26 094 0.38 0.22 0.29 0.20 037 0.26 0.28 0.24
KO 0.41 038 1.19 040 040 031 057 036 0.29 035

MCD 0.43 0.22 0.40 1.22 0.29 038 0.39 0.18 030 0.25
MMM 0.50 0.29 0.40 0.29 099 0.28 038 048 044 0.36
MSFT 0.55 0.20 0.31 0.38 0.28 2.01 0.23 0.24 032 0.27
PG 0.40 0.37 0.57 0.39 038 0.23 125 0.23 0.29 0.26
SWN 0.23 0.26 0.36 0.18 048 0.24 0.23 3.66 048 0.56
UNP 0.46 0.28 0.29 0.30 044 032 029 048 131 032
XOM 0.34 0.24 035 0.25 036 0.27 0.26 0.56 0.32 0.85

Individual stock betas and effective weekly yields:

Betas Effective Weekly Yields
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These betas were calculated by regressing the stock returns against the returns from the S&P 500.

Portfolio Optimization

Next, the betas calculated in the previous step, along with the weekly returns are added to MATLAB. A

Monte-Carlo simulation is then performed in order to determine the percentage of the portfolio placed

that composed of by each equity.

035 T T T T T T T T

Portfolio Weights
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The left-hand MATLAB output shows the Monte-Carlo simulation as it iteratively alters the portfolio so
as to obtain the highest risk-weighted return. The right-hand pie-chart displays the results of this
simulation. It should be noted that the legend on the pie chart only applies to the pie chart. Itis not

immediately obvious from the output, but all equities began with an equal 10% portfolio weighting.



Wnew =
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top =

0.1a07%

0.2914

Above is the MATLAB output from the Monte-Carlo simulation. Wnew refers to the portfolio weights of
GE, K, KO, MCD, MMM, MSFT, PG, SWN, UNP, and XOM, respectively. Top refers to the risk-adjusted
return and the actual percentage return of the portfolio, respectively. These figures are weekly
percentage gains. The estimated effective weekly yield on the portfolio is 0.2914%, whereas the risk

adjusted return is a weekly yield of 0.1607%.

Risk Management

Risk analysis metrics were calculated using data from the data collection and conditioning phase. Brief
descriptions are given alongside the computational results from the Treynor Ratio, Sharpe Ratio and
Jensen's alpha. A cohesive, in-depth discussion of these ratios can be found at the end of the discussion
section. VaR-x is given a slightly longer analysis both here and in the discussion section, reflecting the

added complexity involved in calculating and interpreting VaR-x.

1- Treynor Ratio

Treynor ratios were calculated for ten theoretical portfolios consisting of 100% of each individual equity,

as well as the overall portfolio.



Treynor Ratios
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The portfolio with the highest Treynor ratio is generally considered to be the superior portfolio. From
the above graph it is clear that not only is the portfolio's Treynor ratio not higher than some of the

single-equity portfolios, it is only the fifth highest ratio.

2- Sharpe Ratio

Sharpe ratios were calculated for ten theoretical portfolios consisting of 100% of each individual equity,

as well as the overall portfolio.

Sharpe Ratios
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The portfolio with the highest Sharpe ratio is generally considered to be the superior portfolio. The

above graph suggests that the portfolio handily beats the all-equity portfolios.

3- Jensen's Alpha

Jensen's alphas were calculated for ten theoretical portfolios consisting of 100% of each individual

equity, as well as the overall portfolio.

Jensen's Alpha
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The portfolio with the highest Jensen's alpha is generally considered to be superior. As the above graph

shows, the portfolio's Jensen's alpha, though above average, is not the highest.

4- VaR-x

The VaR-x calculation began with a series of regressions whose results can be viewed in Appendix 2.
When viewing these regressions it is important to note that the coefficients of determination in these
regressions are very low. This is an expected result of the regressions, as they regress values
determined by stock values against the constants k = (1, ..., n/2), where n is the sample size. It should
not be expected that a constant will do a particularly effective job at reducing the sum of squares

relative to the mean model. It is more important, however, that the p-values for each individual



parameter estimate and the overall equations are significant. Since all of the equations and parameter
estimates are statistically significant at very low significance levels, these values should be viewed as

statistically significant.

The following alpha values refer to the inverse of the intercepts produced by the regressions. These

values are calculated using Microsoft Excel.

VaR-x Alphas
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The highest alpha value occurs from Exxon-Mobil, followed by the portfolio. Nothing, however, can be

inferred from this step, yet.

The VaR-x calculations for the overall portfolios at the 5% probability level appears below. The lower

the VaR-x value, the less money is at risk at the 5% probability level.



5% VaR-x
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The optimized portfolio has a far lower VaR-x than the other portfolios. This suggests that the portfolio

has a lower tail-risk than any of the individual stocks.

Below is the VaR-x calculation for a 1% significance level.

1% VaR-x
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Although all of the VaR-x values are higher, the portfolio's VaR-x is still the lowest.



Discussion

Portfolio Optimization

The portfolio optimization process produced a portfolio that was heavy weighted in Microsoft,
MacDonalds, Southwestern Energy and Exxon Mobil. This is a sensible result, as over the period in
guestion, these companies experienced phenomenal growth with relatively little volatility. In fact, as is
determined in the risk management section, these four stocks have the highest Jensen's alpha of the

stocks being examined. Since the portfolio's goal is to maximize alpha, this should be an intuitive result.

It is questionable, however, whether the stocks picked by this portfolio will be the best stocks going
forward. Although opportunities for global expansion are presenting themselves, it is not clear that
Microsoft, for instance, will be able to continue to grow at the pace they have historically grown at. In
fact, Microsoft has to increasingly compete not only with direct competitors like Apple and Linux, but
with old editions of their old products. Although far from perfect, Microsoft's software is, in many
cases, already 'good enough' for consumers. Additional features or upgrades may add features or
stability, but this may not necessarily draw in new customers. The recommendations made by the
Monte Carlo simulation may therefore be questionable. This is not a flaw unique to this particular
model, however, as any portfolio model making forward-looking predictions based on past results will
share similar deficiencies. As an aside, this directly implies that it is incumbent on any portfolio manager
using an optimization program to select portfolio components to adjust this output according to real-

world limits on future growth.

This portfolio's weekly yield is approximately 0.2914%, or 16.3% per year. The risk-adjusted yield is
approximately 0.1607% per week, or 8.7% per year. In comparison, the Standard and Poors 500 yielded
approximately 5.2% per year over this period. It should be noted that this difference in returns is based

on historic data, and may change going forward.

Risk Management

The risk management experiments sought to find a way to quantify the amount of risk the portfolio and

the individual stocks entailed. Following brief discussions on the four metrics, there is a discussion on



how these ratios provide contradictory results, and what these contradictions mean in terms of portfolio

risk management.

1- Treynor Ratio

The Treynor ratio for the portfolio suggests that it is not the best portfolio in terms of excess return per

unit of systematic risk. In fact, the portfolio's performance is about average.

2- Sharpe Ratio

The Sharpe ratio of the optimal portfolio was far larger than the Sharpe ratios of the all-single equity

portfolios.

3- Jensen's Alpha

The Jensen's Alpha for the portfolio is not the largest. Similar to the results from the Treynor ratio,

several individual equity portfolios have higher Jensen's alphas than the optimal portfolio.

4- VaR-x

The VaR-x for the portfolio is far smaller than the VaR-x values for the all-equity portfolios, at both the
1% and 5% probability level. This suggests that the portfolio has less tail risk than the individual equity

portfolios. This is a sensible result, given Markowitz Portfolio Theory(MPT).

A portfolio manager trying to interpret these four ratios will be faced with a dilemma: half of the ratios
suggest the portfolio is inferior, half will suggest that the portfolio is superior. This problem would be
easily resolved if it was clear that some of the metrics were superior measures. However, this is not the
case. More generally, in fact, the difficulties associated with conflicting metrics and ratios is one
typically faced by not only portfolio managers, but individual investors. Finance and financial economics
are rife with ratios, and these ratios often tell different stories. As with these other cases in economics

in finance, a careful examination can often help explain the contradictory risk metrics.



In the case of this portfolio, it should first be noted that none of these ratios are intended to be used for
the examination of single stock portfolios. This is especially true for the Treynor Ratio and Jensen's
alpha. These two metrics are similar in that they rely on a stocks CAPM B as a way to measure risk. To
optimize this kind of portfolio in the absence of short selling, one simply has to buy a portfolio
containing only the equity with the highest Treynor Ratio or Jensen's alpha. This clearly would not
produce an optimal result. The Sharpe ratio and VaR-x measure of the portfolio, on the other hand,
prefer portfolios that consist of a mix of different equities. This will occur because one of the key
benefits of diversification is a lower portfolio variance. Since the Sharpe ratio and VaR-x depend on the
standard deviation of the portfolio in question, and a portfolio's variance can be lower than the variance
of its components, it is sensible that a portfolio's Sharpe ratio or VaR-x can be superior to its

components.

It is therefore clear that for the sake of comparison with component equities, the Sharpe ratio and VaR-x
values should be viewed as relevant measures of risk, whereas the Treynor ratios and Jensen's alpha
should be largely ignored in this instance. When comparing against other mixed-equity portfolios, these

two metrics will provide relevant benchmarks, so their calculation is therefore still important.



Appendix

Appendix 1: portfoliomax.m
Appendix 2: EViews Output
Appendix 3: riskmeasures.m
Appendix 4: riskmeasures.m Output
Appendix 5: Weekly Stock Returns

A copy of portfoliomax.m can be found at:
http://www.thomasthorn.com/portfoliomax.m

A copy of riskmeasures.m can be found at:
http://www.thomasthorn.com/riskmeasures.m

A copy of the Excel file used to tabulate stock prices and prepare the data can be found at:
http://www.thomasthorn.com/353final.xlsx

A copy of the EViews file used for this project can be found at:
http://www.thomasthorn.com/353final.wfl



Appendix 1: portfoliomax.m

%$Monte Carlo portfolio program;

$Program name: mcportfol.m

$Developed by Ruben Mercado with modifications by Scott Schwaitzberg,
$David Kendrick and Thomas Thorn

$number of runs and population size
nruns = 5000; popsize = 20;

$Stating the risk free rate, the market rate of return (S&P 500 over
$the period in question)

rf = 0.042610623;

rp = 0.098322952;

$Individual stock returns and betas

mu = [0.159 0.147 0.191 0.228 0.161 0.366 0.240 0.362 0.170
0.249]1"';

betas = [1.6267 0.9092 1.0310 0.9790 1.0377 1.6616 1.0456 2.7332
1.1498 0.7899]"';

%$declaring starting values, constants, and vectors of constants
const = 0.1;

pwm (1/10) * ones(10,popsize);

pbr = rf * ones(1l,popsize);

rfarray = rf * ones(1,10);

$Markets return in excess of the risk-free rate and the CAPM risk
$compensation for individual equities

riskprem = rp - rf;
inriskprem = riskprem * betas;
for k = l:nruns;

[

% generation of vectors of returns, variance cost and criterion function
%$setting pret to equal the alpha generated from the portfolio
pret = pwm' * (mu - (rfarray + inriskprem')');

pcrit = pret';

% selection of the best portfolio;
[

top topi] = max(pcrit);
wnew = pwm(:,topi);
pwm
wnew

% store the best portfolio and the optimal criterion value for each run
wbest (:,k) = wnew;
pcritvec(:,k) = top;
% random generation of popsize minus one new porfolios;
for i = l:popsize-1;
wl = wnew(l) + rand * const;
w2 = wnew(2) + rand * const;



w3 = wnew(3) 4+ rand * const;
w4 = wnew(4) + rand * const;
w5 = wnew(5) + rand * const;
w6 = wnew(6) + rand * const;
w7 = wnew(7) 4+ rand * const;
w8 = wnew(8) + rand * const;
w9 = wnew(9) + rand * const;
wl0 = wnew(10) + rand * const;

temp = wl + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + wl0;
wl = wl/temp;
w2 = w2/temp;
w3 = w3/temp;
w4 = wid/temp;
w5 = wh/temp;
w6 = w6/temp;
w7 = w7/temp;
w8 = w8/temp;
w9 = w9/temp;
wl0 = wl0/temp;

pwnew(:,1) = [wl;w2;w3;wl;w5;w6;w7;w8;wo;wl0];
end

[

% put the best portfolio for the run in the last column of the matrix

pwnew (:,popsize) = wnew ;
pwm = pwnew;

end

wnew

top

disp(mu' * wnew);
$print and graph optimal weights and criterion wvalue

Swhbest
xaxis = [l:1:nruns]’';
plot (xaxis,wbest (:,:));

$plot (xaxis,pcritvec(:,:));



Appendix 2: EViews Output

VaR-X Gamma calculations (C = y):

Dependent Yariable: GE
Method: Least Squares
Date: 03729/09 Time: 14:07
Sample: 1 489

Included ohservations: 489

Dependent Variahle: kKi
Method: Least Squares
Date: 03/28/09 Time: 14:06
Sample: 1 489

Included ohservations: 489

Variable Coeficient  Std. Eror  tStatistic  Prob. Variable Coefficient  Std. Emor tStalistic  Prob.
C 0.026657 0000732 3506745  0.0000 c 0.018773 0000433 42.80231  0.0000
K .2BE-05  250E-05  -4.930443  0.0000 K 1.75E-06  1.55E-08 1125458 0.2609
R-squared 0.047543  Mean dependent var 0.022531 F-squared 0.002594  Mean dependentvar 0.013201
adjusted R-squared 0.045587  2.D. dependent var n.oogz7o Adjusted R-squared 0.000548  5.0. dependent var 0.004843
5.E. of regressian 0.008080  Akaike info criterion -6.794570 S.E. ofregression 0.0042842  Akaike info eriterion -7.818909
Sum sguared resid 0.031791  Schwarz criterion -6.777724  Sum squared resid 0.011418  Schwarz criterion -7.801762
Lag likelihood 1663.346  Hannan-Guinn criter, -6.782136 Log likelihood 1913.723  Hannan-Guinn criter. -7E12174
F-statistic 2430927  Durhin-WWatson stat 0.235408 F-statistic 1.266655 Durbin-watsan stat 0.246864
Froh(F-statistic) 0.000001 Frob(F-statistic) 0.260049
Dependent Yariable: KO Dependent Yariable: MCD
Method: Least Sguares Method: Least Squares
Date: 03/28/08 Time: 14:08 Date: 02209 Tirme: 14:06
Sample: 1 4849 Sample: 1 489
Included observations: 489 Included ohservations: 489
Wariable Coefficient  Std. Error - +-Statistic Frob. Variable Coeficient  Std. Error t-Statistic Frob.
C 0020813  0.000526 3357101 0.0000 C 0021986 0000462  47.56312  0.0000
K 382E-06 1.8BE-06  1.891882  0.0591 K -4.04E-06  163IE-06 -2471651 00133
R-squared 0.007296 Mean dependentvar 0.021876 R-squared 0.012389 Mean dependent var 0.020996
Adjusted R-squared 0005257 5.0 dependentvar 0.005822 Adjusted R-squared 0.010361  S.0. dependentvar 0.005130
5.E. of regression 0.005807  Akaike info criterion -7.4555468 SE ofregression 0.005103  Akaike info criterion -7.713874
Sum squared resid 0.016420 Schwarz criterion -7.438399 Sum sguared resid 0.012682 Schwarz criterion -7.BOET27
Log likelihood 1824881 Hannan-Quinn criter. -7.448811 Log likelihood 1888.042 Hannan-Cuinn criter. -7.707134
F-statistic 3579218  Durbin-Watson stat 0.304054 F-statistic 6.109058 Durbin-Watson stat 0.311696
ProbiF-statistic) 0.05a100 ProhiF-statistic) 0.0137490
Dependent Yariable: Mbh . )
Methad: Least Squares agieondqi?a\;at ”Saqu::erSSFT
Date: 03129109 Time: 14:03 Diate: 022909 Tirne: 13:11
Sample: 1 4849 Sample: 1 489
Included obsarations: 483 Included observations: 489
Variable Coeficient 810 Bror bStatistic  Prob. variable Coeficient  Std.Emor  tStatisc  Prah.
[ 0020633 0000478 4316725  0.0000
K 485600 16OED5 2926212 0.003 y SBIEDS  207E08 2027985 00431
R-squarad 0.017314 - Mean dependent var DOT8420 1 cpzred 0.008374  Mean dependent var 0.026343
Adjusted R-sguared 0.015286  3.D. dependentvar 0005318 pjisted R-squared 0.006338  5D. dependant var 0.008001
S.E. of regression 0.005277  Akaike info criterion TB4BBIT 5 E ofregression 0008972 Akaike info criterion -B.585231
Sum sguared rasid 0.013561  Schwarz criterion: -T.B28750 g sguared resid 0.039206 Schwarz criterion -6.568085
Log likelihood 1871.666  Hannan-Quinn criter. -TBA01B2 | gy likelihood 1612.088  Hannan-Quinn criter. -6.578497
F-statistic 8480286 Durbin-Watson stat 03170584 Foctatistic 4112632 Durbin-¥vatson stat 0.273264
Prob(F-statistic) 0.003558 Proki(F-statisticy 0.043108
Dependent Variable: PG
Method: Least Sguares Dependent Variable: S¥wM
Date: 032909 Time: 14:04 method: Least Squares
Sample: 1 489 Date: 03/28/09 Time: 14:10
Included ohsenations: 424 Sample: 1 489 .
Included observations: 489
Vanahle Coefcient  Std Emor  tStaistic  Prob. variagle Coeficient  Std Emor  tStafisic  Prob.
c 0.022393  0.000484  43.23558  0.0000 c 0.048955  0.001211 4041474  0.0000
K -062E-06  1.G4E-06  -58E4834 00000 y 311605  4786-06  -T963614  0.0000
R-squared 0.065970  Mean dependentvar 0.020041 R-squared 0097723 Mean dependentvar 0.041332
Adjusted R-squared 0.064052  5.0. dependent var 0.005293  agjysted R-squared 0.085870 S.D. dependentvar 0.014064
S.E. ofregression 0.005121  Akaike info criterion -7 706867 g E ofregression 0.013372  Akaike info criterion -5.787155
Sum sguared resid L3771 Schwarz criterion -7.8887T21 Sum sguared resid 0.087087 Schwarz criterion -6.770008
Log likelihood 1886.329  Hannan-Quinn criter. -TA00133  Laglikelihood 1416.959 Hannan-Quinn criter. -6.780420
F-statistic 3438628 Durbin-Watson stat 0.303976  F-gtatistic 5274556  Durhin-vyatson stat DATEEID
FProh(F-statistic) 0.000000 Prob(F-statistic) 0.0000o00




Dependent Yatiahle: UNP
Method: Least Squares
Date: 03/29/09 Time: 14:10
Sample: 1 439

Included ohservations: 489

Dependent Variahle: XOM
Method: Least Squares
Date: 03729/09 Time: 14:04
Sample: 1 489

Included ohservations: 489

Wariahle Coeficient  Std. Error  t-Stafistic  Proh. Yariable Coefiicient  Std. Error  t-Statistc  Prob.
c 0.022215 0.000541 41 06683 0.0000 C 0.014084 0.000411 3423713 0.00oo0
K -1.34E-06 191E-06 -0.700176 045842 e 7.G4E-06 1,45E-06 5.254508 0.0000
R-gquared 0.001006 Mean dependentvar 0.021887 R-squared 0.053652 Mean dependent var 0.015957
Adjusted R-sgquared -0.001048 5.0 dependentvar 0.005969 Adjusted R-squared 0051709 5.0, dependent var 0.004663
5.E. of regression 0.005972  Akaike info criterion -7.398388 SE. ofregression 0.004541  Akaike info criterion -7.047138
Sum squared resid 0.017368 Schwarz criterion -T.3822581 Sum squared resid 0.010043  Schwarz criterion -7.529991
Log likelihood 1811.153  Hannan-Quinn criter. -7.392663  Log likelihood 1945075  Hannan-Quinn criter., -7.940402
F-statistic 0.490246 Durhin-YWatson stat 0.303145 F-statistic 27.60935 Durbin-Watsaon stat 0.228337
ProbiF-statistic) 0.484152 ProhiF-statistic) 0.000000
S&P 500 and Optimal Portfolio Gamma Values:
Dependent Variable: SPS00 Dependent Yariahle: PORTFOLIO
Method: Least Squares Method: Least Squares
Date: 04110/09 Time: 15:44 Digte: 04111/09 Time: 16:08
Sample: 1 4849 Sample: 1 489
Included observations: 4849 Included observations: 489
Yariable Coefficient  Std. Error +Statistic Frob. Vartiahle Coefiicient Std. Etror t-Statistic Proh.
c 0.016400 0.000436 3765314 0.0000 C 005417 0.000396 38893318 0.anoo0
k. -94.13E-06 1.84E-06  -5828808 0.00o0 T4 -4 82E-06 1.40E-06  -3.432872 0.0008
R-squared 0.067318  Mean dependentvar 0.014182 R-squared 0.023707 Mean dependent var 0.014237
Adjusted R-squared 0.065404 5.0 dependentvar 0.004874 adjusted R-squared 0.021702 S.0.dependentvar 0.004420
S.E. of regression 0.004808  Akaike info criterion -7.832882 S E. ofregression 0.004372  Akaike info criterion -B.023289
Sum sguared resid 0.011258  Sehwearz criterion -7.81573% Sum squared resid 0.009307  Schwarz criterion -8.006143
Log likelihood 1917.140  Hannhan-Quinn criter. -7.B26147 Log likelihood 1863684 Hannan-CQuinn criter. -8.016555
F-statistic 3515077 Durhin-Watson stat 0.207406 F-statistic 11.82584  Durbin-Yatson stat 0214975
Prabi(F-statistic) 0.000000 Prabi(F-statistic) 0.000634
CAPM B-values:
] . Dependent Variable: KK
Dependent Variable: GE ;
Method: Least Squares Method: Least Sql_.lares
Date: 04/10/09 Tirme: 17:08 Date: 04/110/09 Time: 17.08
Sarnple: 1 489 Sarnple: 1 489
Included observations: 489 Included ohservations: 489
Variable Coeficient  Std Eror  +Statistic  Prob. Variable Coeficient  Std. Error  +-Stafistic  Prob.
C -0.000507  0.000234 -2164074  0.0308 c 0.006325  0.000237  26.65876  0.0000
SP&00 1626728 0.015614 104.1861 n.ooo0 SPa00 0.909152 0.015809 67.60978 0.0000
R-squared 0.857061 WMean dependent var 0.022531 R-sguared 0871652 Mean dependent var 0.019z2m
Adjusted R-squared 0.856973 5.0 dependentvar 0.008270 Adjusted R-squared 0871383 5.D. dependentvar 0.004543
S.E. of regression 0.001716  Akaike info criterion -49.894141 S.E. ofregression 0001737 Akaike info criterian -9 868322
Sum sguared resid 0.001433  Schwatz criterion -9.876994  Sum sguared resid 0001469  Schwatz criterion -9.852176
Log likelihood 2421117 Hannan-Quinn criter, -3.827406 Log likelihood 2415049  Hannan-Quinn criter. -9.862588
F-statistic 10854.74  Durbin-Watson stat 0. 436966 F-statistic 3307.375  DurhinYatson stat 0.098094
Frob(F-statistic) 0.000000 Froh{F-statistic) 0.000000




Dependent Yariable: KO
Method: Least Squares
Date: 04/10/08 Time: 17:25
Sample: 1 489

Included ohservations: 488

Dependent Variable: MCD
Method: Least Squares
Date: 0410009 Time: 17:26
Sarmple: 1 489

Included ohserations: 4849

wariable Coeficient  Std Eror  tStatistic  Prob. Variable Coefiicient  Std. Emor  +-3tafistic  Prob.
C 0007074 0000377 1876627 0.0000 C 0007132 0000221 3230433 0.0000
SPRO0 1.031015 0.025117 41.04912 0.0000 SPa00 0.978956 0.014710 66.599163 0.0o0o
R-squared 0775786 Mean dependent var 0021676 R-squared 0.900838  Mean dependentvar 0.020886
Adjusted R-squared 07753248 5.0.dependentvar 0005822 Adjusted R-sguared 0.900735 5.D. dependentvar 0.005130
S.E. of regression 0.002760  Akaike info criterion -8.943376 S.E. ofregression 0001616  Akaike info criterion -10.01342
Surm sguared resid 0.003709 Schwarz criterion -8.926230 Sum squared resid 0.001272  Schwarz critation -9.996271
Log likelihood MBBEEE  Hannan-Quinn criter. -8.936642 Log likelihood 2440281  Hannan-Quinn criter. -10.00668
F-statistic 1685.030 Durhin-Watson stat 0144257 F-statistic 4429119  Durbin-Watson stat 0258443
ProbiF-statistic) 0.000000 Prob(F-statistic) 0.000000
. . Dependent Variahle: MSFT
Dependent Wariable: bbb .
Method: Least Squares Ee{hpgah%ﬁ;sgﬁar?i 726
Date: 041009 Tirne: 17:26 ate. 14 fme: 1
Sample: 1 489 Sample: 1 4849 )
Included ohservations: 483 Included ohservations: 489
Variahle Coefficient Std. Error +Statistic Proh. Yariahle Coefficient Std. Errar t-Statistic Fraob.
I 0.004724 0.000175 26.98780 0.0000 [ 0002812 0.0004aa 5765040 0.0000
SP&00 1.037727 0011663 8897930  0.0000 SPs00 1661594 0.032486 5113228 0.0000
R-squared 0.942054 Mean dependentvar 0.019420 R-sguared 0.842880 Mean dependentvar 0.026343
Adjusted R-squared 0941835 3.0 dependentvar 0.005318 Adjusted R-squared 0.842657 S.D. dependentvar 0.004001
S.E. of regression 0.001281  Akaike info criterion 1047767 S.E. ofregression 0.003570  Akaike info criterion -8.428202
Sum squared resid 0.000800 Schwarz criterion -10.460582 Sum sguared resid 0.006208 Schwarz criterion -8.411056
Log likelihood 2563.790  Hannan-Glinn criter. -10.470893 Log likelihood 2062.695 Hannan-Quinn criter. -8.421468
F-statistic 7917.316 Durbin-Watson stat 0437814 F-statistic 2614.510 Durbin-Watson stat 0118507
ProbiF-statistic) 0.000000 Prob(F-statistic) 0.0000o0
Dependent Variahle: PG Dependent Yariahle: Syh
Method: Least Squares Method: Least Sguares
Date: 041 0/09 Time: 17:26 Date: 04/10/09 Tirne: 1727
Sample: 1 484 Sarnple; 1 459
Included ohservations: 4849 Included chservations: 489
Yariable Caefficient Std. Errar +-Statistic Frah. “ariable Coefiicient Std. Errar +-Statistic Frah.
[ 0005232 0000135 KERSIFRN| 0.00o0 C 0.002624 0.000493 5325258 0.0000
gPa00 1.045636 0008884 1163805  0.0000 SP&00 2733242 0032827 8326164  0.0000
R-sguared 0.965293  Mean dependentvar 0.020041  R-squared 0.934362 Mean dependentvar 0.041332
Adjusted R-squared 0965227 5.0 dependentvar 0.005293  Adjusted R-squared 0.934227 5.0. dependent var 0.014064
S.E. ofregression 0.000987  Akaike info criterion -10.99958 SE. ofregression 0.003607  Akaike info criterion -8.4074924
Sum squared resid 0.000474  Schwarz criterion -10.98243  Surn sguared resid 0.006335 Schwarz criterion -8.390777
Log likelihood 2691.397  Hannan-GQuinn criter. -10.99284  Log likelihood 2057 737 Hannan-Quinn criter. -8.401184
F-statistic 13546.75 Durbin-YWatson stat 0.873215 F-statistic 6332.500 Durbin-YWatson stat 0.142631
ProbiF-statistic) 0.000000 ProbiF-statistic) 0.000000
Dependent Yariable: LINP Dependent Variable: XOM
Method: Least Squares Method: Least Squares
Date: 041 0/09 Time: 17:27 Date: 041 0J09 Time: 17:28
Sample: 1 4849 Sample: 1 484
Included ohservations: 489 Included observations: 489
Yariahle Coefficient Std. Etror tStatistic Prob. Variable Coefficient Std. Error tStatistic Frah.
G 0.005603 0.000234 2396745 0.0o00 [} 0.004770 0.000344 13.88341 0.0000
SPs00 1.148803 0.015578 73.81164 0.0o00 SPa00 0.789574 0.022894 34.50192 0.0o00
R-sguared 0.917947 Mean dependent var 0021887 R-zguared 0709667  Mean dependent var 0.015957
Adjusted R-=squared 0917778 S.D. dependentvar 0.005569 Adjusted R-sguared 0.708071 S.0D. dependentwvar 0.004663
S.E. of regression 0.001712  Akaike info criterion -9.898777 S.E. ofregression 0.002515 Akaike info criterion -9.1287149
Sum squared resid 0.001427  Schwarz criterion -9.881630 Sum squared resid 0.003081  Schwarz criterion -9.1115872
Laog likelihood 2422291  Hannan-Quinn criter. -9.892042 Log likelihood 22334872 Hannan-Quinn criter. -.121984
F-statistic 5442159 Durbin-Watson stat 0.284767 F-statistic 1180282 Durhin-YWatson stat 0.043335
FrobiF-statistic) 0.000000 FrobiF-statistic) 0.000oa0




Appendix 3: riskmeasures.m

%$Risk Measurement Program
%$Program name: riskmeasures.m
%$Developed by Thomas Thorn

%$individual stock returns and their portfolio weights

mu = [0.159 0.147 0.191 0.228 0.1l61 0.366 0.240 0.362 0.170
0.2491"';

pweights = [0.0328 0.0423 0.0262 0.1585 0.0316 0.3016 0.0485 0.22
0.0305 0.10791;

%$individual stock betas and portfolio beta

betas = [1.6267 0.9092 1.0310 0.9790 1.0377 1.6616 1.0456 2.7332
1.1498 0.78991"';

pbeta = pweights * betas;

%dollar value of portfolio and the t-value to be used for VaR-x calculation
dollarval = 100000000.00;
tval = 1.96;

%$alpha values calculated as input to VaR-x calculation

alphas = [38.97571813 53.26799126 48.04689377 45.48348949 48.46604953
40.13646398 44.64684347 20.4269 45.01462975 71.002556091;

palpha = 64.86346241;

%$Variance—-covariance matrix

sigma = [0.00128 0.00026 0.00041 0.00043 0.00050 0.00055 0.00040 0.00023
0.00046 0.00034;

.00026 0.00094 0.00038 0.00022 0.00029 0.00020 0.00037 0.00026 0.00028
.00024;

.00041 0.00038 0.00119 0.00040 0.00040 0.00031 0.00057 0.00036 0.00029
.00035;

.00043 0.00022 0.00040 0.00122 0.00029 0.00038 0.00039 0.00018 0.00030
.00025;

.00050 0.00029 0.00040 0.00029 0.00099 0.00028 0.00038 0.00048 0.00044
.00036;

.00055 0.00020 0.00031 0.00038 0.00028 0.00201 0.00023 0.00024 0.00032
.00027;

.00040 0.00037 0.00057 0.00039 0.00038 0.00023 0.00125 0.00023 0.00029
.00026;

.00023 0.00026 0.00036 0.00018 0.00048 0.00024 0.00023 0.00366 0.0004s8
.00056;

.00046 0.00028 0.00029 0.00030 0.00044 0.00032 0.00029 0.00048 0.00131
.00032;

.00034 0.00024 0.00035 0.00025 0.00036 0.00027 0.00026 0.00056 0.00032
.000857;

O OO OO OO IODODOOOOOoOoo oo

%$calculating portfolio standard deviation
tempvar = zeros(1l,10);
for 1 = 1:10;
for § = 1:10;
tempvar (i) = tempvar (i) + pweights (i) *pweights(j)*sigma (i, J);
end
end
pvar = tempvar * ones(10,1);
pstdev = sqgrt(pvar);



$Creating a vector containing the standard deviations of individual stocks

stdevarray = ones(1,10);
for i = 1:10;
stdevarray (i) = sqgrt(sigma(i,i));
end

$Stating the risk free rate, the market rate of return (S&P 500 over
$the period in question) and calculating the portfolio return

rf = 0.042610623;

rp = 0.098322952;

pret = pweights * mu;

$Individual stock returns in excess of the risk-free rate

excessret = zeros(1l,10);
for 1 = 1:10;
excessret (i) = mu(i) - rf;
end

rfarray = rf * ones(1,10);

%$Calculating the Treynor ratios for individual stocks, then the overall
$portfolio
itreynor = zeros(1l,10);
for i = 1:10;
itreynor (i) = excessret (i) / betas(i);
end

ptreynor = (pret - rf) / pbeta;

%$Calculating the Sharpe ratios for individual stocks, then the overall
$portfolio
isharpe = zeros(1,10);
for 1 = 1:10;
isharpe (i) = excessret (i) / stdevarray(i);
end

psharpe = (pret - rf) / pstdev;

%$Calculating Jensen's alpha for individual stocks, then the overall

$portfolio
ijensens = zeros(1l,10);
for 1 = 1:10;
ijensens (i) = mu(i) - (rf + (betas(i) * (rp - rf)));
end
pjensens = pret - (rf + (pbeta * (rp - rf)));

$Calculating VaR-x for individual stocks and overall portfolio
thetaport = pstdev / sqrt(palpha / (palpha - 2));

thetastocks = zeros(1,10);
for i = 1:10;
thetastocks (i) = sqgrt(sigma(i,i)) / sqgrt(alphas(i) / (alphas(i)
end
varxstocks = zeros(1,10);

for 1 = 1:10;



varxstocks (i) = dollarval * tval * thetastocks(i);

end
varxport = dollarval * tval * thetaport;
%Output
[N 1D 9:0:0:0.0:0:0:0.0:0:0.0:0:0:0.0:0.0.0.0:0:0.0:0:0.0:0:0.0.0:0.:0.0.0.0.0.0.0. 4B I
disp('Statistics: ');
disp (" XXXXXXXXXXKXXXXXXKXKXXXXXKXKXXXKX XX KXKXKXXKXKKKKXX" ) ;
disp('Stock standard deviations: ');
disp (stdevarray');
disp('Portfolio standard deviation: ');
disp (pstdev) ;
disp('Individual stock betas: ');
disp (betas);
disp('Portfolio beta: '");
disp (pbeta);
disp('Individual stock returns: ');
disp (mu) ;
disp('Portfolio return: ");
disp (pret);
[RE-1 XD 9.0:0:0.0:0:0:0.0:0:0.0:0:0:0.0:0.0.0.9:0:0.0:0:0.0:0:0.0.0:0.:0.0.0.0.0.0.0. 4B I
disp(' ");
disp('Risk/Return measures: ');
disp('Individual stock Treynor ratios: ');
disp(itreynor');
disp('Portfolio Treynor Ratio: ');
disp (ptreynor) ;
disp('Individual stock Sharpe Ratio: ');
disp(isharpe');
disp('Portfolio Sharpe ratio: '");
disp (psharpe);
disp('Jensens Alpha for individual stocks: ');
disp(ijensens');
disp('Jensens Alpha for overall portfolio : '");
disp(pjensens);
disp (" XXXXXXXXXKXKXXXXKXKXKXXKXKXKXKKXKXKXKKXKKKKXKK" ) ;
disp(' ");
disp('Risk quantification:"')
disp('Individual stock betas:');
disp (betas);
disp('Portfolio beta:'");
disp (pbeta);
disp('Individual stock VaR-x: ');
disp(varxstocks');
disp('Portfolio Var-X: ");
(

disp (varxport) ;



Appendix 4: riskmeasures.m Output

)9.9.9.0.0.:0.0.0.0.0.9.0.0.0.0.0.0.9.0.0.0.9.0.0.9.0.0.0.0.0.0.0.9.0.0.0.0 0.4
Statistics:
)9.9.9.0.0.:0.0.0.:0.0.9.:0.0.0.:0.0.0.9.0.0.0.9.:0.0.9.0.0.0.0.0.0.0.9.0.0.0.0.0.4
Stock standard deviations:

0.0358

0.0307

0.0345

0.0349

0.0315

0.0448

0.0354

0.0605

0.0362

0.0292

Portfolio standard deviation:
0.0257

Individual stock betas:
1.6267
0.9092
1.0310
0.9790
1.0377
1.6616
1.0456
2.7332
1.1498
0.7899

Portfolio beta:
1.5802

Individual stock returns:
0.1590
0.1470
0.1910
0.2280
0.1610
0.3660
0.2400
0.3620
0.1700
0.2490

Portfolio return:
0.2914



) 9,9.9.9:9.9.9,0.0.0,0.0.0.0.0,0.0.0.0.9.9,.0,0.0,0.0.0.0.0,0.0,0.9.9.9.0.0,0,¢

Risk/Return measures:
Individual stock Treynor ratios:

0.0715

0.1148

0.1439

0.1894

0.1141

0.1946

0.1888

0.1169

0.1108

0.2613

Portfolio Treynor Ratio:
0.1574

Individual stock Sharpe Ratio:
3.2532
3.4048
4.3016
5.3077
3.7627
7.2132
5.5830
5.2793
3.5196
7.0791

Portfolio Sharpe ratio:
9.6649

Jensens Alpha for individual stocks:
0.0258
0.0537
0.0909
0.1308
0.0606
0.2308
0.1391
0.1671
0.0633
0.1624

Jensens Alpha for overall portfolio :
0.1607

) 0,0,0,0.0.0.0,0.0.9.9.0.0,0.9.9,0.0,0,0.9.0.0.0,0,:9.9.0,0,0,0.0.9.9.0,0.0.9



Risk quantification:
Individual stock betas:

1.6267

0.9092

1.0310

0.9790

1.0377

1.6616

1.0456

2.7332

1.1498

0.7899

Portfolio beta:
1.5802

Individual stock VaR-x:
1.0e+007 *

0.6830
0.5895
0.6619
0.6694
0.6038
0.8566
0.6773
1.1262
0.6935
0.5633

Portfolio Var-X:
4.9666e+006



Appendix 5: Weekly Stock Returns
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