U.T. Economics Summer 2013 Math Camp

Date: Monday, August 12

Topics: Dot products, directional derivatives, tangent planes. **Readings**: CSZ 5.3-8, MWG Math appendix A

Dot (or inner) product notation: Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{\ell}$, the **dot product** or **inner product** of \mathbf{x} and \mathbf{y} is defined as $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{\ell} x_i y_i$. In words, we multiply each component of \mathbf{x} by the corresponding component of \mathbf{y} and add the results. Often we write the dot product as \mathbf{xy} , and you will also see the following notations for the dot product: $\mathbf{x}^T \mathbf{y}; \mathbf{x}' \mathbf{y};$ and $\langle \mathbf{x}, \mathbf{y} \rangle$.

The (Euclidean) length of a vector \mathbf{x} is defined as $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$. More explicitly, $\|\mathbf{x}\| = \sqrt{\sum_i x_i^2}$, which is exactly the distance between 0 and \mathbf{x} that you learned in geometry class all those years ago.

We will begin by finding some of the implications of the result

$$\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos(\theta)$$

where θ is the angle between **x** and **y**. Because of this result, we say that **x** and **y** are **orthogonal** if $\mathbf{x} \cdot \mathbf{y} = 0$.

For $\mathbf{x} \in \mathbb{R}^{\ell}$, $f : \mathbb{R}^{\ell} \to \mathbb{R}$, $g : \mathbb{R}^{\ell} \to \mathbb{R}^{m}$ and $\mathbf{b} \in \mathbb{R}^{m}$, we are interested in the problems

(1)
$$V(\mathbf{b}) = \max f(\mathbf{x}) \text{ subject to } g(\mathbf{x}) \le \mathbf{b}, \text{ and}$$

(2)
$$V(\mathbf{b}) = \max f(\mathbf{x}) \text{ subject to } g(\mathbf{x}) \le \mathbf{b}, \mathbf{x} \ge 0.$$

We will study it using the associated Lagrangean function, $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda^T (\mathbf{b} - g(\mathbf{x})), \lambda \in \mathbb{R}^m_+$.

A. Some calculations and graphical exercises.

- 1. If $\mathbf{x} = (1, 3, 7)'$ and $\mathbf{y} = (2, 9, 0)$, give \mathbf{xy} , $\|\mathbf{x}\|$, $\|\mathbf{y}\|$.
- 2. Draw the set of $\mathbf{x} \in \mathbb{R}^2$ such that $\|\mathbf{x}\| \le 1$, $\|\mathbf{x}\| \le 2$, and $\|\mathbf{x}\| \le 17$.
- 3. For $\mathbf{p} = (1, 3)$, draw the set $\{\mathbf{x} \in \mathbb{R}^2_+ : \mathbf{p}\mathbf{x} \le w\}$ for w = 3, w = 5, and w = 37.
- 4. If $\mathbf{x} = (1, 3, 7)'$, give two linearly independent \mathbf{y} such that $\mathbf{xy} = 0$, and give the equation of the plane of points that are orthogonal to \mathbf{x} .
- B. Graph the following affine functions as well as two or three representative level sets and their gradients (i.e. the direction of fastest increase of the functions).
 - 1. $f(x_1, x_2) = 7 + 3x_1 + 4x_2$, equivalently $f(\mathbf{x}) = 7 + \mathbf{x}\mathbf{p}$ where $\mathbf{p} = (3, 4)'$.
 - 2. $g(x_1, x_2) = -3 + 5x_1 2x_2$, equivalently $g(\mathbf{x}) = -3 + \mathbf{xy}$ where $\mathbf{y} = (5, -2)'$.
 - 3. $h(x_1, x_2) = 21 + (-3x_1 7x_2) = 21 3x_1 7x_2$, equivalently $h(\mathbf{x}) = 21 + \mathbf{x}\mathbf{z}$ where $\mathbf{z} = (-3, -7)'$.

C. Give the affine function tangent to the following utility functions at the given points \mathbf{x}° and \mathbf{y}° . Also give (and draw) the level sets in \mathbb{R}^2_+ through the \mathbf{x}° as well as the direction in which the function increases the fastest.

1.
$$u(x_1, x_2) = \log(x_1) + 3\log(x_2)$$
 at $\mathbf{x}^\circ = (7, 3)'$ and $\mathbf{y}^\circ = (5, 5)'$.

2.
$$v(x_1, x_2) = \frac{1}{1+1}$$
 at $\mathbf{x}^{\circ} = (7, 12)'$ and $\mathbf{y}^{\circ} = (19, 5)'$.

- 3. $w(x_1, x_2) = \frac{1}{x_1} + \frac{1}{x_2} \sqrt{x_2}$ at $\mathbf{x}^\circ = (3, 16)'$ and $\mathbf{y}^\circ = (9, 25)'$.
- D. From $\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos(\theta)$, we know that if \mathbf{x} and \mathbf{y} are in the same quadrant, then $\mathbf{x} \cdot \mathbf{y} \ge 0$. The following depend on \mathbf{x} and \mathbf{y} being on the edges of the same quadrant, and they are more useful than their simplicity would suggest. Taken together, they go by the name of **complementary slackness**, and we will see them extensively in inequality constrained maximization.
 - 1. If $\mathbf{x}, \mathbf{y} \ge 0$ and $\mathbf{x} \cdot \mathbf{y} = 0$, then for $i = 1, \dots, \ell$, $[\mathbf{x}_i > 0] \Rightarrow [\mathbf{y}_i = 0]$ and $[\mathbf{y}_i > 0] \Rightarrow [\mathbf{x}_i = 0]$.
 - 2. If $\mathbf{x} \ge 0$, $\mathbf{y} \le 0$ and $\mathbf{x} \cdot \mathbf{y} = 0$, then for $i = 1, \ldots, \ell$, $[\mathbf{x}_i > 0] \Rightarrow [\mathbf{y}_i = 0]$ and $[\mathbf{y}_i > 0] \Rightarrow [\mathbf{x}_i = 0]$.
 - 3. For $\mathbf{y} \ge 0$, consider the problem min $\mathbf{x}\mathbf{y}$ subject to $\mathbf{x} \ge 0$. Show that \mathbf{x}^* solves this problem iff $\mathbf{x}^* \ge 0$ and $\mathbf{x}^*\mathbf{y} = 0$.
- E. The following observations are also quite simple, but will turn out to be quite useful. The results are stated for $\lambda > 0$, but work as well for $\lambda < 0$.
 - 1. For any non-zero $\mathbf{x} \in \mathbb{R}^{\ell}$, the solution to the problem $\max\{\mathbf{x} \cdot \mathbf{u} : \|\mathbf{u}\| \le 1\}$ is $\mathbf{u}^* = \lambda \mathbf{x}$ where $\lambda > 0$ is equal to $1/\|\mathbf{x}\|$.
 - 2. Suppose that $f(\mathbf{x}) = a + \lambda \mathbf{y}\mathbf{x}$ and $g(\mathbf{x}) = b + \mathbf{y}\mathbf{x}$, so that $D_x f(\mathbf{x}^\circ) = \lambda D_x g(\mathbf{x}^\circ)$ for any \mathbf{x}° , where $\lambda > 0$ and $\mathbf{y} \neq 0$. Then a unit change from \mathbf{x}° leads to the ratio of the changes of f and g being equal to λ , i.e. for any \mathbf{x}° and $\mathbf{u}\mathbf{y}\neq 0$, the ratio

$$\Delta f(\mathbf{x}^{\circ}) / \Delta g(\mathbf{x}^{\circ}) = [f(\mathbf{x}^{\circ} + \mathbf{u}) - f(\mathbf{x}^{\circ})] / [g(\mathbf{x}^{\circ} + \mathbf{u}) - g(\mathbf{x}^{\circ})] = \lambda.$$