
U.T. Economics Summer 2013 Math Camp

Date: Tuesday, August 13 and Wednesday August 14

Topics: Saddle points, complementary slackness, convexity and concavity and the

sufficiency of the K-T first order derivative conditions (FOC)

Readings: CSZ 5.8, MWG M.C-D, M.J-K

Some notes on topics covered

A set C ⊂ R` is convex if (∀x,y ∈ C)(∀α ∈ (0, 1))[αx+(1−α)y ∈ C ]. For a convex

C ⊂ R`, a function f : C → R is concave if the subgraph of f is a convex set, where

the subgraph of f is the set {(x, y) ∈ C × R : y ≤ f(x)}. Equivalently, f : C → R
is concave if (∀x,y ∈ C)(∀α ∈ (0, 1))[f(αx + (1 − α)y) ≥ αf(x) + (1 − α)f(y)]. A

function f is convex if −f is concave, which reverses the inequalities in the definitions.

If C is a convex set and the function f : C → R has derivatives, then at any x◦ ∈ C,

we can go in a straight line toward any x ∈ C, i.e. travel along the vector (x − x◦).
The change in f along a tangent plane at x◦ is Dxf(x◦)(x− x◦. A point x◦ is a local

maximum for f in C if for (∀x ∈ C)[Dxf(x◦)(x− x◦) ≤ 0]. Two comments.

i. A local maximum for a concave function is a global maximum.

ii. A verbal short-hand for the condition is that x◦ is a global maximum if Dxf(x◦) =

0 or if x◦ is at a boundary of C and Dxf(x◦) points outwards.

For x ∈ R`, f : R` → R, g : R` → Rm and b ∈ Rm, we are interested in the problems

(1) V (b) = max f(x) subject to g(x) ≤ b, and

(2) V (b) = max f(x) subject to g(x) ≤ b, x ≥ 0.

We will study the solutions using the associated Lagrangean function,

(3) L(x, λ) = f(x) + λ · (b− g(x)), λ ∈ Rm
+ .

A point (x∗, λ∗) is a saddle point for (1) if

(4) (∀x)(∀λ ≥ 0)[L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ)].

A point (x∗, λ∗) is a saddle point for (2) if

(5) (∀x ≥ 0)(∀λ ≥ 0)[L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ)].

The basic result is that if (x∗, λ∗) is a saddle point, then x∗ solves the maximization

problem that gave rise to the Lagrangean function. Four observations are in order.

i. An early step in proving this involves proving complementary slackness, for

any saddle point, λ∗ · (b − g(x∗)) = 0. This means that V (b) ≡ L(x∗, λ∗), a fact

that we will use in the envelope theorem proof that DbV (b) = λ.
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ii. If f(·) is concave, g(·) is convex, and both are differentiable, then for any λ◦ ≥ 0,

DxL(x∗, λ◦) = 0 is both necessary and sufficient for x∗ to solve maxL(x, λ◦) in

(4).

iii. If f(·) is concave, g(·) is convex, and both are differentiable, then for any λ◦ ≥ 0,

DxL(x∗, λ◦) ≤ 0, x∗ ≥ 0, and x∗ ·DxL(x∗) = 0 is both necessary and sufficient for

x∗ to solve

max
x

L(x, λ◦)

in (5).

iv. If x◦ satisfies 0 ≤ b − g(x◦), then DλL(x◦, λ∗) ≥ 0, λ∗ ≥ 0, and λ∗ ·DλL(x◦, λ∗)

is necessary and sufficient for λ∗ to solve

min
λ≥0

L(x◦, λ)

in both (4) and (5).

Problems

A. Read CSZ Ch. 5.8 and figure out how to work most of the problems in it.

B. Find V (w) = max f(x) subject to px ≤ w and dV
dw

for p ∈ R2
++ and the following

functions f . In each case, verify the relation between the Lagrange multiplier, λ

and dV
dw

and check that you have found a saddle point for the Lagrangean.

1. f(x1, x2) = log(x1) + 3 log(x2).

2. f(x1, x2) = 1
1
x1

+ 1
x2

. x◦ = (7, 12)′ and y◦ = (19, 5)′.

3. f(x1, x2) = x1 + 2
√
x2.

C. The problems just given also have a p in them, i.e. V (p, w) = max f(x) subject

to px ≤ w. By now, you should be starting to believe that ∂V/∂w = λ. Another

differentiability result for V (·, ·) is DpV (p, w) = x∗(p, w). Verify that this holds

true for the three utility functions given in the previous problem, being careful

with the third one, where there will be points at which V is not differentiable.

D. If u(x1, x2) is not differentiable, then writing down the FOC, i.e. the K-T conditions

means that you have mis-understood basic aspects of the arguments. However, even

for non-differentiable u(·, ·), V (p, w) can be very well-behaved. We will study the

non-differentiable, concave function u(x1, x2) = min{rx1, x2} where r > 0. Along

the line x2 = rx1, this function has a “fold” or a “kink,” and has no derivative.

Let V (p, w) = maxu(x1, x2) subject to x1, x2 ≥ 0, p1x1 + p2x2 ≤ w.

(a) Find V (p, w).

(b) Find ∂V
∂w

and interpret it.

(c) Find DpV and interpret it.
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E. A set can either be convex or fail to be convex. A function f : C → R, C ⊂ R` a

convex set, can be either concave, or convex, both, or neither. For the following

classes of sets and functions, check for these geometric properties.

1. f : R` → R defined by f(x) = a+ yx.

2. H≤y (r) = {x ∈ R` : xy ≤ r}.
3. H≤y1

(r1) ∩H≤y2
(r2).

4. F : R→ R defined by f(x) = a+ bx+ cx2.

5. f(x) = ex, g(x) = −ex, h(x) = e−x, and j(x) = −e−x.
6. F : R+ → R defined by F (x) = 1− e−λx, λ > 0.

7. F : R→ R defined by F (x) = 1
1+eλx

, λ > 0.

8. f : R → R defined by f(t) = (tx + (1 − t)y)TM(tx + (1 − t)y) where M is a

symmetric, positive definite matrix.

9. F : R` → R defined by f(x) = xTMx where M is a symmetric, positive definite

matrix.

10. C = {x ∈ R` : xTMx ≤ r}, M symmetric and positive definite.

F. Let C = [0, 1] ⊂ R1 and let f : C → R be a concave differentiable function. Write

out the three cases that guarantee that x◦ ∈ C is a global maximum for f in

C, i.e. for (∀x ∈ C)[Dxf(x◦)(x− x◦) ≤ 0].

G. Let C = [0, 1]× [0, 1] ⊂ R2 and let f : C → R be a concave differentiable function.

Write out the five cases that guarantee that x◦ ∈ C is a global maximum for f

in C, i.e. for (∀x ∈ C)[Dxf(x◦)(x− x◦) ≤ 0].
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H. This problem is about optimal emission reduction. At present, each of I different

firms produces a quantity q◦i of NOx as a by-product of their operations, so that

the total quantity produced is Q◦ =
∑

i q
◦
i . At a cost ci(ai), c

′
i > 0 and c′′i > 0, firm

i can abate to q◦i − ai. Total abatement is A =
∑

i ai. We wish to reduce emissions

from Q◦ to Q∗, i.e. to abate by an amount A∗ = Q◦−Q∗ in a cost efficient fashion,

that is, to solve

mina1,...,aI
∑

i ci(ai) subject to
∑

i ai ≥ A∗, ai ≥ 0 for i = 1, . . . , I.

The first problems ask you to work this with specific functions, the second set

of problems asks you to work in more generality. Specifically, for the first set of

problems, suppose that ci(ai) = 1
2
βi(ai)

2 where β1 < β2 < · · · < βI .

1. Give the Lagrangean for the efficient cost of abatement problem, then take its

derivatives and set them equal to 0.

2. Show that the solution is a∗i = A∗ 1
βi

1∑
j 1/βj

.

3. Suppose now that the NOx levels, ai, can be accurately measured and are taxed

at a rate τ . Let aτi denote firm i’s profit maximizing amount of abatement when

the tax is τ . Show that aτi = τ 1
βi

.

4. Find the tax rate τ(A∗) that achieves total abatement A∗ in an efficient manner.

Explain why τ(·) should be an increasing function. [If you did the algebra

correctly, you will have found an increasing function. I want you to explain why

you should have expected the function to be increasing.]

5. Suppose that the NOx is perfectly mixed, that the social costs/damage of the

output level Q is given by C(Q) = 1
2
γQ2. Characterize the optimal tax rate, τ ∗,

and the optimal abatement, A∗.

For the next set of problems, assume only that c′i > 0 and c′′i > 0.

6. Give the Lagrangean for this problem.

7. Assuming that the solution involves each a∗i > 0, show that at the solution,

c′i(a
∗
i ) = c′j(a

∗
j) for each i, j pair.

8. Suppose now that ai can be accurately measured and the Pigovian tax for it is

τ . Let aτi denote firm i’s profit maximizing amount of abatement when the tax

is τ . Show that profit maximization by the firms will lead to c′i(a
τ
i ) = c′j(a

τ
i ) for

each i, j pair.

9. Let τ(A∗) be the tax rate that achieves total abatementA∗ in an efficient manner.

Show that τ(·) is increasing.

10. Suppose that the NOx is perfectly mixed, that the social costs/damage of the

output level Q is given by C(Q), and that marginal social cost/damage is in-

creasing. Characterize the optimal tax rate, τ , and the optimal abatement A∗.
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I. [A special case of Samuelson’s analysis of the optimal provision of public goods]

There are two goods, a private consumption good, x, and a public good, G. The

public good is produced according to the production function G = f(z) where

f(z) = z. In other words, one unit of the private consumption good can be turned

into one unit of the public good. Person i’s utility function is ui(xi, G) = log(xi) +

βi log(G), and each βi > 0, and each person has a total of 10 units of the private

good, some of which must be turned into the public good.

The first problems concerns the case where there is just one person. It will

provide background for the later parts of the problem.

(1) Person i’s problem is

maxxi,z,G ui(xi, G) subject to xi + z ≤ 10 and G ≤ z.

Set up the Lagrangean for this problem.

(2) Show that the solution to the previous problem has x∗i = 10/(βi + 1) and

z∗ = 10βi/(βi + 1).

(3) Explain why higher values of βi lead to higher optimal values of z∗’s and lower

optimal values of x∗i ’s. Your answer should involve the equality of person i’s

MRS between the private and the public good and the technological rate of

substitution between z and G.

The next set of problems concern the case where there are 2 people, I = {1, 2},
both having 10 units of the private good.

(4) The efficient allocations can be found by solving the problem

maxx1,x2,z,G u1(x1, G) subject to u2(x2, G) ≥ u◦2, x1 + x2 + z ≤ 20, and G ≤ z.

Set up the Lagrangean for this problem.

(5) Show that any solution to the previous problem involves the sum of the two

people’s MRS’s between the private and the public good being equal to the

technological rate of substitution.

(6) Explain why higher values of β1 will increase the optimal level of G.

(7) Show that it is possible to make both people better off than they were in the

single person problems discussed above.

(8) Efficient allocations can also be found be solving problems of the form

maxx1,x2,z,G[w1 · u1(x1, G) + w2u2(x2, G)] subject to x1 + x2 + z ≤ 20, and G ≤ z

for utility “weights” w1, w2 > 0. Show that the solution to these problems also

involves the sum of the two people’s MRS’s between the private and the public

good being equal to the technological rate of substitution.
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