
U.T. Economics Summer 2013 Math Camp

Date: Thursday, August 15 through Monday, August 19

Topics: Expected utility and information structures, dynamic constrained optimiza-

tion, properties of value functions.

Readings: CSZ 3.7, MWG 6.A-C

Information structure problems

A. This is a problem on normalizations in expected utility theory.

1. An expected utility decision maker has beliefs (β, 1 − β) on {ω1, ω2}, and they

have two possible actions to take, a1 and a2. Their utilities are given by

ω1 ω2

a1 9 1

a2 2 3

Find, as a function of β, the decision makers optimal action. Show that it is the

same function for the following two utility functions.

ω1 ω2

a1 7 0

a2 0 2

ω1 ω2

a1 3.5 0

a2 0 1

2. Show that the solution to maxa∈A
∫
u(a, y) dβ(y) is the same as the solution to

maxa∈A
∫

[r ·u(a, y)+g(y)] dβ(y) for any r > 0 and any function g(·). [The point

is that the last two sets of utilities games from these kinds of calculations.]

B. The timeline: first the prosecuting attorney commits to an information structure;

second, the signal is observed by the judge/jury; third, the judge/jury makes their

decision.

The Judge/Jury has a prior probability p of the accused person being Guilty

and probability 1− p of being Innocent. Judge/Jury can either convict or acquity,

and, after normalization their utility function is given by

Innocent Guilty

Convict 0 z

Acquit 1 0

with z > 0.

The prosecuting attorney (DA) receives expected utility is 1 if the accused is

convicted, 0 else. The DA commits to an information structure, that is, they
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commit to a distribution, Q, over the space of beliefs, ∆(Ω) = [0, 1], such that∫
[0,1]

β dQ(β) = p. The DA’s problem is

(1) maxQ∈∆(∆(Ω)) Q([ 1
1+z

, 1]) subject to
∫

∆(Ω)
β dQ(β) = p.

1. Show judge/jury’s optimal action is to convict if their beliefs, β, satisfy βz ≥
(1− β), i.e. β ≥ 1

1+z
.

2. Show that the solution to the DA’s problem is a Q that puts mass 1 − γ on 0

and γ on 1
1+z

.

3. Show that the accused is convicted p(1 + z) > p of the time.

C. The police arrest a man and accuse him of a crime. Given the police department’s

record, there is a prior probability ρ, 0 < ρ < 1, that the man is guilty, ω = g,

and a (1 − ρ) probability that the man is innocent, ω = i. The man will be tried

in front of a jury of M people. These M people will cast random, stochastically

independent votes, Vm = G for guilty and Vm = I for innocent, m = 1, . . . ,M with

probabilities

P (Vm = G|ω = i) = p, P (Vm = G|ω = g) = q, 0 < p <
1

2
< q < 1.

Suppose that social utility depends on the innocence or guilt of the defendant,

ω = i, g, and the jury’s decision, V = I,G, and

0 = u(V = G|ω = i)︸ ︷︷ ︸
worst mistake

< u(V = I|ω = g) = r︸ ︷︷ ︸
mistake

< u(V = G|ω = g) = u(V = I|ω = i) = 1︸ ︷︷ ︸
correct decision

.

1. Consider the unanimity rule for the jury, “Convict only if all jurors return a

guilty vote,” i.e. V = G if V1 = V2 = · · · = VM = G, and V = I otherwise.

What are

P (V = G|ω = g), P (V = I|ω = g), P (V = G|ω = i), and P (V = I|ω = i)?

2. If juries are costless, set up the problem for finding the optimal M and charac-

terize its dependence on ρ.

3. Repeat the previous, but now assume that the cost of a jury is an increasing

function of the jury size and characterize the dependence of the optimal M on

the cost.

2



Dynamic problems

D. Suppose that the growth curve in the fishery model of CSZ §3.7 is twice continu-

ously differentiable. Your job is to compare the optimal growth paths and optimal

steady states for the three utility functions u(xt) = log(xt), v(xt) = 2
√
xt, and

w(xt) = xt.

1. Give the three corresponding Euler equations.

2. Give the optimal steady states as a function of the discount factor.

3. Starting from the same x0 below the steady states you just found, which util-

ity function involves faster growth of the fish stock? [For the utility function

w(·), you need to remember that the Euler equations were derived under the

assumption that the solutions were strictly positive, and that may not be true.]

4. Suppose now that x0 is above the steady states and repeat the previous.

E. [Non-renewable resources as renewable resources with a 0 growth rate]: There is a

total stock of X of a resource, and the problem is to choose a consumption path,

c0, c1, c2, . . ., ct ≥ 0, so as to maximize
∑

t ρ
tu(ct) subject to the constraint that∑

t ct ≤ X. The Lagrangean for this problem is L(c;λ) =
∑

t ρ
tu(ct)+λ(X−

∑
t ct)

where c = (c0, c1, c2, . . .) represents the whole infinite length vector. We suppose

throughout that u′(·) > 0 and u′′(·) < 0.

1. Explain why the constraint must be binding.

2. Write out the Kuhn-Tucker conditions assuming that at the optimum, each

c∗t > 0.

3. Show that the Kuhn-Tucker conditions that you just found deliver the Euler

equation for a ‘renewable’ resource with the growth curve F (x) ≡ 0.

For the rest of this problem, we suppose that u(c) = 2
√
c.

4. Find the optimal consumption path as a function of X and ρ.

5. Give an intuitive explanation for why the c∗0 that you just found should be

smaller when ρ is larger.

6. Show that once t is large enough, c∗t is larger for larger ρ.

7. Give an intuitive explanation for why, for large enough t, c∗t should be larger for

larger ρ. [This answer should be fairly tightly related to the answer you gave

for why c∗0 is smaller for larger ρ, so don’t worry if it is slightly repetitive.]

F. [Efficiency and dynamics]: This problem is the beginning of the study of how

differential patience/impatience interacts with efficient intertemporal allocation.

There are two people with funny hair and entirely too much energy named Thing

1 and Thing 2. There are two time periods, t = 0, 1. 1’s vector of consumption

in the two periods is (x1,0, x1,1) ≥ (0, 0), and 2’s vector of consumption in the two
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periods is (x2,0, x2,1) ≥ (0, 0). 1’s utility is U1(x1,0, x1,1) = x1,0 + ρ1x1,1, while 2’s

utility is U2(x2,0, x2,1) = u2(x2,0) + ρ2u2(x2,1), where u2(x) = 2
√
x. Both ρ1 and ρ2

are strictly positive and strictly less than 1.

There is a total amount X of the consumption good available at t = 0. It can

either be consumed or it can be invested at a rate of return r > 0. This means that

saving s, i.e. consuming only X − s, right now allows for consumption of (1 + r)s

at t = 1.

The first two problems involve finding the individually optimal allocations of

consumption across time. They are good practice for the problem of finding the

set of efficient allocations of consumption across time and people.

1. Consider Thing 2’s problem when there is no Thing 1,

max U2(x2,0, x2,1) subject to x2,0 ≤ x, x2,1 ≤ (1 + r)[X − x2,0], (x2,0, x2,1) ≥ 0.

a. Give the associated Lagrangean.

b. Without solving the problem, explain how the optimal x∗2,1 depends on ρ2.

c. Show that the Kuhn-Tucker conditions for this problem are the same as the

Euler equation for the fishery growth problem.

d. Solve for the optimal (x∗2,0, x
∗
2,1) as a function of X, r, and ρ2.

2. Now consider Thing 1’s problem when there is no Thing 2,

max U1(x1,0, x1,1) subject to x1,0 ≤ X, x1,1 ≤ (1 + r)[X − x1,0], (x1,0, x1,1) ≥ 0.

a. Give the associated Lagrangean.

b. Without solving the problem, explain how the optimal x∗1,1 depends on ρ1.

c. Explain how the solution Kuhn-Tucker conditions for this problem depend

on the relation between ρ1 and (1 + r).

d. Solve for the optimal (x∗1,0, x
∗
1,1) as a function of X, r, and ρ1. [You will need

to break up your answer into cases.]

We now turn to the problem of finding the dynamic efficient allocations for Thing

1 and Thing 2. To do this, we consider the solutions to problems of the form

max [αU1(x1,0, x1,1) + (1− α)U2(x2,0, x2,1)] subject to(2)

x1,0 + x2,0 ≤ X,

x1,1 + x2,1 ≤ (1 + r)[X − (x1,0 + x2,1)],

(x2,0, x2,1) ≥ (0, 0), (x1,0, x1,1) ≥ (0, 0),

where 0 ≤ α ≤ 1.

3. When α = 0, this is the first problem you solved above, when α = 1, it is the

second problem.

a. Explain how the solution (x∗1,0, x
∗
1,1), (x∗2,0, x

∗
2,1) depends on α. [You can do

this without solving the problem in (2).]

b. Show that for 0 < α < 1, any solution to the problem in (2) is efficient.
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c. Give the Lagrangean and the Kuhn-Tucker conditions for the problem in (2).

d. Argue that for 0 < α < 1, the Kuhn-Tucker conditions can never be satisfied

at x2,0 = 0 or x2,1 = 0. Interpret this in terms of marginal utilities.

e. Show that for small enough strictly positive α, the solution to the problem

in (2) involves (x∗1,0, x
∗
1,1) = (0, 0).
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Value function properties and KT problems

G. Suppose that u : R1
+ → R is concave and strictly increasing. For 0 < β < 1 and

r > 0, consider the problem

V (w) = max
c1,c2

[u(c1) + βu(c2)] subject to c1 ∈ [0, w], c2 ∈ [0, (1 + r)(w − c1)].

Show that V (·) is concave and strictly increasing.

H. Suppose that u : R`
+ → R is concave and strictly increasing. For fixed p, show that

the function V (w) := maxu(x) subject to px ≤ w, x ≥ 0 is concave and strictly

increasing.

KT problems and further value function properties

I. [More about KT conditions] Suppose that C = R`
+ and that f : C → R is

concave and differentiable. Show that [ [x∗ ∈ C] ∧ (∀x ∈ C)[Dxf(x∗)(x − x∗) ≤
0] ]⇔ [ [Dxf(x∗) ≤ 0] ∧ [x∗ ≥ 0] ∧ [x∗ ·Dxf(x∗) = 0] ].

J. Show that the function f : R2 → R defined by f(x1, x2) = (1 + x2)3x2
1 + x2

2 has

only one point x∗ with Dxf(x∗) = 0, but that f has neither a global maximum or

a global minimum. [Just a reminder that FOC are necessary but not sufficient.]

K. [Practice with K-T conditions at the boundaries] Solve the problem V (p, w) =

max ~1 · x s.t. px ≤ w, x ≥ 0 where p� 0 and ~1 is the length-` vector of 1’s.

L. For x ∈ R3, find V (b) = max (100− x · x) subject to the following constraints.

1. p · x ≤ b, x ≥ 0 where p = (1, 2, 1)T .

2. p · x ≥ b, x ≥ 0 where p = (1, 2, 1)T .

In each case, verify that V ′(b) = λ∗(b).

M. Let V (b1, b2) = max y · x s.t. x · x ≤ b1 and px ≤ b2 where y = (1, 4, 1)T and

p = (1, 2, 3)T . Verify that ∂V/∂bi = λ∗i . [For different values of b1 and b2, different

constraints are binding.].

N. Let V (p, w) = max 1
2

log(1 + x1) + 1
4

log(1 + x2) subject to px ≤ w, x ≥ 0. Verify

that ∂V (p, w)/∂w) = λ∗. [Corner solutions matter here.]

O. Solve the problem max (1
2
x1 − x2) s.t. x1 + e−x1 + (x3)2 ≤ x2, x1 ≥ 0. [Here, the

objective function could be regarded as depending on x1, x2 and x3 even though x3

has no effect on f .]

P. Solve max (1−x ·x) s.t. x ≥ (2, 3)T by direct geometry and by examining the K-T

conditions.
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