
U.T. Economics Summer 2011 Math Camp

Date: Monday, August 19 through Thursday, August 22

Topics: Random variables, functions of random variables, expectations, Jensen’s in-

equality and expectations of concave functions of random variables

Readings: Casella and Berger, Ch. 1, Ch.2.1-2

Kolomogorov’s model of randomness

I. A probability space is a triple, (Ω,F , P ) where

A. Ω 6= ∅
B. F ⊂ P(Ω) satisfies

1. ∅,Ω ∈ F
2. [E ∈ F ]⇒ [Ec ∈ F ]

3. [{En : n ∈ N} ⊂ F ]⇒ [∪n∈NEn ∈ F ∧ ∩n∈NEn ∈ F ]

C. P : F → [0, 1] satisfies

1. P (∅) = 0, P (Ω) = 1, more generally

2. [{En : n ∈ N} ⊂ F ,∧(∀m,n)[En∩Em = ∅]⇒ [P (∪n∈NEn) =
∑

n∈N P (En)].

3. A random variable (resp. vector) is a mapping X : Ω → R (resp. R`)

such that (∀x ∈ R)[X−1((−∞, r]) ∈ F ] (resp. (∀x ∈ R`)[X−1((−∞,x]) ∈
F ]).

II. Terminology. (Ω,F) is a measurable space, P is a probability measure,

and random variables are measurable functions. The study of such structures

(with fewer assumptions on P ) is called measure theory, and probability theory

can sometimes be usefully regarded as a sub-field of measure theory. For many

purposes in economics, the measure theoretic aspect of randomness does not

matter, and we will spend most of our time working on those parts of economics

where this is true.

III. The intended interpretation. Some ω is drawn according to P , which means that

“the probability that ω ∈ E is equal to P (E)”, and there is an ongoing dispute

about what that means; a random phenomenom that we can measure using real

numbers or real vectors takes values the X(ω), which is what we observe.

IV. Informational content of observations. Observing that the number, or vector,

X(ω), is equal to x, or x, leads to the conclusion that the E that happened is a

subset of X−1(x), or X−1(x). If Ω ⊂ RN, i.e. the set of all sequences, with typical

element, (ω1, ω2, ω3, . . .), and X(ω) = ωn, then X−1(x) is the set of all sequences

of the form

(ω1, . . . , ωn−1, x, ωn+1, . . .).

This means that there is a great deal of uncertainty left after observing X(ω).

V. Conditional probability. Often, observational information is given using condi-

tional probabilities — given that I observed B, the probability of A is P (A|B).

When P (B) > 0, this is defined as P (A|B) = P (A∩B)
P (B)

. If what I observe is
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B = {ω : X(ω) = x}, then P (A|X) is a random variable. This is important,

conditional probability is itself a random variable.

Example 1 (The danger of random drug testing). At random, you are given a

test for any of the many drugs that are illegal in your country. Let B be the event

that you have some of the drug in your system, and let A be the event that the

test says that you have the drug in your system. A good test has P (A|B), the

sensitivity, close to 1, and the false positive rate, P (A|Bc), close to 0. Of interest

is P (B|A), the proportion of those accused by the test that actually have the drug

in their system.

If the sensitivity is 0.99 and the false positive rate 0.02, both of which are

reasonable figures, then P (B|A) is

P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)
=

0.99 · P (B)

0.99 · P (B) + 0.02 · P (Bc)
=

1

1 + 0.02
0.99

P (Bc)
P (B)

.

If (say) 99% of the population given the random test do not have any of the drug

in their system, P (Bc) = 0.99, then P (B|A) = 1/3. That is, less than half of

those turned up by the test actually have any of the drug in their system. What

is happening is that in every (say) 100 people given the test, 99 have no drugs in

their system, and 2 of them have false positives, while the 1 with drugs in their

system has the true positive. In all, only 1 of the three positives are true positives.

If (say) 99.9% of the population given the random test do not have any of the

drug in their system, P (Bc) = 0.999, then P (B|A) ' 1/21. That is, less than

5% of those turned up by the test actually have any of the drug in their system.

If (say) the drug testing is not random, but based on probable cause, then P (Bc)

might be 0.2. In this case, P (B|A) ' 0.995. This is better, but still means there

is still a 1 in 200 chance that the test is wrong, and one needs to think about very

closely about standards of evidence. [The preceding is also a cautionary tale about

too much preventive medicine, giving tests for rare conditions at random turns

up a large number of false positives.]

VI. Characterizing random variables. For a random variable, X, the cumulative

distribution function (cdf) is FX(x) := P (X−1((−∞, r]) = P ({ω : X(ω) ∈
(−∞, x]}), and the reverse cdf is GX(x) = 1 − FX(x) = P (X > r). Knowing

all of the values of FX(x), x ∈ R, allows us to calculate the value of P (X−1(A))

for all the A ⊂ R that we care about.1 In this sense, the cdf characterizes the

random variable X.

VII. Characterizing random vectors. FX(x) := P ({ω : X(ω) ≤ x}) has the same

properties. However, it tells us a great deal about the joint random behavior of

the components of the vector.

Example 2. FX(x1, x2) = min{x1, x2} for 0 ≤ x1, x2 ≤ 1 versus FY (x1, x2) = x1 ·
x2 for 0 ≤ x1, x2 ≤ 1. Note that FX(r, 1) = FX(1, r) = FY (r, 1) = FY (1, r) = r for

1They are called the “Borel measurable subsets of R,” though one can go further to the “analytic
subsets of R.”
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all 0 ≤ r ≤ 1, so that each component of both vectors has the uniform distribution.

However, X is uniformly distributed on the diagonal in the square [0, 1] × [0, 1]

while P (Y ∈ A) = area of A, i.e. the vector Y is uniformly distributed over the

square [0, 1]× [0, 1].

VIII. Induced distributions. Every random variable or vector induces a distribution on

its range defined by µX(A) = P (X ∈ A), A ⊂ R or A ⊂ R`.

IX. Expectations. For any (measurable) function u : R→ R and any random variable

X, we have the new random variable Y (ω) := u(X(ω)). The expectation of Y

is E Y = E u(X) =
∫

Ω
u(X(ω)) dP (ω), or, after change-of-variables, E u(X) =∫

R u(x) dµX(x). If u(x) = x, we write this is EX. We essentially never have

E u(X) = u(EX) when u(·) is not the identity function.

This is important — we expect E u(X) 6= u(EX).

X. Expectations of concave functions. The important result here is Jensen’s inequal-

ity.

Lemma 1. If C ⊂ R` is convex, P (X ∈ C) = 1, and u : C → R is concave, then

u(EX) ≥ E u(X).

The proof uses the supporting hyperplane theorem.

XI. Probability density functions. If it exists, the probability density function

(pdf) is fX(x) = F ′X(x), i.e. the function with the property that (∀x ∈ R)[FX(x) =∫ r
−∞ f(t) dt]. Given a pdf, P (X ∈ A) =

∫
A
f(t) dt, and E u(X) =

∫
R u(t)f(t) dt.

The multi-dimensional pdf is defined analogously.

XII. Hazard rates. When pdf’s exist, hazard rates exist, the hazard rate at t is

hX(t) = fX(t)
1−FX(t)

, which can be understood as 1
dt
P (t < X < t + dt

∣∣X > t) for

small (infinitesimal) dt > 0.2

XIII. Indicator functions. We have used indicator functions to talk about statements

and proofs, they are really useful in probability. The indicator function of

the set A, given by 1A(t) = 1 if t ∈ A and 1A(t) = 0 if t 6∈ A. For example,

the density of the uniform distribution on the interval [0, 1] has density function

f(t) = 1[0,1](t). For another example, E 1A(X) = P (X ∈ A).

XIV. The space of random variables when Ω is finite, F = 2Ω, and P ({ω}) > 0 for each

ω ∈ Ω. This is RΩ using the notation that Y X is the set of all functions from X

to Y . Taking 2 = {0, 1}, we have 2Ω being the set of indicator functions for the

class of all subsets of Ω, which we identify with the class of all subsets of Ω.

2Here are two hazard rate examples not related to what we are doing here:

• If W is the random waiting time until a randomly chosen unemployed person finds a job, then we
expect the hazard rate, hW (t) to depend positively on the unemployment rate (more jobs are open),
to depend negatively on the size of the savings account or other resources (e.g. a working spouse)
that the person has (they can be pickier about the job that they accept), to depend positively on the
number of dependents they have (more hungry mouths burn to feed).
• If W is the random waiting time until the next accident shows up in a hospital emergency room,

then we expect the hazard rate, hW (t), to be higher on Friday and Saturday nights, to be lower in
the hours before dawn, and to peak at rush hours during the weekdays.
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A. For X ∈ RΩ, EX :=
∑

ω∈Ω X(ω)P ({ω}). Letting µX(x) = P (X−1(x)) be the

image distribution of P under the random variable X, we have the

change of variable result, EX =
∑

x x · µX(x).

B. For u : R → R and X ∈ RΩ, we can define Y (ω) = u(X(ω)) so that E Y =∑
ω u(Y (ω))P (ω). We can define the image distribution of µX under u or the

image distribution of P under Y , and we had better get the same result —

µY (Y = y) = P (Y −1(y)) = µX(u−1(y)).

C. Taking u(r) = |r| gives an important class of rv’s: ‖X‖1 := E |X|; ‖X‖2 :=

(E |X|2)1/2; more generally, ‖X‖p := (E |X|p)1/p for p ∈ [1,∞); and ‖X‖∞ =

limp↑∞ ‖X‖p = maxω |X(ω)|.
D. A ⊂ RΩ is a vector algebra if for allX, Y ∈ A and all α, β ∈ R, αX+βY ∈ A

and XY ∈ A. Note that A is a vector subspace of RΩ. One of the things

that we do with vector subspaces is to project onto them. This is equivalent

to solving the problem, for X ∈ RΩ,

min
Y ∈A
‖X − Y ‖2.

The solution to this problem is denoted E (X|A), which turns out to be an

instance of a crucial object in econometrics.

Problems

A. A person accused of a crime by the District Attorney, with the help of the police

department, has a probability p, 0 < p < 1, of being guilty. At the trial,

i. if the person is guilty, the evidence indicates that they are guilty with proba-

bility eguilty,
1
2
< eguilty < 1, and

ii. if the person is innocent, the evidence indicates that they are guilty with prob-

ability einnocent, 0 < einnocent <
1
2
.

1. Give and graph the probability, as a function of p, that the person is guilty

conditional on the evidence indicating guilt.

2. Suppose that the jury convicts every time the evidence indicates that the defen-

dant is guilty. If eguilty = 0.98 and einnocent = 0.01, how reliable must the District

Attorney and the police department be in order to have the false conviction rates

lower than 0.1% (one in a thousand)?

B. Bill and Harry each tell the truth 1
3

of the time. Bill says something, Harry hears it

and says “Bill just told the truth.” What is the probability that Harry actually told

the truth? [You need to be explicit about what independence or other assumptions

you are making in order to solve this, and learning to be explicit in this way is part

of the problem.]

Optimal choice in the presence of randomness

Different actions, a ∈ A, lead to different random variables or vectors, Xa, each

of which has an induced distribution µa. Each consequence, Xa(ω), has a utility as-

sociated with it, u(Xa(ω)), and actions are ranked by expected utility, [a % b] ⇔
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[E u(Xa) ≥ E u(Xb)]. Equivalently, preferences over actions can be regarded as pref-

erences over induced distributions, [a % b]⇔ [
∫
u(x) dµa(x) ≥

∫
u(x) dµb(x)].

Note that the preferences over induced distributions are linear in the induced dis-

tributions. Let ∆ denote the set of induced distributions. Continuous preferences

over induced distributions are linear iff they satisfy the Independence Axiom:

[µ % ν]⇒ (∀η ∈ ∆)(∀α ∈ (0, 1))[(αµ+ (1− α)η) % (αν + (1− α)η)].

C. Mary, through hard work and concentration on her education, had managed to

become the largest sheep farmer in the county. But all was not well. Every month

Mary faced a 50% chance that Peter, on the lam from the next county for illegal

confinement of his ex-wife, would steal some of her sheep. Denote the value of her

total flock as w, and the value of the potential loss as L, 0 < L < w, and assume

that Mary is a expected utility maximizer with a vNM utility function

u(w) = lnw.

1. Assume that Mary can buy insurance against theft for a price of p per dollar of

insurance. Find Mary’s demand for insurance. At what price will Mary choose

to fully insure?

2. Assume that the price of insurance is set by a profit maximizing monopolist

who knows Mary’s demand function and the true probability distribution of

loss. Assume also that the only cost to the monopolist is the insurance payout.

Find the profit maximizing linear price (i.e. single price per unit) for insurance.

Can the monopolist do better than charging a linear price?

D. Consider a consumer who must allocate her wealth between consumption in two

periods, 1 and 2. Assume that the consumer has preferences on consumption

streams (c1, c2) represented by the utility function

U(c1, c2) = u(c1) + u(c2) where u(ci) =
c1−a
i

1− a
,

0 < a < 1. Suppose further that she has wealth W at the start of period 1, and

receives no other income, so all of her period 2 consumption is supported by saving

in period 1, and expects to pay a share t of her savings at the start of period 2 in

taxes. Finally, suppose that the tax rate on savings is set by the government at

the start of period 2 at the time it is levied, and is uncertain at the time of the

saving decision in period 1.

(a) Assume that tax rates are determined according to the density f(t), and care-

fully write down the consumer’s lifetime utility maximization problem.

(b) Assume that t will take on a value of 1/2 or 0 with equal probability. Find

the optimal choice of consumption in period 1. Does this increase or decrease

with an increase in the parameter a? Explain.

E. [Higher effort for those who find effort cheaper] A decision maker of type θ, θ ∈
Θ := [θ, θ] ⊂ (0, 1), chooses an effort, e ∈ [0,∞). An effort of e costs c(θ, e) :=

(1 − θ)c(e) in utility terms where c(e) is an increasing function so that higher

types correspond to lower costs and to lower marginal costs. After the effort is

exerted, there are two possible outcomes, success, u(success) = R, and failure,
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with u(failure) = r, R > r > 0. We assume that the decision maker is an expected

utility maximizer. This means that if success and failure are different amounts of

money, attitudes toward risk are already encoded in the numbers R and r.

High efforts do not guarantee success, but they do increase the probability of

success. In particular, there is a probability P (e) of success and a probability

1− P (e) of failure. Thus, expected utility, as a function of e, θ, R, and r is

U(e, R, r, θ) = R · P (e) + r · (1− P (e))− (1− θ)c(e),

and we define V (R, r, θ) = maxe∈[0,∞) U(e, R, r, θ).

We assume that:

(a) P : [0,∞)→ [0, 1] is continuous and non-decreasing,

(b) c : [0,∞) → R is continuous, non-decreasing, c(0) = 0, and that for all large

enough e and all θ, (1 − θ)c(e) > R − r. [This has the effect of making the

optimal e bounded].

1. Show that the mappings R 7→ V (R, r, θ), r 7→ V (R, r, θ), and θ 7→ V (R, r, θ) are

all at least weakly increasing.

2. Suppose that R′ > R and that e′ := e∗(R′, r, θ) and e := e∗(R, r, θ) contain only

a single point. Intuitively, a higher reward for success ought to make someone

work harder for that success. Show that this is true if P (·) is strictly increasing.

3. Suppose that θ′ > θ and that e′ := e∗(R, r, θ′) and e := e∗(R, r, θ) contain only a

single point. Intuitively, higher types have lower costs and lower marginal costs,

so ought to be willing to work harder. Treating θ as the parameter and e as the

decision variable, show that this is true.

F. [Neyman-Pearson Lemma] Suppose that a random vector X either has density

f(x|θ0) or has density f(x|θ1). We do not observe which value θ takes, we only

observe X = x, and after observing it, we must choose between the two values.

Let us call the guess that θ = θ0 the null hypothesis, and θ = θ1 the alternative

hypothesis. A decision rule is given by a set of values, Xr, called the “rejection

region,” and the behavioral rule “reject the null hypothesis if X ∈ Xr, accept it

else.”

If we reject the null when θ = θ0, we are making what is called a Type I error,

if we accept the null when θ = θ1, we are making what is called a Type II error.

We let α(Xr) = P (X ∈ Xr|θ0) =
∫
Xr
f(x|θ0) dx denote the probability of Type I

error, and we let β(Xr) = P (X 6∈ Xr|θ1) =
∫
Xc
r
f(x|θ1) dx denote the probability of

a Type II error. Notice that these are both conditional probabilities.

In picking Xr, there is a tradeoff between α and β. The Neyman-Pearson Lemma

tells us how to optimally make that tradeoff. Let us suppose that we dislike both

types of errors, and in particular, that we are trying to devise a test, characterized

by its rejection region, Xr, to minimize

a · α(Xr) + b · β(Xr)

where a, b > 0. The idea is that the ratio of a to b specifies our tradeoff between

the two Types of error, the higher is a relative to b, the lower we want α to be
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relative to β. This problem asks about tests of the form

Xa,b = {x : af(x|θ0) < bf(x|θ1)} =

{
x :

f(x|θ1)

f(x|θ0)
>
a

b

}
.

This decision rule is based on the likelihood ratio, and likelihood ratio tests

appear regularly in statistics.

1. Show that a test of the form Xa,b solves the minimization problem given above.

[Hint: let φ(x) = 1 if x ∈ Xr and φ(x) = 0 otherwise. Note that a · α(Xr) + b ·
β(Xr) = a

∫
φ(x)f(x|θ0) dx + b

∫
(1− φ(x))f(x|θ1) dx, and this is in turn equal

to b +
∫
φ(x)[af(x|θ0) − bf(x|θ1)] dx. The idea is to minimize the last term in

this expression by choice of φ(x). Which x’s should have φ(x) = 1?]

2. Now suppose that the DM has a prior distribution, (µ0, µ1)� (0, 0) on {θ0, θ1},
and two actions available, a0, a1. Further suppose that u(a0, θ0) = r > 0,

u(a1, θ1) = s > 0, and u(a0, θ1) = u(a1, θ0) = 0. As a function of the value

of X, the DM must choose either a0 or a1. Find the optimal decision rule.

3. As a function of a and b, find the Xa,b when X ∈ Rn is iid Bernoulli(θ), θ ∈ Θ =

{θ0, θ1} ⊂ (0, 1).

G. The basic model of information contains payoff relevant states, m ∈ M , signals,

s ∈ S, and actions, a ∈ A. To make our lives simple here, S, M , and A are assumed

finite.

The signal-state vector is a random vector with induced distribution µ. The

marginal distribution of µ on M is defined by µM(E) = µ(E × S) for E ⊂M and

denoted by margM(µ) or µM . µM is the prior distribution on M .

The definition for the marginal distribution on S, margS(µ) = µS is similar.

After S = s is observed, the posterior distribution on M is margM(·|S = s).

Thus, the posterior distribution, or the conditional distribution, is a random vector

taking the value margM(·|S = s) with probability µS(s).

The optimization problem involves S = s being observed, but not m, then a ∈ A
is chosen to maximize E (u(a,m)|S = s). Here, expectation is taken with respect

to the posterior distribution.

1. Consider the DM facing the problem maxE u(a, Y ) where a ∈ A = {1, 2, 3},
Y ∈ M = {1, 2}, µM(1) = µM(2) = 1

2
, and consider three different information

structures for this problem:

(i) the DM has no information about Y except its distribution, S = {1},
before picking a ∈ A.

(ii) the DM observes S before picking a ∈ A, where the joint distribution of S

and Y is given by
S = 2 0.15 0.4

S = 1 0.35 0.1

Y = 1 Y = 2

(iii) the DM observes S ′ before picking a ∈ A, where the joint distribution of

S and Y is given by
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S ′ = 4 0.05 0.4

S ′ = 3 0.45 0.1

Y = 1 Y = 2
The utilities are given by

a = 3 0 40

a = 2 30 30

a = 1 50 0

Y = 1 Y = 2

where, e.g. 50 = u(a = 1, Y = 1), and so on.

1. For each of the information strutures, show that µM(E) =
∑

s∈S µM(·|S =

s)µS(s), i.e. the average of the posterior distributions is the prior. [This is a

general property, and you should be able to show that it is true for all finite

M and S.]

2. Let (β, 1− β) ∈ ∆({1, 2}) be a possible distribution of Y . Give the set of β

for which

a. argmaxa∈A
∫
u(a, y) dβ(y) = {1},

b. argmaxa∈A
∫
u(a, y) dβ(y) = {2}, and

c. argmaxa∈A
∫
u(a, y) dβ(y) = {3}.

3. Graph the function V : ∆({1, 2})→ R given by V (β) = maxa∈A
∫
u(a, y) dβ(y)

and show that it is convex.

4. Solve the DM’s problem in the cases (i), (ii), and (iii). Show that in each case,

the DM’s solution a∗(S) or a∗(S ′), can be had by having the DM calculate

their posterior distribution and then maximize according to the rules you just

above. Show that this DM prefers (iii) to (ii) to (i).

5. Consider a new DM facing the problem maxb∈B
∫
v(b, y) dβ(y) where B is

an arbitrary set. Define a new function W : ∆({1, 2}) → R by W (β) =

supb∈B
∫
v(b, y) dβ(y). Show that W is convex.

6. Let η and η′ be the distributions of the posteriors you calculated above. To be

specific here, η and η′ are points in ∆(∆({1, 2})), that is, distributions over

distributions. Show that for any convex f : ∆({1, 2}) → R,
∫
f(β) dη′(β) ≥∫

f(β) dη(β).

7. Show that any expected utility maximizing DM with utility depending on

Y and their own actions would prefer the information structure S ′ to the

information structure S. [Any DM must have a utility function and a set of

options, they have a corresponding W : ∆({1, 2}) → R. What property or

properties must it have?]

H. Each of the following distributions is given in one way or another. In each case,

give the cdf, the reverse cdf, the density, the hazard rate, and the expectation.

1. The uniform distribution on the interval [a, b], a < b, which has density

f(t) = 1
b−a1[a,b](t).

2. The negative exponential distribution with parameter λ > 0, which has cdf

F (t) = 1[0,∞)(t)[1− e−λt].
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3. The Weibull distribution with parameters λ, γ > 0, which is of the form W = Xγ

where X is a negative exponential with parameter λ. [Hint: for every t ≥ 0, you

know that P (W ≤ t) = P (Xγ ≤ t) = P (X ≤ t1/γ), and you have the cdf for the

negative exponential in the previous problem.]

4. The Pareto(α, x) distribution on [0,∞), α, x > 0,

F (t) = 1[0,∞)(t)[1−
(

x
t+x

)α
].

I. [Discrete time discounting] Suppose that the net benefits for a project areB0, B1, . . .

where: net benefits per period are bounded, i.e. there exists a (perhaps quite large)

numberB such that for all t, |Bt| ≤ B; there exists a time period T such thatBt < 0

for t = 1, . . . , T and Bt > 0 for t = T + 1, T + 2, . . .; and for a sufficiently large T ′,∑T ′

t=0 Bt > 0, i.e. that if we do not discount, then the net benefits outweight the

net costs.

1. Show that for ρ sufficiently close to but still strictly less than 1,
∑∞

t=0 ρ
tBt > 0.

One interpretation of discounting has to do with the ability to invest resources

at t and receive a larger set of resources at t+1 or later. If this is true, receiving an

amount x at t is worth less than receiving the same x at t+ 1 or later. This has to

do with ρ = 1
1+r

where r is the interest rate. Another interpretation of discounting

has to do with the uncertainty of future benefits.

Let τ be a random variable taking on the values 0, 1, . . ., and having the geo-

metric distribution, i.e. P (τ = t) = δt(1− δ).
2. Give the expectation of τ , E τ , as a function of δ.

3. Show that τ is “memoryless,” i.e. that P (τ = t + s|τ ≥ t) = P (τ = s) for

s, t ≥ 0.

4. Give E
∑τ

t=0 Bt. (
∑τ

t=0 Bt is called, for pretty straightforward reasons, a “ran-

dom sum.” Random sums turn out to be very important in many contexts

beyond discounting.)

J. [Continuous time discounting] When the continuously compounded interest rate

is r, the worth (or value) of a flow of q/year over the next T years is W (q, r, T ) =∫ T
0
qe−rt dt. The corresponding total flow is F (q, T ) =

∫ T
0
q dt = qT . Since e−rt < 1

for all t > 0, W (q, r, T ) < F (q, T ). [More generally, if the flow is q(t), the net worth

is
∫ T

0
q(t)e−rt dt and the total flow is

∫ T
0
q(t) dt.]

1. If T = 30 and W = $250, 000 and the interest rate is 6%, i.e. r = 0.06, what are

the corresponding yearly payments, q? What is the difference between the total

flow and W? How do your answers change if T = 15?

2. Repeat the previous problem with r = 0.04, i.e. with a 1/3 reduction in the

interest rate.

3. Show that if W (q◦, r, T ) = W ◦ and T is large, then q◦ ' rW ◦. To put this

another way, if T is large, then flow payments corresponding to W ◦ are approx-

imately rW ◦. [Thus, if r = 0.05, then yearly payments corresponding to a value

of, say, W ◦ = $100, 000, is q◦ = $5, 000.]
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K. [Evaluating flows of costs and benefits in continuous time] In a previous homework

set analyzing aspects of discounting in the discrete time case, you showed that if

Bt is the net benefit at time t,
∑T

t=0 Bt > 0, and for all t > T , Bt ≥ 0, then for

ρ close to 1,
∑∞

t=0 ρ
tBt > 0. The implication of this is that if we are sufficiently

patient, then positive total net benefits implies positive discounted net benefits.

In this case, patience corresponds to ρ close to 1. If we think of ρ = 1
1+r

in the

discrete time case, ρ ' 1 corresponds to r ' 0. Here I am asking you to show

that the same patience argument holds with continuous time discounting, and the

result about patience will show up for r ' 0.

Suppose that |q(t)| ≤ Q for all t ≥ 0, that q(t) < 0 for 0 ≤ t < T ′, that q(t) > 0

for all t > T ′, and that for some (large) T ,
∫ T

0
q(t) dt > 0.

1. Show that for small enough r > 0,
∫ T

0
g(t)e−rt dt > 0.

2. Show that for large enough r > 0,
∫ T

0
g(t)e−rt dt < 0.

3. Suppose that τ is a random variable with the exponential distribution hav-

ing parameter λ, i.e. with the cdf F (t) = P (τ ≤ t) = 1 − e−λt. Show that

E
∫ τ

0
g(t) dt =

∫∞
0
g(t)e−λt dt. [Compare this result to the expected value of the

random sum E
∑τ

t=0 Bt where τ has a geometric distribution.]
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