
U.T. Economics Summer 2013 Math Camp

Date: Friday, August 23 and Tuesday, August 27, 2013

Topics: Discrete time dynamic optimization, search theory based on value function

iterations, the policy improvement algorithm, and the uniqueness of the solution to

the Bellman/Pontryagin equation.

Readings: CSZ 4.11

1. Discrete Time, Finite Horizon, Deterministic

The main point is to keep track of the value of where you end up, and to use that

to break a complicated dynamic problem into bite-sized pieces.

A. Do CSZ problem 4.11.12, being sure to keep track of the value of being in the

various states.

2. Model: Random Job Offers

Now we move to an infinite horizon problem and add stochastics. To make up for

having made our life more complicated, we make the problem stationary.

At times t = 0, 1, 2, . . ., the DM (decision maker) receives a random wage offer Wt.

the collection {Wt : t ≥ 0} is iid. If the DM accepts the offer Wt = w, they are out

of the labor market and continue to receive w until the crack of doom. If the DM

rejects the offer, they receive c for this period, and will have another chance in the

next period. Utility in each period is given by consumption and consumption is either

c or the accept w. [We can add a savings problem on top of this, and you will need to

learn how to do that at some point in the future.] The utility of a consumption stream

xt, t = 0, 1, 2, . . . is U(x0, x1, x2, . . .) =
∑

t≥0 β
tu(xt), 0 < β < 1. Given a present offer

of w, i.e. W0 = w, following the optimal policy leads to the value function V (w). To

be a bit more specific:

a. accepting the offer W0 = w at t = 0 leads to utility
∑

t≥0 β
tu(w) = u(w) 1

1−β ;

b. rejecting the first offer and accepting the offer W1 = w at t = 1 leads to utility

u(c) +
∑

t≥1 β
tu(w) = u(c) + u(w) β

1−β ;

c. etc.

3. Value function analysis

If we suppose that starting tomorrow, at t = 1, the DM will start behaving optimally,

then today the problem they face today, holding the offer W0 = w, is

maxrej, acc{u(c) + βE V (W1)︸ ︷︷ ︸
rej

, u(w)(1− β)−1︸ ︷︷ ︸
acc

}, (1)
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where the first term is the utility of rejecting the present offer, and the second term is

the utility of accepting it. Behaving optimally today plus behaving optimally there-

after is behaving optimally at all points in time, hence the Bellman equation (or

Pontryagin equation) for the value function,

V (w) = max{u(c) + βE V (W1), u(w) 1
1−β}. (2)

Note that this is an equation in the function V (·) that should be satisfied for each of

infinitely many possible values of w. Such things are called functional equations.

We will (later) be able to show that the solution to this functional equation is unique.

A policy function is a function from the present state, w, to the optimal action,

reject or accept. Given the true value function, the optimal policy function rejects at

w when u(c) + βE V (W1) ≤ (<)u(w) 1
1−β , and accepts otherwise. From this, one can

directly read off the dependence of the optimal cutoff wage on c.

4. Iterating on the value function

In this simple case, we might not proceed in the iterative fashion about to be de-

scribed because there might be more direct methods, but we can see how it works out.

Suppose that we are looking at the problem at t = 0 and we know that no utility will

be delivered at t ≥ 1 (think “Eat, drink, and be merry, for tomorrow we die”). Then

the value of where we end up is V0(w1) ≡ 0. The value function for this one period

problem is

V1(w) = max{u(c) + βE V0(W1)︸ ︷︷ ︸
rej

, u(w) + βE V0(w)︸ ︷︷ ︸
acc

}. (3)

Thus, V1(w) = max{u(c), u(w)}. The associated policy function is a0(w) =reject if

w < c, accept else.

Now back up one period from the end of the world, suppose that we will receive

utility in periods t = 0 and t = 1 but no utility for t ≥ 2, and that at t = 1 we will

follow the optimal policy for being in a situtation where there will be no future utility,

V2(w) = max{u(c) + βE V1(W1)︸ ︷︷ ︸
rej

, (1 + β)u(w)︸ ︷︷ ︸
acc

}, (4)

and the policy function, a1(w) is the argmax for this problem. The next equation is

V3(w) = max{u(c) + βE V2(W1)︸ ︷︷ ︸
rej

, (1 + β + β2)u(w)︸ ︷︷ ︸
acc

}, (5)

and we just keep on going. The claim is that the limit function, V (w) = limn Vn(w) is

the unique function satisfying eqn. (2).

5. Policy function iterations

Again, in this simple case, we might not proceed in the iterative fashion about to be

described in favor of more direct methods, but we can see how it works out. Propose

a policy, say a0(w) =reject if w < w◦, accept else. There is some expected value to

following this policy. Find it, and call it V0(·). Now consider the problem in which we
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commit to using a0(·) for t ≥ 2, but are considering doing the best we can subject to

this limitation. The problem is

V1(w) = max{u(c) + βE V0(W1), u(w) 1
1−β}. (6)

Call the argmax from the above policy a1(·), there is some expected value to following

this policy, find it, call it V1 and the new problem is

V2(w) = max{u(c) + βE V1(W1), u(w) 1
1−β}. (7)

This delivers a sequence of policy functions, each one of which is better than the

previous one (a pretty easy argument).

6. Direct calculation methods

Suppose that we are consider a policy reject if W ≤ w0, accept otherwise. Let T

be the random time until the first Wt > w. If T = τ , the sequence of realized Wt’s

satisfies W0,W1, . . . ,Wτ−1 ≤ w0, Wτ > w0, and the associated utility is

τ−1∑
t=0

βtu(c) +
∑
t≥τ

βtu(Wτ ). (8)

The probability that τ = 0 is (1 − F (w0)), P (τ = 0) = F (w0)
0(1 − F (w0)), P (τ =

1) = F (w0)
1(1 − F (w0)), P (τ = 2) = F (w0)

2(1 − F (w0)), etc. In other words, τ

has a geometric distribution. From these, we can calculate the utility associated with

following this policy from t = 0 onwards,

E U(w0) = E

[
τ−1∑
t=0

βtu(c) +
∑
t≥τ

βtu(Wτ )

]
=

1

1− βF (w0)

[
u(c)βF (w0) + E (u(W )|W > w0)

1− F (w0)

1− β

]
, (9)

where W is a random variable independent of everything in sight and having the same

distribution as all of theWt. The resulting direct calculation problem is maxw0 E U(w0).

7. Problems

B. From the observation that there is a unique solution to V (w) = max{u(c) +

βE V (W1), u(w) 1
1−β} and that the optimal policy function solves it, give the de-

pendence of the optimal cutoff on c.

C. [Discrete time discounting] Suppose that the net benefits for a project areB0, B1, . . .

where: net benefits per period are bounded, i.e. there exists a (perhaps quite large)

numberB such that for all t, |Bt| ≤ B; there exists a time period T such thatBt < 0

for t = 1, . . . , T and Bt > 0 for t = T + 1, T + 2, . . .; and for a sufficiently large T ′,∑T ′

t=0Bt > 0, i.e. that if we do not discount, then the net benefits outweight the

net costs.

1. Show that for ρ sufficiently close to but still strictly less than 1,
∑∞

t=0 ρ
tBt > 0.
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One interpretation of discounting has to do with the ability to invest resources

at t and receive a larger set of resources at t+1 or later. If this is true, receiving an

amount x at t is worth less than receiving the same x at t+ 1 or later. This has to

do with ρ = 1
1+r

where r is the interest rate. Another interpretation of discounting

has to do with the uncertainty of future benefits.

Let τ be a random variable taking on the values 0, 1, . . ., and having the geo-

metric distribution, i.e. P (τ = t) = δt(1− δ).
2. Give the expectation of τ , E τ , as a function of δ.

3. Show that τ is “memoryless,” i.e. that P (τ = t + s|τ ≥ t) = P (τ = s) for

s, t ≥ 0.

4. Give E
∑τ

t=0Bt. (
∑τ

t=0Bt is called, for pretty straightforward reasons, a “ran-

dom sum.” Random sums turn out to be very important in many contexts

beyond discounting.)

D. Let f(c, w0) = 1
1−βF (w0)

[
u(c)βF (w0) + E (u(W )|W > w0)

1−F (w0)
1−β

]
and consider the

problem maxw0 f(c, w0). How does the optimal w0 depend on c? [We’ve seen this

result before.]

E. For each of the following cases, find E (W |W > w◦) and E (u(W )|W > w◦) as a

function of w◦.

1. W ∼ Unif[80, 220], u(w) = w + 2
√
w.

2. W ∼ Unif[80, 220], u(w) = w1−a

1−a , 0 < a < 1.

3. W ∼ Unif[80, 220], u(w) = 1− e−γw, γ > 0.

4. W ∼ neg. exp.(λ), u(w) = 1 − e−γw, λ, γ > 0. [An especially interesting case

has γ = λ.]

F. Set c = 90 and β = 0.95. For each of the following cases, perform the first two

iterations on the policy function.

1. W ∼ Unif[80, 220], u(w) = w + 2
√
w.

2. W ∼ Unif[80, 220], u(w) = w1−a

1−a , 0 < a < 1.

3. W ∼ Unif[80, 220], u(w) = 1− e−γw, γ > 0.

4. W ∼ neg. exp.( 1
150

), u(w) = 1− e−γw, γ > 0.

G. Set c = 90 and β = 0.95. For each of the following cases, find the optimal job search

policy if it is possible to give it analytically, otherwise specify how you would find

it numerically.

1. W ∼ Unif[80, 220], u(w) = w +
√
w.

2. W ∼ Unif[80, 220], u(w) = w1−a

1−a , 0 < a < 1.

3. W ∼ Unif[80, 220], u(w) = 1− e−γw, γ > 0.

4. W ∼ neg. exp.( 1
150

), u(w) = 1− e−γw, γ > 0.

H. [An extended example due to Eyal Winter] In principal-agent models, there is a

principal (think boss) who offers rewards that are contingent on outcomes (assumed

observable), but who cannot observe the effort (assumed un-observable, or at least

assumeb to be something on which one cannot write a legally binding contract).

In this problem, there is a team of two people who need to be motivated, and there

is randomness involved – effort leads to success, but lack of effort does not doom

the an agents part of the project.
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Two agents form a team to manage a joint project. Each agent is in charge of

a different task. Each agent can either shirk or exert effort. If an agent exerts

effort, then he performs his task successfully with certainty. If he shirks, his task

succeeds with probability α < 1. The common cost of effort is c. The joint project

will succeed if and only if both tasks end successfully. The principal, who can

neither monitor agents’ effort nor the outcome of individual tasks, offers the agents

rewards that are contingent on the projects outcome. If the project suceeds, agent

1 gets v1 and agent 2 gets v2. They both get zero if the project fails. Assume,

now, that agents move sequentially. Agent 1 acts first. Agent 2 observes agent 1’s

effort decision, but does not observe the the outcome of his task, and then makes

his own effort decision. We raise the following question: Is it possible that higher

rewards for both agents will generate less effort in equilibrium?

Set α = 0.9, c = 1, and assume, first, that v1 = 5.5 and v2 = 11.

1. Show that 2’s optimal response to observing effort is to put in effort, and that

2’s best response to observing shirking is to not put in effort. Suppose that 1

understands this, and believes that 2 will act accordingly. Show that 1’s best

choice is to exert effort. [Think one stage reward plus expected valued of where

he ends up.]

2. Suppose now that the principal raises the rewards of both agents by 15 percent,

thereby yielding v1 = 6.33 and v2 = 12.66. Show that 2’s optimal response

has changed, that he puts in effort no matter what 1 does. Show that 1’s best

choice, given how 2 will behave, is now to shirk.

This is called incentive reversal, the principal spent more money and got less

effort. It turns out that incentive reversal is a possiblity under a broad range of

conditions on the relations between effort and probability of success in multi-stage

projects.
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