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A handful of patience is worth more than a bushel of brains. - Dutch Proverb

Patience has its limits. Take it too far, and it’s cowardice. - George Jackson

The essential ingredient of politics is timing. - Pierre Trudeau

Timing is everything - Attributed to various authors

1. Introduction

In many social, economic and political situations, there is a stochastic envi-
ronment that changes at random points in time and and responding to these
changes entails significant costs. Given that the current state may give way
to another new state at some random time in the future, potentially making
today’s optimal action again obsolete, and that actions are costly, the question
is whether to take an action in response to a change in the environment or to
delay any change.

Variants of this problem have been extensively analyzed in economics (for ex-
ample Boyarchenko and Levendorskiı̆ [2007], Stokey [2009] and the references
therein). However, a crucial aspect of most existing analyses is that the pas-
sage of time by itself does not reveal any information. By contrast, we study
problems in which the passage of time without a change contains informa-
tion about the arrival time of the next change. In such problems, there may
be value to delaying decisions beyond the usual option value of waiting. We
begin with examples where the time which a change has survived may be of
crucial importance to its future longevity. We begin with some examples.

1.1. Political Change. Political process in a democratic system are driven by
‘political issues’ and the configuration of opinions and attitudes of the polity
on these issues. Such configurations are hardly, if ever, static. There are slow
and gradual changes that take place side by side with rapid and explosive
changes. Some changes are long-lasting, some short-lived. As Carmines and
Stimson [1990] say:

. . . we shall see that issues, like species, can evolve to fit new
niches as old ones disappear. But, unless they evolve to new
forms, all issues are temporary. Most vanish at their birth. Some
have the same duration as the wars, recessions, and scandals
that created them. Some become highly associated with other
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similar issues or with the part system and thereby lose their in-
dependent impact. And some last so long as to reconstruct the
political system that produced them . . . .

Vietnam War and the Watergate scandal seem to have very little traces left to-
day either in public attitude or legislative response to the issues of war and
executive power respectively. But they were the biggest issues of their day. On
the other hand, the Civil Rights Movement and its aftermath marked a funda-
mental realignment in US politics. In general, some ideas and opinions “wear
out their welcome” after a time, perhaps through changes in the conditions
that gave rise to them, perhaps by the accumulation of counterarguments to
their veracity. Hence, the likelihood that such an idea would become irrele-
vant increases with time. By contrast, some types of issues or opinions tend
to get more entrenched the longer they live. Political actors in various ca-
pacities try to cope and make decisions in the face of such ‘issue evolution’
[Carmines and Stimson, 1990]. Legislatures choose whether or not to change
a law, Supreme Courts decides whether or not to re-interpret or overturn past
precedents, political parties decide whether or not to realign politically and
redefine the agenda. Oftentimes, the most crucial ingredient in such decisions
is the aspect of timing.

Each of these decisions entail some fixed cost either to the society at large
or the actor herself.1 One would have to trade off the immediate gains with
substantial future losses if the initial change that triggered the costly action
turns to be rather short-lived.

1.2. Constitutional Amendments. Constitutions establish the fundamental
legal structures of a society. They are meta-institutions through which institu-
tions are introduced, reformed and interpreted [Ostrom, 1990]. A constitution
and the legal order it creates must have the support of, or at least tacit approval
of, the governed to have legitimacy. Maintaining the legitimacy and relevance
of a constitution require a certain degree of adaptability or flexibility to change
because technology, environment and public opinion are forever changing. On
the other hand, the basic value of a constitution lies in its stability because

1In case of legislative changes and court decisions, the citizens have to re-adjust and re-
optimize with respect to the new rules. In case of a political party, realignment may mean
losing a traditional support base.
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it coordinates the actions and expectations of people and reduces the uncer-
tainty in the environment [Hardin, 2003]. Hence the basic tradeoff between
‘commitment’ and ‘flexibility’ lies at the heart of the constitution design prob-
lem, as encapsulated in the famous exchange between Thomas Jefferson and
James Madison (Smith [1995]; Madison [1961]).2. It is also costly to change the
constitution because it acts as a coordination device for peoples’ behavior, and
changes are likely to impose large adjustment costs on significant parts of the
population [Hardin, 2003] and disrupt ancillary institutions that grow around
the constitution.

From these perspectives, it is reasonable to presume that an optimal rule for
constitutional change should be more sensitive to long-lasting changes than to
transitory changes. It is clear that waiting longer will help answer whether a
change will have a longer or shorter total life, but what matters for decisions
is the longer or shorter future life of the change. One tradeoff is between costly
unneeded or ultimately unwanted changes (e.g. Prohibition) and undermin-
ing the legitimacy of the constitutional regime by ignoring new realities. It is
from this perspective that we study the general question of why some changes
in laws should be more difficult to implement, and what this should depend
on. Under study is a class of explanations that we regard as complementary to
the many previously offered ones, a class of explanations based on the obser-
vation that the persistence of changes in sentiment have predictive power for
the future length of time the changes will last. For us the question becomes
“How much longer should one wait before acting?” and the dynamically con-
sistent answer depends both on the costliness of the action and the costliness
of its reversal.

The US constitution has had four different amendments that have extended
voting rights to different parts of the population: Amendment XV (1870),
which was passed at the end of the Civil War, extended suffrage to men in-
dependent of race or previous condition of servitude; XIX (1920) extended
suffrage to women; XXIV (1964) made poll taxes illegal; and XXVI (1971)
extended suffrage to those eighteen years of age or older. These formalized

2for interesting empirical evidence to the effect that flexibility actually helps the sustain-
ability of constitutions, see Elkins et al. [2009]
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long-lived widely-shared changes in sentiment, but Amendment XVIII, Prohi-
bition in 1919, was an expensive and short-lived failure, being repealed four-
teen years later by Amendment XXI (1933).3

If one dates the beginning of the women’s suffrage movement to the 1848
Seneca Falls Convention,4 it took 72 years, until 1920, for the 19’th Amend-
ment to pass. At various points in the political process, there was evidence
that the recognition of women’s rights to vote would be long-lasting: the pas-
sage of suffrage at the state level in western states by the early 20’th century;5

the nation’s westward expansion and the Civil War led to an expanded need
for women both in industrial settings and as teachers; the slow increase in
the numbers of college educated and professional women; unionization move-
ments among female professions in the late 1800’s and early 1900’s. Even
after one could perhaps clearly see that general sentiment had shifted in favor
of the Nineteenth Amendment, there was (much) further delay in implement-
ing what turns out to have been a long-lasting change in sentiment, perhaps
consistent with unwillingness to believe that so drastic a change could be long-
lasting.

By contrast, Amendment XVIII (Prohibition, 1919) proved to be very costly to
society, and was short-lived, repealed fourteen years later.6 The Temperance
Movement had as long a history as the women’s suffrage movement, and was
even used by some women’s suffrage organizers as an occasion to teach women
the necessity of having a voice in politics in order to achieve changes (Flexner
and Fitzpatrick [1996]). From our point of view, this is a change of action
that led to a change in the distribution of the time until general sentiment was
reversed. This is an example of a more complicated scenario where one is not
only wondering about how long the current state would last, but also has to
consider the fact that her choice of action might actually affect the timing and
nature of the next change.

3For a detailed history of all amendments, see Amar [2006].
4Flexner and Fitzpatrick [1996] emphasize the experience of female abolitionists and fight-

ers for women’s education in the early 19’th century as the roots of the suffrage movement.
5By 1915, Arizona, California, Colorado, Idaho, Illinois, Kansas, Montana, Nevada, Oregan,

Utah, Washington, and Wyoming had granted full women’s suffrage, and several other states
or municipalities had granted suffrage in primary elections.

6Prohibition was repealed by the only Amendment to be passed by state ratifying conven-
tions rather than by state votes.
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1.3. Marketing Strategy. Research in consumer behavior has shown that when
and how consumers switch brands depend on the last purchased brand and
time since the last purchase. The inter-purchase time may exhibit increasing
or decreasing hazard rates depending on the consumer characteristics named
“inertia” or “variety seeking,” and these change over time since the last pur-
chase [Chintagunta, 1998]. It has been suggested that optimal timing of tar-
geting consumers for marketing should depend on such considerations instead
of the traditional demographic variables (Chintagunta [1998], see also Gonul
and Ter Hofstede [2006] for an empirical approach to optimal timing for cat-
alog mailing). The class of optimization models under study here are directly
applicable to such situations.

1.4. Labor Search. One of the issues relating to long-term unemployment is
depletion of human capital, which might make a candidate less and less attrac-
tive to the potential employers as the duration of unemployment gets longer
and longer. This factor would have important implications for standard labor
search models, as the value of the future discounted wage and thus the reserva-
tion wage for an a get would be effected. Ortego-Marti [2011] uses this insight
to explain observed wage dispersion in the labor market. Also, the possibility
that a long period searching without finding a job is taken, by potential em-
ployers, as an indication that there is something wrong with the person, would
mean a decreasing rate of arrival of a job of any given quality. This is indepen-
dent of decay of human capital, and pushes the acceptance thresh-hold down-
wards. One of the key ingredient of the standard DMP model is a stochastic
description of labor turnover, along with a model of labor-market tightness,
and a bargaining model of wage determination (Diamond [2011]; Mortensen
[2011]; Pissarides [2011]; Hall [2012] and the references therein). Our model
results would be relevant for an attempt to capture non-stationarities in the
first component. Recent empirical work based on the DMP model, (for eg.
Shimer [2005]), highlights various aspects of the wage determination phe-
nomenon that are not well explained by the stationary DMP models so far.
It would be interesting to introduce non-stationarities in the job-arrival pro-
cess and work out the implications. Our framework provides a minimal way
of attempting that.

1.5. Currency Unions, International Treaties. The benefits of joining cur-
rency unions or international treaties are variable over time. Moreover, once
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formed, such treaties are hard and expensive to break. These two factors com-
bine to provide the context for countries trying to devise strategies for entry,
exit and crisis management. The recent crisis in the European Monetary Union
has rekindled the discussion around the impacts of countries exiting currency
unions. Opinions seem to be sharply divided, although the majority opin-
ion seems to be that breaking up of the Euro will be disastrous (Eichengreen
[2010]). On the other hand, historically, there have been regular instances of
countries leaving currency unions (Rose [2007]). From the design perspective,
one of the interesting features of the EMU is that there are no exit clauses.
Omission of an well-defined exit clause, at the least, significantly raise the
procedural cost of exiting the union, and thus can be seen as a mechanism to
avoid hasty reaction by individual countries that could potentially threaten all
the other members as a group. Overall, European currency crisis and the re-
sponses to it by various parties highlight the importance of the main facets of
our model: the trade-off between reacting quickly and flexibly on one hand,
and the need to avoid precipitating a fast-moving crisis by unnecessarily hasty
actions on the other.

1.6. Outline. The next section contains two simple examples that give a sense
of what is involved in the more general analyses that follow. The essential as-
pects of the model include: a starting state and action, i0 and a0; random times
Yk+1 at which the state changes from Sk to Sk+1 according to a partly controlled,
imbedded Markov process; and the option to engage in costly actions changes
during the inter-arrival stochastic intervals, between Yk and Yk+1.

The within interval maximization problems will be central to the analysis. The
first example, on optimal search duration, highlights the role of the hazard
rates for the Wk. The second example demonstrates how the value functions
for the entire problem interact with the maximization problems within inter-
vals.

The general model, existence of optima, and their recursive characterization
through the value function follow. The following section develops the corre-
sponding first order conditions (Euler equations) for a broad range of prob-
lems. The last section concludes.
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2. Two Examples

A pair of non-stationary problems demonstrate the essential features of both
the optimization problems under study and of their solutions. The first prob-
lem is about the determinants of optimal search duration and highlights the
role of changing hazard rates in both first and second order conditions for an
optimum. The second problem is about optimal adaptation to changing cir-
cumstances and highlights the role of stochastic intervals.

2.1. Optimal Search Duration. At a flow cost of c > 0, one can keep search-
ing for a source of higher profits (a low cost source of a crucial input, a pro-
cess breakthrough, a new product). If found, expected net profits of π result.
If one abandons the search, the alternative yields expected net profits of π,
π > π > 0. Let W denote the waiting time till the source is found. We will as-
sume throughout that waiting times have densities on [0,∞), hence having no
atoms, except perhaps at∞. If W has an atom at∞, it is called an incomplete
distribution, which corresponds, in the present search problem, to the object
of search not existing or not being findable.

Since one optimally searches in the more likely locations or ideas first, we ex-
pect the arrival rate of W to be decreasing over time. The non-constancy of
the hazard rate makes the problem non-stationary. The non-stationary choice
problem is at what time, t1, does one stop searching and accept the lower π?
The results are special cases of Theorem 3 (below), but we give both an intu-
itive and a more formal development of the first order and the second order
conditions for an optimal 0 < t∗1 <∞ for this problem.

• First order conditions: the expected benefits of waiting an extra instant dt
at t1 are (π −π)hW (t1)dt, while the expected costs are (c + rπ)dt because rπ is
the perpetual annuity flow value of π. At an interior optimum, 0 < t∗1 <∞, the
necessary first order conditions are (π −π)hW (t∗1) = (c+ rπ).

• Second order conditions: in order for the solution just given to be a local
maximum rather than a local minimum, the benefits of waiting must be posi-
tive before t∗1 and negative after t∗1. For this to be true, the hazard rate must be
decreasing, h′W (t∗1) < 0.

• Therefore the optimal t∗1 is: higher for higher π, it is worth searching longer
when the reward is larger; lower for higher c, one searches less if searching
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is more costly; lower for higher r, one searches less if one is more impatient;
lower for higher π, one searches less when the fallback option is better; and
higher for outward shifts in hW (·), one searches more if search is more produc-
tive.

To arrive at the same first order conditions more formally, note the follow-
ing:

(1) if 1[0,t1)(W ) = 1, i.e. if W < t1, one incurs the search cost
∫W

0
(−c)e−rt dt

and receives the discounted profits of πe−rW ; and

(2) if 1[t1,∞)(W ) = 1, one incurs the search cost
∫ t1

0
(−c)e−rt dt and receives

the discounted profits of πe−rt1 .

Thus the problem is

(1) max
t1∈[0,∞]

ψ(t1) := E

[
1[0,t1)(W )

(∫ W

0
(−c)e−rt dt +πe−rW

)
+

1[t1,∞)(W )
(∫ t1

0
(−c)e−rt dt +πe−rt1

)]
.

Evaluating the terms in rounded brackets and rewriting yields

(2) ψ(t1) =
∫ t1

0

(
−c1
r

(1− e−rw) +πe−rw
)
fW (w)+(

−c1
r

(1− e−rt1) +πe−rt1
)
GW (t1).

Taking derivatives with respect to t1, usingG′W = −fW , and rearranging yields

(3) ψ′(t1) =
(
e−rt1GW (t1)

)
[(π −π)hW (t1)− (c+ rπ)] .

As e−rt1GW (t1) > 0, ψ′(t◦1) = 0 only if (π −π)hW (t◦1)− (c+ rπ) = 0, yielding

(4) ψ′′(t◦1) =
(
e−rt

◦
1GW (t◦1)

)′
[0] + (π −π)h′W (t◦1),

which can only be strictly negative if h′W (t◦1) < 0. Interior strict optima, t∗1,
are indicated by (3) being satisfied and h′W (t∗1) < 0, which makes the compar-
ative statics of t∗1 immediate: decreasing in c, r, and π, increasing in π, and
increasing in uniform upward shifts of the hazard rate.

IfW has a negative exponential distribution with parameter λ, the hazard rate
is constant at λ and ψ′(t1) Q 0 as λ Q c+rπ

π−π , so that t∗1 = 0,∞ or [0,∞] depending
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on the sign of ψ′, which does not vary with t1. Whichever decision is optimal
at t = 0 is also optimal if one has already waiting to some time T .

Of particular interest are the cases of monotonically increasing and decreasing
hazard rates. For example, a Weibull distribution with parameters λ and γ is
of the form W = Xγ where X has a negative exponential(λ) distribution. The

associated hazard rate is hW (t) = λ
γ t

1−γ
γ .

(1) If γ > 1 in the Weibull case, then hW (0+) = ∞ and the hazard rate is
strictly decreasing to 0, which means that there is always a unique op-
timal strictly positive delay before ending search.

(2) If γ < 1 in the Weibull case, then the hazard rate starts at 0 and in-
creases without bound.7 Depending on r, λ and γ , the optimal strategy
at t = 0 may be to end search immediately, t∗1 = 0, or to wait until suc-
cess, t∗1 =∞. Even if t∗1 = 0 at t = 0, because γ < 1, there will always be
a time T with the property that if one has already waited until T , then
the conditionally optimal choice is t∗1(T ) =∞.

2.2. Optimal Adaptation to Circumstances. We now study a simple model
of the optimal timing of adaptations to a stochastic dynamic state. The first
set of random variables used to describe the problem are a Markov process,
{Xk : k = 0,1, . . .} taking values in a two state set, S = {i0, i1}, with the transi-
tion matrix P =

[
0 1
1 0

]
. The second set of random variables are arrival times,

Y0,Y1, . . ., represent the switching times for the states. These are non-negative
random variables that satisfy Y0 ≡ 0 with Wk := Yk − Yk−1 being i.i.d. non-
negative random variables with densities on [0,∞), hence having no atoms,
except perhaps at∞ when they are incomplete.

Our first use of stochastic intervals is to define the continuous time process
that the decision maker is reactively adapting to. A stochastic interval is a
subset of Ω × [0,∞) of the form JYk ,Yk+1J= {(ω,t) : Yk(ω) ≤ t < Yk+1(ω)}. The
Markov chain and the waiting times combine to form the continuous time sto-
chastic process (ω,t) 7→ X(ω,t) defined by

(5) X(ω,t) =
∑
k

Sk(ω)1JYk(ω),Yk+1(ω)J(ω,t).

7An interpretation of the increasing hazard rate is that learning-by-doing in process of
search makes search more and more effective over time.
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Thus, if X0 = i1, then the state remains i1 until Y1, at which point it switches
to i0, where it stays until Y2, when it switches back, and so on.

There are two possible actions, A = {a0, a1}. The flow payoffs to being in state

i and taking action a are given by
i0 i1

a0 1 0
a1 0 2

. This means that one always

wants the action to match the state, matching action to state whenXt = i0 earns
a flow of 1, matching action to state when Xt = i1 earns a flow of 2, and mis-
matching earns a flow of 0. For us, what may make instantaneous adjustments
suboptimal is the cost of switching from a0 to a1 in state i1, c(a0, a1; i1) is strictly
positive, as is c(a1, a0; i0) > 0. If another change in the state is expected soon,
it may not be worth incuring the cost to enjoy the extra flow. The question is
which changes in state to react to? and after what amount of delay?

The value function, V∗(i,a), gives the maximal expected discounted utility to
starting at t = 0 in state i ∈ S with the present action being a. From Theorem 1
(below), V∗(i,a) is well-defined, can be found as the fixed point to a contraction
mapping, and given the value function, the optimal policy can be found by
sequentially solving the optimization problems within each stochastic interval
JYk ,Yk+1J on the presumption that leaving an interval in the state-action pair
(Sk+1, ak) at time Yk+1 yields a payoff of V∗(Sk+1, ak)e−rYk+1 .

For the present, we first make the simplifying assumption that c(a0, a1; i) =
c(a1, a0; i) = C for all i ∈ S. The decision problem within an interval JYk ,Yk+1J
is to pick a time t1 ∈ [0,∞] at which to change actions and incur the cost C.
There will be two cases: Yk+1 < Yk + t1, i.e. 1[Yk ,Yk+t1)(Yk+1) = 1, corresponding
to the new change in state arriving before the planned change in action; and
Yk+1 > Yk + t1, i.e. 1[Yk+t1,∞)(Yk+1) = 1, corresponding to the new change in state
arriving after the planned change in action. It is clear that if (a,s) = (a0, i0)
or (a,s) = (a1, i1), then t∗1 = ∞ is optimal because any change both incurs C
unnecessarily and loses flow payoff. Subtracting Yk, setting k = 0 and W =
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Y1 −Y0, and letting β = Ee−rW < 1, the value function satisfies

V∗(i0, a0) = 1
r (1− β) + βV∗(i1, a0),(6)

V∗(i1, a0) = max
t1∈[0,∞]

E

[
1[0,t1)(W )

(∫ W

0
0e−rt dt + e−rWV∗(i0, a0)

)
+(7)

1[t1,∞)(W )
(∫ t1

0
0e−rt dt +

∫ W

t1

2e−rt dt − e−rYk+t1C + e−rWV∗(i0, a1)
)]
,

V∗(i0, a1) = max
t1∈[0,∞]

E

[
1[0,t1)(W )

(∫ W

0
0e−rt dt + e−rWV∗(i1, a1)

)
+(8)

1[t1,∞)(W )
(∫ t1

0
0e−rt dt +

∫ W

t1

1e−rt dt − e−rYk+t1C + e−rWV∗(i1, a0)
)]
,

V∗(i1, a1) = 2
r (1− β) + βV∗(i0, a1),(9)

which, because of the first and the last equations, reduces to a system of two
equations in two unknowns.

The value function equations involve two optimization problems, the one at
(a0, i1) and the one at (a1, i0). Monotone comparative statics show that the op-
timal t∗1(a0, i1) at (a0, i1) is smaller than the solution t∗1(a1, i0) (because the flow
payoffs of the switch are 2 rather than 1). Let us suppose that the solution at
(a0, i1) is strictly positive and less than∞ and examine the determinants of the
corresponding t∗1(a0, i1). The tradeoff is between the gain in flow utility and
the loss if C is incurred and the state changes back to i0 in a short time, and
the first order conditions should tell us that the marginal gain of switching at
t∗1 is equal to the expected marginal opportunity cost.

From Theorem 3 (below), the first order conditions for 0 < t∗1(a0, i1) <∞ are

(10) [u(a1, i1)−u(a0, i1)]− rC = hW (t∗1)E [C + (V∗(i0, a0)−V∗(i0, a1))] .

This condition must capture indifference between switching and not switching
at t∗1. The LHS times dt is the next instant’s net flow benefit from switching:
the term [u(a1, i1)−u(a0, i1)] gives the change in flow benefit; and rC is the
perpetual annuity flow value of C. To analyze the RHS times dt: hW (t∗1)dt gives
the probability that the state switches from i1 back to i0 in the next instant; if
this happens, then the decision maker has saved C plus the value difference
V∗(i0, a0)−V∗(i0, a1). In this problem, it is necessary that the LHS be positive in
order to ever justify switching to a1 at (a0, i1).
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For simplicity, we analyzed the case in which all the switching costs were
equal, and this is another potential source of asymmetry. A higher c(a0, a1; i1)
would delay optimal switching time from the mismatched state-action pair
(a0, i1) by shrinking the set of circumstances in which it is worth switching.
There would also be an indirect effect — as switches into i1 from i0 become
more costly, if presently in the mis-matched (a1, i0), the opportunity cost of
matching action to state is raised, and this implies that there are also delays in
the optimal switching time from (a1, i0) to (a0, i0). Parallel arguments apply to
higher values of c(a1, a0; i0), and all of these arguments are reversed for lower
switching costs.

3. The Model

We begin with a brief description of the basic relations between incomplete
waiting times and their hazard rates. We then turn to the class of stochastic
processes describing the utility relevant parts of the changing environment in
which the decision maker is immersed. There is some delicacy involved in cor-
rectly specifying strategies and how they lead to distributions over outcomes,
but the essential idea is quite simple: the distribution of the change time for
the state of the system depends only on the present state, while the distribu-
tion of the new state depends on the action the decision maker is taking when
the transition occurs. This is a semi-Markovian structure because the arrival
rate of the transition times can be non-stationary, which implies that the opti-
mal choices of actions may also be non-stationary. The crucial definition that
allows us to find and use a recursive structure in this class of problem is the
notion of a stochastic interval. The basic existence results, and necessary con-
ditions for an optimal policy are in the subsequent section.

3.1. Hazard Rates of Incomplete Waiting Times. A random variable, W ≥ 0,
is incomplete if it has a mass point at ∞. For a possibly incomplete W with
density on [0,∞), the following summarizes the relation between the density,
fW (t), the cumulative distribution function (cdf), FW (t), the reverse cdf,
GW (t), the hazard rate, hW (t), the cumulative hazard, HW (t), and the mass
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at infinity, qW , for t ≥ 0:

(11) FW (t) =
∫ t

0
fW (x)dx; GW (t) = 1−FW (t); hW (t) =

fW (t)
GW (t)

;

HW (t) =
∫ t

0
hW (x)dx; GW (t) = e−HW (t); and qW = e−HW (∞).

If HW (t) =
∫ t

0
h(x)dx ↑ ∞ as t ↑ ∞, then qW = 0. This means that W <∞ with

probability 1, so that FW (t) ↑ 1 and GW (t) ↓ 0 as t ↑ ∞.

From GW (t) = e−HW (t) one sees that any non-negative h can serve as the hazard
rate for some waiting time, W , and W is incomplete iff h is integrable. The
following are well-known examples.

(1) If W is an incomplete negative exponential, then its cdf is FW (t) =
(1− qW )(1− e−λt), and its everywhere decreasing hazard rate is hW (t) =

λ
[
(qW /(1− qW ))eλt + 1

]−1
. If qW = 0, then the hazard rate is constant

and the waiting time is memoryless.

(2) An incomplete Weibull distribution is of the formW = Xγ , γ > 0, where
X is an incomplete negative exponential. Its cdf is FW (t) = (1− qW )(1−
e−λt

1/γ
), and the hazard rate is hW (t) = λ

γ t
1−γ
γ

[
(qW /(1− qW ))eλt

1/γ
+ 1

]−1
.

(a) If γ > 1, the Weibull is a convex transformation of the negative ex-
ponential, hW (0+) = ∞, and the hazard rate strictly decreases to 0
whether or not qW > 0.

(b) If γ < 1, the Weibull is a concave transformation of the negative
exponential, hW (0) = 0, if qW > 0, the hazard rate is first increasing
then decreasing to 0, if qW = 0, it is strictly increasing.

(3) An Erlang distribution with shape parameter M is the sum of M i.i.d.
negative exponentials. It has cdf FW (t) = 1−

∑M−1
m=0

1
m!e
−λt(λt)m, hW (0) =

0, and the hazard rate is increasing and concave with limt↑∞hW (t) = λ.

There are also a wide variety of mixture model interpretations of hazard rates.
For example, if W is a negative exponential with parameter λ where λ is itself
random with non-degenerate mixture distribution µ, then the cdf is FW (t) =
1−

∫
e−λt dµ(λ), the density is fW (t) =

∫
λe−λt dµ(λ), hW (0) =

∫
λdµ(λ), and hW (t)
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is a strictly decreasing function with tail behavior determined by the behav-
ior of µ at the upper end of its support. More generally, from Edgar’s non-
compact version of Choquet’s theorem Edgar [1975], arbitrary smooth non-
monotonic hazard rates can arise from mixtures of different classes of smooth
densities.8

3.2. Controlled Semi-Markov Processes. There is a compact state space, S,
with generic elements denoted i0, i, j, and a compact action space,A, with generic
elements denoted a,a0, a1, . . .. For many applications, both S and A are fi-
nite.

3.2.1. Feasible Time Paths. The time horizon for the optimization problems is
T := {0−} ∪ [0,∞) where 0− is an “initialization point” assumed to lie strictly
to the left of 0, i.e. 0− < 0. In particular, the interval [0−,0) contains only the
point 0−. Optimization in our model gives rise to a distribution over feasible
time paths, h : T → S ×A, also denoted t 7→ (hS(t),hA(t)).

Definition 1. A time path (hS(·),hA(·)) is feasible if:

(a) hS(0−) = hS(0);

(b) h(·) is right-continuous, for all t ∈ [0,∞), h(t) = limε↓0h(t + ε); and

(c) for all (i,a) ∈ S×A, h−1(i,a) is either empty or is a disjoint union of intervals
[rk , sk) with rk ↑ ∞ if the union is countably infinite. H denotes the set of
feasible time paths.

Combined, parts (a) and (b) of the definition require that the intial state, hS(0),
lasts for a strictly positive amount of time. By contrast, hA(0−) , hA(0) is possi-
ble, and corresponds to the decision maker changing the initial action choice,
a0 = hA(0−), as soon as hS(0) is realized. Part (c) requires that the time paths
be piece-wise constant with only finitely many jumps in any finite interval of
time.

8Edgar’s theorem implies that any density, f , in a reflexive Sobolev space can be represented
as the result of some mixture, µ, over the extreme points of a closed convex set containing f . To
find interesting classes of extreme points, note that every distribution on [0,∞] has a (unique)
representation as a distribution on the extreme points of the set of distributions, that the
extreme points are point masses, and that point masses are arbitrarily well approximated by
smooth distributions, e.g. a Weibull distribution with parameters λ and γ converges to point
mass on λ as γ ↑ ∞.
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3.2.2. Stochastic Intervals. For any h ∈ H , Yk(h) will denote the time at which
the k’th change in hS(t) occurs. Formally, define Y0(h) = 0, define Yk+1(h) as
min{t > Yk(h) : h(t) , lims↑t h(s)} with the convention that min∅ =∞. The dis-
tribution on H that arises depends on the decision maker’s choice of policy f .
Given f , we define a distribution on H in two parts: by specifying the distri-
bution of the waiting times between state changes, W0 := 0 and Wk := Yk −Yk−1
for k ≥ 1; and by specifying the transition kernel of the state changes at the
Yk’s. Stochastic intervals are a useful tool for this.

Definition 2. The stochastic interval between Yk and Yk+1 is a subset of H ×
[0,∞) defined as JYk ,Yk+1J= {(h, t) : Yk(h) ≤ t < Yk+1(h)}.

One standard use of stochastic intervals is to define distributions over sets of
rcll paths.

Example 1 (Queues and embedded Markov processes). Suppose that (Sk)∞k=0 is
a discrete time Markov process in S, W0 ≡ 0, and (Wk)∞k=1 are and independent
collection of i.i.d. negative exponentials, and Yk :=

∑
j≤kWj where the Sk and

Wk are defined on a probability space (Ω,F , P ). InΩ× [0,∞), the stochastic in-
tervals are defined by JYk ,Yk+1J= {(ω,t) : Yk(ω) ≤ t < Yk+1(ω)}. With these sto-
chastic intervals, the random rcll path, X(ω,t) :=

∑
k Sk(ω)1JYk(ω),Yk+1(ω)J(ω,t),

has the distribution of a Poisson process with an embedded Markov chain.
Simple queueing models of the number of customers in line waiting to be
served start with a collection (Ak ,Bk) of independent negative exponentials,
with the Ak corresponding to interarrival times of new customers and the Bk
to the interarrival times of service completions, defines Wk = min{Ak ,Bk}, sets

Sk+1 =

Sk + 1 if Ak < Bk
max{Sk − 1,0} if Ak > Bk.

If the Bk are instead a sequence independent Erlang distributions with shape
parameterM, the queueing model corresponds to each customer needing a to-
tal of M services, with each service have an independent negative exponential
time till completion. More general arrival and service distributions, and more
general transition rules for the state space give rise to the standard queueing
models.

Because we are interested in decision makers whose choice of actions deter-
mine the distribution over the feasible rcll paths, we replace the probability
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space, Ω, with the space of feasible paths, H , in the definition of stochastic
intervals. We will define probability distributions on H by specifying the dis-
tributions of the stochastic intervals inH×[0,∞), the distributions of the states
at the beginnings of the intervals, and the distribution of the actions taken dur-
ing the intervals.

3.2.3. Policies. For each t ∈ T , let Ht denote the smallest σ -field of subsets of
H making the evaluation mappings, h 7→ h(s), s ≤ t measurable. For each Yk,
letHYk be the smallest σ -field of subsets of H making the restriction mapping
h 7→ h|[0,Yk(h)] measurable.

We will represent policies by specifying what they do within a stochastic inter-
val as a function of what has happened before the beginning of the interval. To
this end, let A∞ denote the compact A∪ {a∞}, where the “book-keeping” point
a∞ is, by assumption, at a distance equal to the diameter of A from each a ∈ A.
Action plans are then elements, (τ,α), of I ⊂ [0,∞]N ×AN

∞

I ={(τ,α) ∈ [0,∞]N ×AN

∞ : αn = a∞ iff τn =∞,(12)

τn ↑ ∞, τn ≤ τn+1 with equality iff τn =∞, and

αn , αn+1 for all αn , a∞.}

The vector τ gives the planned change times, and the vector α gives the new
actions chosen at the change times.

For k = 0, the initial state-action pair at Yk is defined as (hS(0),hA(0−)), for
k ≥ 1, it is defined as (hS(Yk),hA(Yk)).

Definition 3. A policy is a sequence (fk)∞k=0, ofHYk-measurable functions from
H to I with the property that the first action called for in any interval is differ-
ent from the action in the initial state-action pair. A policy is semi-Markovian
if the fk depend only on the initial state-action pair at Yk.

A semi-Markovian policy can be represented by a single measurable function
f : S ×A→ I.

3.2.4. Policy Induced Distributions Over Outcomes. In our model, policies in-
duce distributions over feasible histories, utility depends on the feasible his-
tory that is realized, and the decision maker will chose the policy yielding the
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highest expected utility. To make this coherent, we must specify how poli-
cies induced distributions. For simplicity, we do this only for semi-Markovian
strategies, changing the indexing appropriately yields the general case.

We assume

(1) that there is a continuous mapping, i 7→ Qi(·), from S to ∆d((0,∞]), the
set of distributions on (0,∞] having densities with respect to Lebesgue
measure on (0,∞);

(2) the expected waiting times underQi , i ∈ S are uniformly bounded away
from 0; and

(3) that there is a jointly continuous mapping, (i,a) 7→ p(·|i,a) from S ×A to
∆(S), the set of distributions on S, and that it satisfies p({i}|i,a) = 0 for
all i ∈ S and a ∈ A.

Given a semi-Markovian policy, f = ((τn)∞n=1, (αn)∞n=1), we define the induced
distribution by induction through the stochastic intervals.

k = 0: By definition, the interval JY0,Y1J starts in the state-action pair h(0−) =
(i0, a0). Let f (i0, a0) = ((τn)∞n=1, (αn)∞n=1). The distribution of Y1 is given by Qi0 .
The distribution of S1 is given by p(·|i0,αN0

) where N0 := min{n : Y0 + τn < Y1}.

k ≥ 1: The interval JYk ,Yk+1J starts in the state action pair h(Yk) = (ik , ak). Let
f (ik , ak) = ((τn)∞n=1, (αn)∞n=1). The distribution of Yk+1 −Yk is independent of the
previous waiting times and given by Qik . The distribution of Sk+1 is given by
p(·|i0,αNk ) where Nk := min{n : Yk + τn < Yk+1}.

The following “book-keeping” result implies that every choice of policy has a
well-defined expected utility.

Lemma 1. For every semi-Markovian f and starting point (i0, a0), there exists a
unique distribution, Lf , on the rcll paths t 7→ (i(t), a(t)) from T to S ×A having the
properties described above:

(a) the distributions of the waiting times between state-jumps, Wk+1 = Yk+1 − Yk
are independent and distributed according to QSk ;

(b) within any stochastic interval, JYk ,Yk+1J, action changes take place at each τn
with Yk + τn < Yk+1, and the action changes to αn; and

(c) if Yk+1 ∈ [Yk + τn,Yk + τn+1), then P (Sk+1 ∈ E) = p(E|Sk ,αn).
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Proof. From [Billingsley, 1999, §12], it is sufficient to show that conditions (a)-
(c) determine the finite dimensional distributions of the stochastic process,
which is slightly tedious, but entirely straightforward. �

3.2.5. Payoffs. Payoffs have two components, an integrated discounted flow
depending on the state and the present action, and a discounted sum of change
costs. A stochastic interval, JYk ,Yk+1J, starts at a state-action pair (i0, a0). Until
a change of action, the decision maker receives a flow payoff, u(i0, a0), con-
tinuously discounted at a rate r. If the decision maker changes to an action
a1 at Yk + t1 < Yk+1, the decion maker incurs a cost c(a0, a1; i0) > 0 which has
discounted present value c(a0, a1; i0)e−r(Yk+t1), they change the flow payoff to
u(i0, a1), and they change the distribution of Sk+1 to p(·|i0, a1). Further changes
within the interval JYk ,Yk+1J are treated the same.

(1) We assume that u : S ×A→R is bounded and jointly continuous.

(2) We also assume that c : [(A×A)\D]×S is jointly continuous, uniformly
bounded away from 0, and satisfies c(a0, a1; i)+c(a1, a2; i) ≥ c(a0, a2; i) for
all i ∈ S and all a0, a1, a2 ∈ A where D ⊂ (A×A) denotes the diagonal.

(3) Combining, the utility of a feasible path h given by t 7→ (i(t), a(t)) from
{0−}∪ [0,∞) to S ×A is

(13) U (h) :=
∫ ∞

0
u(h(t))e−rt dt −

∑
tk∈Ta

c(ak , ak+1; i(tk))e
−rtk

where Ta is the set of time points where the actions change along the
path t 7→ a(t), and Ta includes 0 if hA(0−) , hA(0).

Two comments on the modeling choices seem appropriate. First, unlike the
subsequent intervals, at t = 0 there is no previous interval of time at which the
pre-change action is being chosen. This is what necessitates the introduction
of the “time” 0−.9 Second, it is quite possible that c(a0, a1; i) , c(a1, a0; i). This
allows the model to capture partial irreversibilities of various strengths.

Example 2. In the optimal search time problem of §2.1, take S = {i0, i1} where
i0 is the initial state and i1 is the state “source of higher profits has been found.”
The transition kernel for the states is given by P =

[
0 1
0 1

]
, i.e. one transitions

9See Simon and Stinchcombe [1989] and Stinchcombe [1992] for related solutions to this
representation problem.
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from i0 to i1 but never the reverse. Let A = {a0, a,a} where a0 is the action
“continue searching” and a is the action “use the alternative (older) technol-
ogy.” and a is the action “use the newly found technology” where we include
the costs of changing action in the profits. Qi0 is the distribution of W , and
Qi1(∞) = 1, which correpsonds to i1 being an absorbing state. This means that
the problem has only one relevant stochastic interval, J0,Y1J. We arrange for a
not to be chosen in i0 either by making the transition cost c(·, a; i0) prohibitive
or by making the utility flow u(i0, a) sufficiently low.

3.3. The Bellman Equation. The value function V∗ : S ×A→R is defined as

(14) V∗(i0, a0) = sup
f
EfU (h) := sup

f

∫
U (h)dLf (h),

where f is a policy, Lf is the distribution on H induced by the policy f , and
the supremum is taken over all policies.

The essential recursive structure is found in the observation that U (h) can be
broken into a sum of payoffs within stochastic intervals. When one leaves a
stochastic interval JYk ,Yk+1J to the state Sk+1 while taking an action ak, one
starts the new stochastic interval in the state-action pair (Sk+1, ak). If one be-
haves optimally thereafter, one receives V∗(Sk+1, ak)e−rYk+1 . With this structure,
it becomes clear that if we choose optimally within each interval JYk ,Yk+1J tak-
ing into account that we will receive the value V∗(Sk+1, ak)e−rYk+1 when we exit
to (Sk+1, ak) at Yk+1, then we will have solved the problem in (14).

If one starts with h(Yk) = (ik , ak), then the contribution of the interval JYk ,Yk+1J
to EfU (h) is

Ef
(
U (h) · 1JYk ,Yk+1J

∣∣∣h(Yk) = (ik , ak)
)

=(15)

Ef
(∫ ∞

0
u(h(t))e−rt1JYk ,Yk+1J(h, t)dt−

∑
tk∈Ta∩JYk ,Yk+1J

c(ak , ak+1; i(tk))e
−rtk

∣∣∣h(Yk) = (ik , ak)

 .(16)

If one receives V0(ik+1, ak+1) for starting the interval JYk+1,Yk+2J at the state-
action pair (ik+1, ak+1), then the the problem at Yk at the state-action pair h(Yk) =
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(ik , ak) is given by

(17) V1(ik , ak) = max
f
Ef

(
U (h) · 1JYk ,Yk+1J +V0(h(Yk+1))e−rYk+1

∣∣∣h(Yk) = (ik , ak)
)
.

To minimize on the notational burden, we condition on Yk = t, subtract t,
renormalize the k to 0, and start the discounting from 0, which changes (17) to

(18) V1(i0, a0) = max
f
Ef

(
U (h) · 1JY0,Y1J +V0(h(Y1))e−rY1

∣∣∣h(Y0) = (i0, a0)
)
.

The set of bounded continuous functions on S ×A is denoted Cb(S ×A).

Theorem 1. If β = sup{E e−rW : W ∼ Qi , i ∈ S} < 1, then the mapping from V◦ to
T (V◦) defined by

(19) T (V◦)(i0, a0) = max
f =(α,τ)

Ef
(
U (h) · 1JY0,Y1J +V◦(h(Y1))e−rY1

∣∣∣h(Y0) = (i0, a0)
)

is a well-defined contraction mapping on Cb(S ×A), its contraction factor is at most
β, its unique fixed point is the true value function, V∗, and following the policy

(20) f ∗ = argmax
f =(α,τ)

Ef
(
U (h) · 1JY0,Y1J +V∗(h(Y1))e−rY1

∣∣∣h(Y0) = (i0, a0)
)

in every stochastic interval achieves the value V∗.

The condition that sup{E e−rW :W ∼Qi , i ∈ S} < 1 is equivalent to the assump-
tion that the expectation of the necessarily strictly positive waiting times is
uniformly bounded away from 0.

The detailed proof is in the Appendix. It consists of several steps: showing that
one can restrict attention to a compact subset of I; that the expected utility
function is continuous on this set; that the mapping is a contraction; and that
the fixed point is indeed the true value function.

4. Euler Equations

We give the Euler equations, i.e. the necessary conditions, for the optimal pol-
icy within stochastic intervals for which one move is optimal. Formally, this
corresponds to the set of stochastic intervals for which the optimal τ∗n is equal
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to ∞ and α∗n = a∞ for all n ≥ 2.10 We briefly discuss the Euler equations for
multiple moves after the proof of the following. Note that there are two Euler
equations, one for τ1, the optimal time to change actions, and one for α1, the
optimal choice of action to change to.

4.1. Memoryless Processes. To focus attention on the effect of the non-station-
arity of the waiting time distributions, we first show that: the optimal policy is
always immediate response or infinite patience if the waiting times are memo-
ryless; and that, if forced to make a change, the optimal choice does not depend
on the time at which the choice is made.

Theorem 2. If (Wk)∞k=1 are independent negative exponentials with parameter λ(Sk),
then in each stochastic interval JYk ,Yk+1J,

(a) the optimal waiting time, τ∗1, if unique, is either 0 or∞,

(b) if τ∗1 is not unique, then any time in [0,∞] is indifferent, and

(c) the optimal action if the decision maker is forced to move at some time Yk + t <
Yk+1 depends only on the current state, hS(Yk), and is independent of t.

Proof. By the memorylessness of the negative exponentials, at every time Yk +
t < Yk+1, the choice between different actions leads to the same distribution
over Sk+1 and the distribution of Yk+1 − t is the same as it was at Yk. Thus, if it
is optimal to change actions at Yk + 0, then it is optimal to change to the same
action if one arrives unchanged at any Yk + t < Yk+1, and if it is optimal to leave
the action unchanged at Yk, the same is true at any Yk + t < Yk+1. �

Hence, with memoryless distributions of arrival times, the optimal action de-
pends only on the current state, and the optimal timing is either to change
immediately after observing the state change, or else wait at least until the
next change. Also, within this class of problems, there is always at most one
change of action.

4.2. Processes with Memory. We say that a waiting time process, (Wk)∞k=1, has
memory if the hazard rates, hWk

(·), are non-constant.

10The class of problems for which this is applicable models situations where the cost of
changes, c(·, ·; ·), is high relative to the differences in the flow utility, u(·, ·). A broad class of
institutional decision making problems fit this description.
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Theorem 3. Suppose that (Wk)∞k=1 is a waiting time process with memory and that
JYk ,Yk+1J is a stochastic interval in which the hazard rate is strictly positive and
exactly one change of action is optimal, and that it happens at an interior τ∗1 = t∗1
and α∗1 = a∗1. Then (t∗1, a

∗
1) must satisfy the following conditions,

hW (t∗1)E[C + (V∗(ak ,Sk+1)−V∗(a∗1,Sk+1))] = [u(a∗1, ik)−u(ak , ik)]− rC,(21) ∫ ∞
t∗1

e−ry
∂
∂a
u(a, ik)|a∗1(1−FW (y))dy +

∫ ∞
t∗1

e−ryfW (s,y)
∂
∂a

EV∗(a,Sk+1)|a∗1 = 0(22)

where C = c(ak , a∗1; ik). Further, if E[C + (V∗(ak , sk+1)−V∗(a∗1, sk+1))] > 0 (resp. < 0),
then the second order conditions are strictly satisfied iff the hazard rate is increasing
(resp. decreasing) at t∗1.

Proof. We set the expected benefit to waiting for an instant dt at t∗1 equal to the
expected benefit of acting at that instant.11 The benefit to waiting is dt times
hW (t∗1)E[C+(V∗(ak ,Sk+1)−V∗(a∗1,Sk+1))] because: hW (t∗1)dt is the probability that
the state changes; one saves the cost C = c(ak , a∗1; ik); and one has a change
in expected value of E(V∗(ak ,Sk+1) − V∗(a∗1,Sk+1)). The benefit to acting is dt
times [u(a∗1, ik) − u(ak , ik)] − rC because: the perpetual annuity flow value of
the cost of moving from ak to a∗1 is rC · dt; and the change in utility flow is
[u(a∗1, ik)−u(ak , ik)] · dt.

For the first order condition for a∗1, the first term is directly seen to be the de-
rivative of Ef

(
U (h) · 1JY0,Y1J

∣∣∣h(Y0) = (i0, a0)
)

with respect to a1, and the second

is the derivative of Ef
(
V∗(h(Y1))e−rY1

∣∣∣h(Y0) = (i0, a0)
)

with respect to a1.

For the last part, note that because hW (t∗1) > 0, to satisfy (21), the terms on both
sides must have the same sign. If the left-hand sign is positive and h′W (t∗1) >
0, then the benefits of waiting are increasing while the benefits of acting are
constant. Thus, for strict satisfaction of the second order conditions, one must
have h′W (t∗1) < 0. The reasoning for the left-hand side being negative leading to
an increasing hazard rate at the solution is analogous. �

4.3. Interpretation of the Euler Equations. The increasing and decreasing
hazard rates cases in Theorem 3 have very different intuitions, one consonant

11An alternative to the present derivation writes out all of the integrals, evaluates and sim-
plifies, takes derivatives, gathers terms and simplifies. The example in §2.1 gives an example
of what is involved.
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with the search theory model in §2.1, the other consonant with delaying ex-
pensive preventive measures until danger presses.

4.3.1. Increasing Hazard Rates at the Optimum. Suppose that one is in a state-
action pair (ik , ak) that is mis-matched in the sense that u(ak , ik) <maxa∈Au(a, ik)−
rc(ak , a; ik). Suppose also that, given the action ak, one expects the arrival
of Sk+1 at Yk+1 to be good news, that is, ak will come very close to solving
maxa∈Au(a,Sk+1)−rc(ak , a;Sk+1). If the likelihood of the arrival of Yk+1 is climb-
ing and the cost of waiting is constant, it cannot be optimal to incur large ac-
tion change costs right now because one might be able to stay put and have the
world come to you. On the other hand, if the likelihood of the arrival of Yk+1
decreases to a low enough level, it becomes optimal to more closely adapt the
present action to the present state, that is, to solve maxa∈A[u(a, ik)−rc(ak , a; ik)].

4.3.2. Decreasing Hazard Rates at the Optimum. In many situations, there are
costly safety measures that one would rather avoid if the danger they are meant
to protect against, Sk+1, is far enough in the future, that is, if Yk+1 looks com-
fortable remote. Immunizations for possible diseases are costly, at the very
least in terms of time, and one would rather delay them even if their effective-
ness does not decay over time. Imposing some kind of control on powerful
institutions whose behavior has the potential to inflict huge negative external-
ities is costly, at the very least in terms of the political capital that must be
expended. However, as the arrival of Sk+1 comes closer, i.e. as the hazard rate
hWk+1

increases, at some point taking the expensive precautionary measures
becomes the optimal choice.

To see how this works in the left- and right-hand sides of (21), consider first
the term

(23)
[
c(ak , a

∗
1; ik) +E (V∗(ak ,Sk+1)−V∗(a∗1,Sk+1))

]
.

Suppose that Sk+1 is likely to be the sort of disaster that drastically lowers
utility flows unless some action, a∗1, is taken. Suppose further that c(ak , a∗1; ik)�
c(ak , a∗1;Sk+1), that is, suppose than an ounce of prevention is worth a pound of
cure. This means that we can expect V∗(a∗1,Sk+1)� V∗(ak ,Sk+1), enough so that
the whole term in (23) is negative. This negative term, corresponding to the
‘benefit’ to waiting, is multiplied by a decreasing hazard rate term, that is, the
‘benefit’ is negative and becoming more negative as the hazard rate increases.
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Now, a maximizing choice between two negative terms involves picking the
one closest to 0, and on the other side of the equation are the utility flow terms,

(24) [u(a∗1, ik)−u(ak , ik)]− rc(ak , a∗1; ik).

The preventive action being costly corresponds to this term being negative,
either because u(ak , ik) > u(a∗1, ik) or because the cost, −rc(ak , a∗1; ik), dominates.
While this is negative, it is not decreasing over time. Eventually, at t∗1, this
negative term becomes better than the first one.

5. Conclusion

We began with the question as to what the optimal time is for changing a sta-
tus quo policy in response to an environmental change when policy change is
costly and one anticipates another change in the environment in an unknown,
random time in the future. There is an immediate tradeoff between optimizing
with respect to the current state and optimizing with respect to the expected
future state, given that actions are costly and different actions become optimal
in different states. But the main interest in such a problem stems from the fact
that passage of time since the last observed change might contain information
about how soon the next change is likely to occur. This would be the case when
the distribution of inter-arrival times for environmental changes have hazard
rates that are not constant over time. In case of increasing or decreasing haz-
ard rates, the likelihood that the next change would happen in the next instant,
given that it has not happened until now, goes up or down respectively. Hence
we have an additional tradeoff in terms of timing of the action once we have
seen an environmental change, namely, we lose utility every instant that the
current action is not optimized to the current state, but every instant of pass-
ing time gives us more information about how far in the future the next change
is likely to occur. Intuitively, it would suggest that there might be a place for
’informative waiting’, i.e. delaying one’s action in order to have more informa-
tion about the time of the next environmental change. Our results show that
for non-constant hazard rates, delaying your actions could be optimal under
certain circumstances.

Using our framework, we can glean some insights about examples presented
at the beginning. Women’s suffrage was long delayed. Part of the delay may be
explained by near-irreversibility of any enfranchisement. It is politically much
more costly to disenfranchise a group than to enfranchise them, this added to
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‘optimal’ delay in that case. On the other hand, in case of Prohibition, although
banning a popular item of consumption by itself was an expensive proposition,
it was easily and cheaply reversible, which probably goes some way to explain
the relativeness swiftness of both the enactment and repeal. Cuban missile
crisis, Vietnam war, Watergate scandal — none of these led to any particularly
extensive checks on, or built-in delays to, executive power. It could partly be
for the reason that the typical class of problems the executive branch is called
on to solve often involve the need for quick decisions.

We have presented results for reactive problems where the stochastic kernel
of the SMP depends on the choice of action only through the Markov state
transition process. There are real life situations which are better modeled as
fully controlled SMP’s where the choice of action effects also the distribution
of arrival times. That would be the next step in our analysis. Here are some
examples where such stochastic processes would be relevant.

Economic models of climate change have traditionally treated the process as
one of gradual change to new, stable state. Recent research in in climate sci-
ence has found evidence of both very rapid changes over as short period of
time (around a decade) and also periods of significant fluctuations or ‘environ-
mental flickering’ over periods as short as a year (Hall and Behl [2006], Stern
[2007]). These phases of rapid change and/or flickering seem to be triggered
once a threshold point is reached in the ecological system. Quick changes in
climate are more expensive to adapt to, and if the state changes to one where
the arrival times of subsequent changes have high arrival rates, the expense is
further increased, pushing policy recommendations in the direction of those
that arise from the precautionary principle.12

While ‘gradual change’ models have usually prescribed ‘adaptation to climate
change’ as opposed to ‘intervention to avert it’ [Nordhaus and Boyer, 2003],
the decision problem takes a new shape when we incorporate the uncertainty
over the expected arrival time of a possible catastrophic change and over the
issue of whether or not we are moving towards such a critical threshold. In this

12While the ‘Precautionary Principle,’ that if an action or policy has a suspected risk of
causing harm to the public or to the environment, in the absence of scientific consensus that
the action or policy is harmful, the burden of proof that it is not harmful falls on those taking
the action, has been in use (it forms, for e.g., the basis of the Kyoto Protocol), it has also been
criticized for not having proper analytical basis [Sunstein, 2002].
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context, the cost of controlling the intensity of the arrival rate process seems
to be the major issue.

Immunizations, breaking up banks “too big to fail,” — the costs of these pre-
ventive actions before the crisis may not be negligible, but the costs of achiev-
ing the same outcomes after the crisis has arrived are immensely larger (these
are also cases where the optimal delay can happen with an increasing hazard
rate). Choice problems involving preventive actions would warrant models
incorporating hazard rate controls.

Future research would tackle these extended set of models incorporating haz-
ard rate controls. Cases where we only need controls executed at discrete times
would be straightforward extensions of our current work. Substantive work
would be needed to deal with models involving continuous control of hazard
rates.
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6. Appendix

Proof of Theorem 1: To show that the mapping is well-defined, we must show
that the problems in (19) have a solution and that the maximized value of the
solution is continuous in (i0, a0). To this end, we will show that there is no loss
in ruling out all but a compact subset of within interval policies (τ,α). Because
costs are bounded away from 0 by some strictly positive c, there is no loss in as-
suming that we are optimizing over the subset of Iwith c

∑
n e
−rτn ≤

∫∞
0
Be−rt dt

where B > supi,au(i,a)− infi,au(i,a). Since costs c(·, ·; i) are defined on the open
complement of the diagonal, we must establish that there is no loss in restrict-
ing attention to the subset of I having d(αn,αn+1) ≥ ε for some ε > 0 and all
n with τn < ∞. Because S × A is closed, hence compact, and the continuous
mapping (i,a) 7→ (Qi ,p(·|i,a)) is therefore uniformly continuous. Hence, for
some ε > 0, d(a,a′) < ε implies that for all i ∈ S, the potential gain of moving
from (i,a) to (i,a′) is less than c. The subset of I with c

∑
n e
−rτn ≤

∫∞
0
Be−rt dt

and d(αn,αn+1) ≥ ε for some ε > 0 and all n with τn < ∞ is compact, and on
this set the utility function is continuous. By the Theorem of the Maximum,
T is a well-defined mapping from bounded continuous functions to bounded
continuous functions.

From Blackwell’s Lemma for contraction mappings (e.g. [Corbae et al., 2009,
Lemma 6.2.33]), to show that T is a contraction mapping with contraction
factor β, it is sufficient to show that (i) T is monotonic, and (ii) that for any
constant κ and V◦ ∈ Cb(S ×A), T (V◦+κ) ≤ T (V◦)+βκ. Monotonicity is immedi-
ate. For (ii), note that the optimized value of Ef (V◦(h(Y1))+κ)e−rY1 is at least as
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large as the optimized value of Ef V◦(h(Y1))e−rY1 , so that the difference between
the two optimized values must be less than or equal to κE e−rW whereW ∼Qi0 ,
and E e−rW ≤ β.

The arguments for the last two parts of the theorem parallel the standard
discrete-time dynamic programming arguments: if V† is the unique fixed point
for T , then following f ∗ for the first stochastic interval and receiving V†(h(Y1))
when the interval ends must have value V†. Therefore following f ∗ for the first
two stochastic intervals has value V†. Since Yk ↑ ∞ because the expectation of
the strictly positive Wk is bounded away from 0, following f ∗ in each interval
yields V†. By definition, V∗ ≥ V†, and if V∗(i0, a0) > V†(i0, a0) for some (i0, a0),
then V† is not the fixed point of T . �
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