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Abstract. A multiple-prior decision maker is open-minded if she can describe, as
subjective uncertainty, all convex sets of distributions over payoff relevant conse-
quences. Open-mindedness is equivalent to the ability to subjectively describe both
the uniform distribution on an interval and the set of all distributions on an inter-
val. Parameterized sets of i.i.d. distributions from classical statistics satisfy these
conditions. The use of open-minded sets of priors to model decision makers allows
the objective and the subjective approaches to uncertainty to inform each other and
changes the implications of previously used axioms for multi-prior preferences. Sub-
jective models with sets of priors that are not open-minded yield preferences only
over those subjective sets of distributions that are describable. This preference in-
completeness always implies the failure to rank elements in a dense class of set, and
may rank so few elements that ambiguity attitudes do not affect choices between
subjectively uncertain prospects.
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. . . An open mind is all very well in its way, but it ought not to be so
open that there is no keeping anything in or out of it.” The Note-Books
of Samuel Butler : Part 4, Page 631, J. M. Dent & Company, London.

1. Introduction

When someone knows their decision environment well enough to reliably assign prob-
abilities to random but utility relevant outcomes arising from their choices, they are
facing a risky problem. When they cannot reliably assign such precise probabilities,
e.g. when information comes from conflicting sources of different and perhaps unknown
qualities, they are facing an ambiguous problem. We model choices between measur-
able functions from a state space to consequences, and we model ambiguity, a separate
state of epistemic uncertainty, as involving a set of priors on a state space rather than
a single prior. This paper gives two results relevant to the properties and structures
of sets of priors necessary for adequate modelling of individuals facing both risky and
ambiguous problems.

A convex set of priors is open-minded if it can induce, via consequence-valued mea-
surable functions, any closed, convex set of distributions on any compact metric space
of consequences.

Theorem 1. A convex set of priors is open-minded if and only if it can induce, via
a [0, 1]-valued measurable function, the uniform distribution, and it can
induce, via another [0, 1]-valued measurable function, the set of all dis-
tributions on [0, 1].

Theorem 2. If a set of priors fails either of the previous two conditions, then the class
of sets of distributions that it can not induce is dense.

Theorem 1. yields a simple canonical set of open-minded priors — the convex closure
of the set of uniform distributions on the line segments {x}× [0, 1], x ∈ [0, 1]. Another
class of open-minded priors are given by classical statistical models — continuously
parameterized sets of i.i.d. distributions for which there exists a consistent sequence of
estimators. Theorem 2. tells us that working with sets of priors that are not open-
minded is costly. Some commonly used sets of priors can represent so small subset of
sets of distributions that that different attitudes toward ambiguity make no difference
to choices over the entire subjectively describable class of sets. Comparative statics
analyses are crippled by the need to check ex post and make sure whether the effects
the modeler aims to analyzed are indeed in the decision maker’s ambit.

These results allow us to bridge the gap between models of ambiguous choices with
a state space and those without a state space, and the bridge runs directly parallel to
the one for models of risky choice.

1.1. Models of Risky Choice With/Without a State Space. There are two main
complementary models and one hybrid model in the study of risky choice problems.
Under the rubric of “objective” risky choice, a state space is not necessary to the model.
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Rather, one directly models preferences over distributions on the space of consequences
(von Neumann and Morgenstern, 1944, Ch. I, §3.6).

Under the rubric of “subjective” risky choice, one assumes that decision makers can
be usefully thought of as having a Kolmogorov-style model for random phenomena.
These models invoke a state space in which the stochastic realization happens, and the
utility relevant outcomes arise as a (measurable) function of the realization (Savage,
1954, Ch. 5). Here, decision makers are modeled as if they use a single “subjective”
prior, and preference for one function over another is identified as preference for one
induced distribution over another. Particularly important for this approach is the axiom
of state independence, i.e., the assumption that the states do not matter for utility but
the distributions on the consequences they induce matter.

The hybrid model also uses a state space, but preferences are now defined over the
measurable functions that take values in the set of “objective” distributions over conse-
quences. Again, the model uses a single “subjective” prior to evaluate the measurable
functions, and again, preference for one measurable function over another depends only
on the induced distributions over consequences (Anscombe and Aumann, 1963). The
subtlety is that preferences between induced distributions over distributions, by as-
sumption, depend only on comparisons of the average of the induced distribution, the
average being taken within the space of distributions using the single subjective prior.
The objective model is a special case of the hybrid approach in which the prior is a
point mass so that all functions are, with probability 1, constant at some objective
probability distributions.

1.1.1. Synergies Between the Approaches. In some applications, modeling risky phe-
nomena with a state space is more tractable, in other applications, working without
one is more tractable, and in yet others, having both approaches available allows for
deeper understandings of the phenomena being analyzed. We illustrate these in turn.

(1) A state space is far more convenient for both the statement and the proof of the
strong law of large numbers, and this result is crucial to the entire theory of data-
driven inference and estimation necessary to make informed choices. The internal
consistency of common prior models in which agents differ by type/information
requires a state space for its formulation. Progress in epistemic game theory has
depended on identifying an appropriately rich state space (for a survey, see Dekel
et al. (2015)).

(2) The lack of a state space foregrounds the preferences over distributions on conse-
quences, lending itself to the study of behavioral regularities and to comparative
statics analyses. The regularities include: risk aversion, captured as a negative sec-
ond derivatives of expected utility functions; ‘prudence,’ captured as the a positive
third derivative of expected utility functions; ‘temperance’ and ‘edginess,’ negative
fourth and positive fifth derivatives respectively (Eeckhoudt and Schlesinger, 2006;
Noussair et al., 2013; Deck and Schlesinger, 2014). The comparative statics analy-
ses concern e.g. portfolio, career, or insurance choices as the risk being faced and/or
the degree of risk aversion, or prudence, or temperance, or edginess, changes.

(3) Without a state space, first order stochastic dominance of a distribution p over
a distribution q is understood either as the cumulative distribution functions of
p shifted weakly to the right from that of q, or, equivalently, as the p-integral of
every non-decreasing function being higher than the q-integral. Either formulation
has the flavor of p being definitely better than q, and with a state space having
a non-atomic prior distribution, this can be made precise — there are measurable
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functions f and g on the state space inducing the distributions p and q respectively,
and f is, with prior probability 1, weakly better than g.

If estimation of causal structures precedes choice making, the examples of synergies
between the two approaches expand. First, one has the entirety of the interplay between
Bayesian and classical statistics approaches. Second, the convergence of estimators
also has two mutually reinforcing formulations: the central limit theorem is a result
about the weak convergence of the distribution of estimators around true values of
parameters. Finally, the ability to analyze the convergence of distributions as almost
everywhere convergence (see for example, Billingsley (2012, Ch. 24)) often yields much
more transparent analysis.

1.1.2. The Role of Non-Atomicity. Savage’s Postulate P6 guarantees that the subjec-
tive prior must be non-atomic, and this is crucial for the subjective approach’s do-
main equivalence to the objective approach, i.e., they both model the same set of risky
problems. More specifically, Skorohod’s representation theorem, Skorohod (1956, Thm.
3.1.1), guarantees that if a prior is non-atomic, then every distribution on consequences
can be induced by some measurable function. With a non-atomic prior, the objective
and subjective approaches are interchangeable because they have the same domain of
problems – the set of all possible distributions over outcomes. By contrast, if the prior
has atoms, then there is a dense set of distributions on outcomes that cannot be in-
duced using any measurable function (see below Subsection 2.1 for details). It is worth
stressing that we are not arguing that one must assume that priors are non-atomic, one
could decide, for very good reasons, that the appropriate model for a decision maker
in a particular situation involves atomic priors. Rather, we are pointing out that the
costs of not assuming non-atomicity involve modeling with incomplete preferences and
that such incompleteness can be costly.

By contrast, following the arguments in Anscombe and Aumann (1963, p. 204),
the hybrid model can work with any prior, atomic or non-atomic. This is because any
distributions over outcomes are available within the model. For specificity, suppose that
the prior µ puts mass 0.4 on state s1 and 0.6 on s2. Fix a non-extreme distribution p
on [0,M ] and pick p1 6= p2 such that p = 0.4p1 + 0.6p2. If f(s1) = p1 and f(s2) = p2,
then f(µ) is a distribution on the distributions on [0,M ], and its average is p.

For ambiguous choice problems, we replace a single prior in the risky problems
by a set of priors. The main result in this paper characterizes open-mindedness –
the substitute for non-atomicity of a single prior that is appropriate for choice under
ambiguity. It fills for ambiguous choice problems the role analogous to non-atomicity
of single prior in risky problems, it makes the approaches interchangeable, providing a
bridge between the subjective and objective approaches to choice.

1.2. Models of Ambiguous Choice With/Without a State Space. In modeling
risky problems, the question “What does a choice between two measurable functions
represent?” has an immediate answer. It represents a choice between the two induced
distributions on the space of consequences. This is due to the state independence
assumption, preferences depend not on the state, but on the induced distribution.
To put it another way, in the subjective model, the state spaces serve only to model
randomness.

After replacing a single prior by a set of priors, we ask the same question, “What does
a choice between two measurable functions represent?” Applying state independence
in analogous manner as it is applied in risky choice, the answer is that it represents a
choice between the two sets of induced distributions on the space of consequences. We
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would like the objective and the subjective approaches to inform each other, and for
this we want domain equivalence for ambiguous choice to hold: that is, the objective
and the subjective approach covers the same domain of ambiguous choice problems.

In the objective approach to ambiguous choice, one models preferences over sets
of distributions on the space of consequences. In the subjective, preferences-over-
measurable-functions approach to ambiguous problems one substitutes a set of priors
for the single prior of the models of risky choice.1 Two assumptions in the subjective
approach are necessary for domain equivalence. First, as mentioned, the preferences
over measurable functions must be state independent, only the sets of distributions
on consequences induced by the measurable functions can matter. Second, in a direct
parallel with the need for the non-atomicity of the single prior in risky models, the set
of priors must be open-minded lest the subjective model only capture preferences over
a narrow class of sets of distributions on consequences.

1.3. Open-Mindedness. The realization that one’s knowledge is, sometimes, not suf-
ficient to assign precise probabilities to the utility relevant outcomes is a mild form of
intellectual modesty. Open-mindedness, the focus of this paper, is a deeper property.
It requires a decision maker’s knowledge that their lack of understanding can, in some
circumstances, take on quite arbitrary forms.

With any modeling assumption, one should ask about its costs and its benefits. Our
main result, Theorem 1, shows that it is easy to satisfy open-mindedness, that the cost
is small. Our second result, Theorem 2, as well as a number of examples show that
the cost of not imposing it are large. One sees the parallel result in the complete-
ness/incompleteness of preferences in risky problems as the prior is nonatomic/atomic.

The subjective, single prior, approach to risky problems only specifies preferences
over those distributions that can be induced by some measurable functions, and the
subjective, multi-prior, approach to ambiguous problems only specifies preferences over
those sets of distributions that can be induced by some measurable functions. Theo-
rem 2 and a number of examples show that this set is small in fashions that impede
analysis if multi-prior is not open-minded. More specifically, if one models a decision
maker who has a set of priors that fails to be open-minded, and most of those used in
the literature are not open-minded, then the set of induced probabilities over outcomes
always misses a dense set; often, the resulting preference incompleteness is so drastic
that choice behavior does not depend on ambiguity attitudes.

1.4. Implications for Previous Axioms and Interpretations. By our lights, the
study of multiple prior preferences over measurable functions is central to research look-
ing for and looking into behavioral evidence of what we start with in this paper. We
start by assuming decision makers’ self-awareness of the incompleteness of their knowl-
edge. This awareness is modeled as the decision maker having and using a set of priors,
which can be understood as a set of ‘scenarios’ about what will follow from different
courses of action.2 Adding open-mindedness to this awareness yields complete overlap

1The subjective, or neo-Bayesian, multi-prior approach began with Schmeidler (1989); Gilboa and
Schmeidler (1989), the relations between the axiomatizations and the consequent functional forms
can be seen in the treatments of “invariant, bi-separable preferences” in Ghirardato and Marinacci
(2001) and Amarante (2009). Cerreia-Vioglio et al. (2011) contains the corresponding material for
state dependent choices, with special emphasis on the role of convexity as the definition of ambiguity
aversion, already present in Schmeidler (1989). Variants on the objective approach can be found in
Ahn (2008), Olszewski (2007), and Dumav and Stinchcombe (2017).
2Vasiliki Skreta suggested scenarios as an interpretation of the priors, variants of this idea are more
thoroughly explored in Dumav and Stinchcombe (2017).
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between the sets of choices the decision makers can subjectively describe and those that
they can objectively describe. This is useful because the objective approach contributes
to our understanding of ambiguous choice in ways that the subjective approach has not
yet been able to capture.

• Machina (2009) shows that most of the axiomatic approaches to preferences
over measurable functions have built in an assumption that implies that de-
cision makers’ attitudes toward ambiguity must be wealth independent. An
apparent exception to this wealth independence is the work of Ghirardato et al.
(2004), who give an α-max-min expected utility representation for measurable
functions, a representation in which the parameter α can vary systematically
with the measurable function. However, Proposition 1 shows that with their
axioms, the parameter α can only vary if the decision maker’s set of priors fails
to be open-minded. By contrast, the objective approach delivers wealth depen-
dent ambiguity and risk attitudes on sets of induced distributions (Dumav and
Stinchcombe, 2017).
• Epstein (1999) and Ghirardato et al. (2004) define comparative ambiguity aver-

sion for preferences over measurable functions. However, the definition only
applies to pairs of decision makers having exactly the same risk attitudes. By
contrast, in the objective approach, one can combine any risk attitude with any
ambiguity attitude (Dumav and Stinchcombe, 2017). This allows one to study
choice situations in which risk and ambiguity attitudes reinforce or counter each
other.

1.5. Outline. The next section contains the main points of the paper in an example-
based format. Of particular note is the extreme incompleteness of preferences that are
possible when the set of priors fail to be open-minded. The subsequent section gives the
formal development, characterizing the classes of open-minded priors, showing that the
examples are instantiations of general patterns, and briefly examining open-mindedness
when the priors may fail to be countably additive. The next section covers some of
the implications of open-mindedness for previous axiomatizations of preferences over
measurable functions. The last section provides a summary and a coda. Proofs and
some calculations are gathered in the appendix.

2. Open-Mindedness: A Guided Tour

This section contains examples that demonstrate most of the results in the paper.

• §2.1 covers domain equivalence for models of risky choice.
• §2.2 covers domain equivalence for ambiguous models in the subjective ap-

proach, with particular attention to instances in which the use of a set of priors
that is not open-minded can imply that ambiguity attitudes make no difference
to choice.
• §2.3 covers the same material for the hybrid rather than the subjective approach,

at a lower level of detail.
• §2.4 uses the lens of wealth dependence of risk and ambiguity attitudes to

illustrate how the larger domain that comes with the assumption of open-
mindedness changes the meaning and interpretation of previous axiomatizations
of subjective state space models.

The formal development of the results behind the examples is in the next section.
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2.1. Domain Equivalence for Risky Decision Problems. The objective and the
subjective models of risky choice are related by change of variables. Most modern
economics textbooks give the short axiomatic foundation for the von Neumann and
Morgenstern (1944) (vNM) preferences over distributions on a space of consequences
X. Preferences satisfying their axioms rank distributions p and q by p % q if and only
if

vNM (p) :=

∫
X
u(x) dp(x) ≥ vNM (q) :=

∫
X
u(x) dq(x). (1)

Here, the continuous expected utility function u on X is derived from properties of the
preferences, and is unique up to positive affine transformation.

By contrast, Savage (1954) provides an axiomatic foundation for subjective prefer-
ences over measurable functions from a state space S, to the space of consequences X.
Preferences satisfying his axioms rank measurable functions f, g : S → X by f % g if
and only if

Sav(f) :=

∫
S
u(f(ω)) dµ(ω) ≥ Sav(g) :=

∫
S
u(g(ω)) dµ(ω). (2)

Here, the prior probability µ and the utility function u are jointly derived from proper-
ties of the preferences over measurable functions, the prior µ is unique and the utility
function u(·) is, again, unique up to positive affine transformation.

The two representations, (1) and (2), are directly related by change of variables. If
we take take p = f(µ) to be the distribution induced on X by f (defined by f(µ)(E) =
µ(f−1(E)) for E ⊂ X) and take q = g(µ), then the integrals on each side of the
inequalities (1) and (2) are the same. This equality depends on Savage’s assumption of
state independence — the utility function in Savage’s preferences u(·) depends only
on x ∈ X, and not on s ∈ S. Domain equivalence requires more than this change of
variables.

The vNM approach specifies complete preferences over all of ∆(X), the set of distri-
butions on X. However, depending on the prior, µ, the induced preferences over ∆(X)
in the state-space approach may or may not be complete. For completeness in the
subjective approach, it is necessary that every p ∈ ∆(X) is of the form f(µ) for some
measurable f : S → X. For this, it is necessary, by Lemma 2 (below), and sufficient,
by Skorohod (1956, Thm. 3.1.1), that the prior µ be non-atomic.

To see what is involved, we consider modeling a class of portfolio problems. Suppose
there are assets, Xn, n = 1, . . . , N , each of which has an identical distribution that
returns 1, 000 euros with probability r and returns 0 with the remaining probability
1−r. The returns are drawn independently. The portfolio choice problem in particular
is how big a share z of the composite asset X :=

∑
nXn to purchase at a price P that

is smaller than its expected return EX. With initial wealth W , the expected utility
maximization problem is

maxz∈[0,W/P ] Eu((W − zP ) + zX).

Notice that each portfolio decision z induces a distribution over the final wealth
levels. Therefore, the decision maker’s preference over the shares z of the composite
portfolios can alternatively be represented as preferences over the distributions on the
final wealth levels.

In the vNM approach, the specification of the distribution of X, a Binomial(N, r),
is sufficient for the problem to be well-posed, there are no limitations on the possible
values of either N or r. By contrast, if in a subjective model the prior µ has an atom,
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then measurable functions describe only a limited set of distributions of X. A pair of
blunt examples make the essential point that such a prior limits modeling flexibility.

Translating this portfolio problem into the subjective framework, suppose that we
model with a unit interval [0, 1] as a rich enough state space that describe all possible
contingencies in the portfolio problem. Let the measurable functions fn : [0, 1] 7→
{0, 1000} represent the return profile of the assets Xn. The composite asset X is then
the measurable function f(s) :=

∑
n fn(s) for all s ∈ [0, 1]. Suppose also that, for the

sake illustration, we model on the state space [0, 1] with a prior µ that has an atom.

• If the prior µ has an atom of size a > 0, then for any r and for any arbitrary N ,
some contingencies s in [0, 1] receives probability at least a > 0. This implies
that the distribution induced by the composite asset or equivalently by the
measurable function f has an atom of size at least a. Notice on the other hand
that for a fixed r, for a large enough N , the distributions Binomial(N, r) assign
to each outcome probability less than a and hence the induced distributions
f(µ) cannot represent them.
• More generally, if µ is purely atomic, then for fixed N , one cannot vary r contin-

uously and find a measurable function fr with fr(µ) capturing the Binomial(N, r).

In other words, the use of a prior with atoms in the subjective model entails not being
able to represent the portfolio problem posed above. It bears repeating — if measurable
functions do not represent the objects of choice due to a poor choice of a prior to work
with, then the subjective approach does not model the choice problem in a flexible
manner. It is the inability of a prior with atoms to describe a wide range of random
phenomena that makes the non-atomicity assumption necessary for domain equivalence
between the objective and the subjective models of risky choice, and non-atomicity is
Postulate P6 of Savage (1954).

For ambiguous problems, the current discussion indicates that domain equivalence
will require, at the very least, the non-atomicity of each prior in the set of priors. The
main aim of this paper is to develop the replacement for non-atomicity appropriate for
the multi-prior approach to choice in the presence of ambiguity.

2.2. Domain Equivalence for Ambiguity: The Subjective Model. The neo-
Bayesian approach to choice under ambiguity replaces the single non-atomic prior, µ, of
risky models with a convex set, Π, of non-atomic priors. Letting f(Π) = {f(µ) : µ ∈ Π}
a set Π is open-minded if each compact convex set of distributions on every compact
metric space X is of the form f(Π) for some measurable f . We begin by showing that
there is a simple canonical set of open-minded priors, and then turn to examples that
illustrate what can go wrong if one models a decision maker with a set of priors that is
not open-minded.

2.2.1. Open-Mindedness is Easy. For risky choice, and indeed for most of probability
theory, statistics, stochastic process theory, and econometrics, there is a simple canon-
ical state space and prior — the unit interval, [0, 1], with the Borel σ-field and the
uniform distribution. For multi-prior models of ambiguous choice, there is a compara-
bly simple canonical set of priors: for each x ∈ [0, 1], let λx be the uniform distribution
on the line {x} × [0, 1] in [0, 1] × [0, 1]; Π◦, the closed convex hull of {λx : x ∈ [0, 1]},
is open-minded. This characterization follows directly from Theorem 1, which shows
that a set of priors, Π, on a state space S is open-minded if and only if

(a) there exists a measurable function fλ : S → [0, 1] such that for each µ ∈ Π,
f(µ) = λ (where λ is Lebesgue measure/the uniform distribution), and
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(b) there exists a measurable function f∆ : S → [0,M ] such that f(Π) = ∆([0,M ]),
M > 0.

To verify that the canonical set Π◦ given above is open-minded, the measurable
function fλ can be defined by fλ(x, y) = y, and the measurable function f∆ can be
defined by f∆(x, y) = M · x.

To interpret these conditions, for open-mindedness, it is necessary and sufficient that
the decision maker with a set of priors Π can describe, as subjective uncertainty, the
uniform distribution on an interval, and that they can describe, again as subjective
uncertainty, knowing only that some distribution on an interval obtains. We believe
that this is a minimal amount of sophistication to require. We now turn to examples
illustrating what the failures of this minimal amount of sophistication entail for the
modeling of decision makers.

2.2.2. Bounded Radon-Nikodym Derivatives. For 0 < c < 1 < d < ∞, let Πc,d be the

convex set of priors µ having densities satisfying c ≤ dµ
dη ≤ d where η ∈ Πc,d is a non-

atomic prior. We examine the sets of distributions induced by measurable functions
taking values in the two point set {x,y} with x ≺ y. This set of induced distributions,
the descriptive range of Πc,d, is the class of convex sets of distributions on {x,y} on
which subjective preference relations make pair-wise comparisons.

While it may be sensible to model a decision maker as having such a set of priors
as Πc,d, this choice has several drawbacks: the set of choices that it can describe is
a closed set and has no interior; on the choice scenarios that can be described by
Πc,d, different attitudes toward ambiguity can make no difference to subjective choice
behavior. The latter implies that ambiguity attitudes cannot be identified from choices
between measurable functions — with Πc,d as the set of priors, the multi-prior model
of preferences between measurable functions cannot be used to investigate the effects
of different ambiguity attitudes.

Let q ∈ [0, 1] denote the probability of the good outcome, y. Consider an arbi-
trary measurable, {x,y}-valued function, f(s) = y1E(s) + x1Ec(s), E a measurable
set. For each f , the set of induced distributions, f(Πc,d), is an interval of probabil-
ities of the good outcome, [a, b] ⊂ [0, 1]. Since a ≤ b, each such an interval can be
represented as a point above the diagonal in [0, 1]× [0, 1]. The descriptive range of
Πc,d, denoted R(Πc,d), is defined as the set of all such intervals, R(Πc,d) := {f(Πc,d) :
f is measurable }. Figure 1 gives a typical example.
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Figure 1: R(Π0.5,3) ⊂ {[a, b] : 0 ≤ a ≤ b ≤ 1}

The set of choices that Πc,d can describe is the union of three line segments, a very
small subset of the two-dimensional set of intervals. The descriptive range contains no
risky choices except for certainty of the worst and the best outcomes, [0, 0] and [1, 1]. It
has (at least) one other distressing property, ambiguity attitudes make no difference to
choices between measurable functions because all monotone preferences give the same
ranking over R(Πc,d) — distinct [a, b] and [a′, b′] in R(Πc,d) either have a′ > a and
b′ > b or else they a′ < a and b′ < b. For the connection with ambiguity aversion,
consider the Hurwicz criteria, for 0 ≤ α ≤ 1 and [a, b] ⊂ [0, 1],

Hα([a, b]) := αmin {p ∈ [a, b]}+ (1− α) max {q ∈ [a, b]} = αa+ (1− α)b. (3)

For α > 1
2 , these preferences can be interpreted as demonstrating ambiguity aversion

— higher weight on the worst possibility and lower weight on the best possibility. For
any two sets [a′, b′] and [a, b] in the descriptive range and any α, β ∈ [0, 1],

Hα([a′, b′]) ≥ Hα([a, b]) if and only if Hβ([a′, b′]) ≥ Hβ([a, b]).

The geometry can be seen in the following Figure, which gives the intersection of
Rc,d and indifference curves for Hα(·) and Hβ(·) for α = 1

3 <
1
2 < β = 2

3 . Notice that
two different attitudes Hα(·) and Hβ(·) rank the pairs of sets in the descriptive range
R(Πc,d) the same way, and hence are not distinguishable if one uses a multi-prior Πc,d

that is not open-minded.
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2.2.3. Larger/Smaller Sets of Priors. In multiple prior models, larger/smaller set of
priors are sometimes identified as representing more/less ambiguity. In some circum-
stances, this is true in a limited sense. In others, it is not.

• A larger set of priors do not necessarily represent a larger set of choices over
outcomes. For 0 < c′ < c < 1 < d < d′, Πc′,d′ strictly contains Πc,d. At issue is
how the use of Πc′,d′ rather than Πc,d changes the choices that can be described.
For any measurable f : S → {x,y}, f(s) = y1E(s) +x1Ec(s), inspection shows
that the interval f(Πc′,d′) is larger than the interval f(Πc,d). However, for any
pair of monotone preferences, �′ and �, f �′ g using Πc′,d′ if and only if f � g
using Πc,d, that is, the different sets of priors do not affect preference rankings
over measurable functions. Perhaps even worse for the purposes of comparing
decision makers, the two sets of priors describe essentially disjoint sets of choices
— their only overlaps are certainty of the worst outcome, [0, 0], and certainty
of the best outcome, [1, 1].
• A smaller set of priors may model a much larger set of choices. Consider

the following one-dimensional subset Π′ = {pθ : θ ∈ [0, 2]} where each prior
pθ ∈ ∆([0, 1]) has a density (with respect to Lebesgue measure λ)

hθ(s) = (2− θ)1[0, 1
2

](s) + θ1( 1
2
,1](s).

This set of priors can describe every interval [a, b] in the triangle {[a, b] : 0 ≤
a ≤ b ≤ 1}.3 To see why, consider the functions

f[a,b](s) := y · 1[0,a
2

]∪( 1
2
, 1
2

+ b
2

](s) + x · 1(a
2
, 1
2

]∪( 1
2

+ b
2
,1](s).

As the variable θ ranges over the interval [0, 2], the corresponding induced
distribution f[a,b](pθ) ranges from putting mass a on y to putting mass b on
y, so that f[a,b](Π

′) = [a, b]. With this smaller set of priors compared to Π0,2,
ambiguity attitude matters — the preferences described by H 1

3
and H 2

3
no

longer agree in their rankings of pairs of functions f and g taking values in two
point sets in the same way.

3However, it only describes a negligible subset of the sets of on three point outcome spaces.
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In the other direction, the largest set of priors, ∆(S), has a very limited descriptive
range. In what follows ρH denotes the Hausdorff distance (its formal definition is
contained below in Section 3), and specialized to the two outcome case, X = {x, y},
the following result tells us that the descriptive range of Π = ∆(S) contains only three
sets, {δx}, {δy}, and ∆({x, y}).

Lemma 1. If f : S → X is measurable and F = cl(f(S)) denotes the closure of the
range of f , then ρH(∆(F ), f(∆(S))) = 0. In particular, f(∆(S)) represents a risky
choice p ∈ ∆(X) if and only if f(s) ≡ p.

2.3. Domain Equivalence for Ambiguity: The Hybrid Model. In Anscombe
and Aumann (1963)’s hybrid model, f : S → ∆(X) and each µ in Π induces a distribu-
tion on ∆(X), notationally, f(Π) ⊂ ∆(∆(X)). In this hybrid model, the convention is to
identify each element Q of ∆(∆(X)) with its average C(Q) where C : ∆(∆(X))→ ∆(X)
is defined by C(Q)(E) =

∫
µ(E) dQ(µ). As seen above, for risky problems, any prior,

atomic or non-atomic, is sufficient to model any problem — simply have f(s) ≡ p for
p ∈ ∆(X). For ambiguous problems however, one cannot be quite so cavalier about the
choice of the set of priors.

2.3.1. Bounded Radon-Nikodym Derivatives. With Πc,d defined as above and x, y, z
being distinct consequences in X, the question we address is how close a measurable
f : S → ∆(X) can come to having C(f(Πc,d)) = ∆({x, y, z}), i.e., representing full
set of distributions as an element of its descriptive range. The answer turns out to
be not very close because descriptive range of Πc,d in the hybrid model is limited as
in the subjective model. To see this, if f(s) is constant at the point mass δx, then
C(f(Πc,d)) = δx, but this is the only way in which {δx} ⊂ ∆({x, y, z}) can be in the
descriptive range for the hybrid model.

In general, the set of probabilities (px, py, pz) ∈ ∆({x, y, z}) that can be of the form
C(f(Πc,d)) must satisfy the following set of inequalities and equalities,

px ∈ [cqx, dqx], py ∈ [cqy, dqy], pz ∈ [cqz, dqz],

px + py + pz = 1, and

qx + qy + qz = 1.

One arrives at these restrictions on the descriptive range by considering the simple
measurable functions of the form f(s) = δx1Ex + δy1Ey + δz1Ez where Ex, Ey, Ez is a
measurable partition of S (which spans all measurable functions for the outcome space
in question) and noticing qx = η(Ex), qy = η(Ey), and qz = η(Ez).

2.3.2. Larger/Smaller Sets of Priors. For 0 < c′ < c < 1 < d < d′, the set of priors
Πc′,d′ strictly contains Πc,d. This increase loosens the set of inequalities given above that
defines the descriptive range C(f(Πc,d)), and C(f(Πc′,d′)) comes closer to ∆({x, y, z})
than C(f(Πc,d)). The largest set of priors, ∆(S), works well in this case — for any
compact, convex A ⊂ ∆(X), if f(S) contains the extreme points of A, then C(f(∆(S)))
is equal to A. This means that the conditions for descriptive completeness given in
Theorem 1 are sufficient for descriptive completeness in the hybrid model, but no
longer necessary.

2.4. On the Wealth Dependence of Choice Behavior. We have seen that open-
mindedness is necessary for subjective models to describe the choice problems encom-
passed by the objective approach. But the contribution of open-mindedness to the
axiomatic theory of subjective choice in the presence of ambiguity is larger than this
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indicates, it changes the meaning and interpretation of axioms. The reason is that the
implications of axioms over preferences on smaller choice domains can be very differ-
ent than their implications on larger domains: on small domains, the functional forms
satisfying the axioms can be quite flexible, and may seem suitable to a rich study of
comparative statics; however, on larger domains, the axioms may rule out much of the
flexibility. This becomes clear by analyzing in particular how wealth differences affect
the choice differences between ambiguous prospects.

Consider an investment problem with varying initial wealth W . Suppose that a
decision maker has a set of priors Π, and that the decision maker is choosing between the
pair of measurable functions f and g which, respectively, yield the sets of distributions
f(Π) and g(Π) on monetary consequences [0,M ]. For the Hurwicz preferences with
parameter (α), the choice is strictly for f over g if and only if

[α ·minµ∈Π

∫
S u(f(s)) dµ(s) + (1− α) ·maxη∈Π

∫
S u(f(s)) dη(s)

]
>[

α ·minµ∈Π

∫
S u(g(s)) dµ(s) + (1− α) ·maxη∈Π

∫
S u(g(s)) dη(s)

]
. (4)

For W > 0 and each state s, let fW (s) = f(s) + W and gW (s) = g(s) + W . This
has the effect of shifting the sets of distributions f(Π) and g(Π) to the right by an
amount W . For W1 < W2, one could imagine that the worst distributions in gW1(Π)
are very salient, e.g. because they include distributions that reduce the decision maker
to penury, so that fW1 � gW1 . Such considerations matter less when wealth is larger,
and this difference might reverse the preference ordering, so that gW2 � fW2 .

To capture such phenomena, Ghirardato et al. (2004) and Cerreia-Vioglio et al.
(2011) provide an axiomatic development of preferences over measurable functions that
allow the weight α to depend on the measurable function f . This means that the choice
is strictly for f over g if and only if H(f) > H(g) where

H(f) = αf ·min
µ∈Π

∫
S
u(f(s)) dµ(s) + (1− αf ) ·max

µ∈Π

∫
S
u(f(s)) dµ(s) and

H(g) = αg ·min
µ∈Π

∫
S
u(g(s)) dµ(s) + (1− αg) ·max

µ∈Π

∫
S
u(g(s)) dµ(s).

Ghirardato et al. (2004) and Cerreia-Vioglio et al. (2011) differ in the conditions on
f and g under which αf must equal αg.

• Proposition 1 (below) implies that an open-minded decision maker satisfying
the Ghirardato et al. (2004) axioms must have the function f 7→ αf constant.
In other words, while their axioms might allow for wealth dependent ambiguity
attitudes, they can only allow it if the preferences are restricted to the small
set of problems that can be modeled with a set of priors that fails to be open-
minded.4

• Proposition 2 (below) implies that for an open-minded decision maker satisfying
the Cerreia-Vioglio et al. (2011) axioms, one cannot change the ambiguity atti-
tudes, which they capture with the weight αf , without simultaneously changing
the risk attitude, captured in the curvature of u(·). In other words, these axioms

4Eichberger et al. (2011) show that this class of preferences must have α identically equal to either 0
or 1 when the state space S is finite. They further show that if Π is the set of all countably additive
probabilities on [0, 1], then the axioms can be satisfied with a constant α. Our contribution is to show
that α must be constant if Π allows for subjective descriptions of all of the uncertainty encompassed
by the objective model.
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can only allow for independence of risk and ambiguity attitudes if the prefer-
ences are restricted to the small set of problems that can be modeled with a set
of priors that fails to be open-minded.

In the first case, one cannot examine how wealth changes the salience of worst cases
when examining choice between ambiguous investment choices. In the second case,
one cannot examine the effects of wealth changes on ambiguous investments without
also changing the attitudes toward risk. The objective approach need have neither
limitation, see Olszewski (2007); Ahn (2008); Dumav and Stinchcombe (2017).

3. Open-Mindedness: The Formal Development

We assume that our decision makers can be thought of as having Kolmogorov’s model
for random phenomena. There is a measure space,5 (S,S) in which randomness occurs.
The utility relevant outcomes arise as measurable functions, typically denoted f or g,
from the state space to the compact metric space of utility relevant outcomes, X.

• §3.1 sets the notation and assumptions.
• §3.2 has three results: Theorem 1 characterizes open-minded sets of priors;

Corollary 1.1 shows that classical statistical models are open-minded; and
Corollary 1.2 gives a useful almost everywhere continuity result.
• §3.3 covers Theorem 2, showing that a set of priors that fails to be open-minded

must fail to describe a dense class of sets.
• §3.4 gives two sufficient conditions for the open-mindedness of a sets of priors

that fail to be countably additive.

3.1. Notation and Assumptions. We assume throughout that singleton sets are
measurable, that is {s} ∈ S for all s ∈ S. Priors on (S,S) are countably additive
probabilities. The set of all possible priors is denoted by ∆(S) and endowed with the
minimal σ-field containing the sets {µ : µ(E) ≤ x}, E ∈ S and x ∈ [0, 1]. Throughout,
the set Π denotes a convex set of priors that is closed in the weakest topology making
the mappings E 7→ µ(E), E ∈ S, continuous.

The compact metric space of utility relevant consequences is denoted X. The set of
countably additive probabilities on the Borel σ-field of X, denoted ∆(X), is a compact,
metric space when given the Prohorov metric,

ρ(p, q) := inf{ε ≥ 0 : for all closed F , p(F ) ≤ q(F ε) + ε and q(F ) ≤ p(F ε) + ε}.

This metric has the property that ρ(pn, p) → 0 if and only if
∫
v dpn →

∫
v dp for all

continuous v : X→ R.
A prior µ and a measurable function f : S → X induce a distribution (also referred

to as image law) in ∆(X). The induced distribution is denoted by f(µ) and defined
as f(µ)(E) = µ({s ∈ S : f(s) ∈ E}). The descriptive range of a set of priors Π
is the class of sets {f(µ) : µ ∈ Π, f is measurable }, denoted compactly by f(Π). We
assume that preferences over the measurable functions are state independent, that
is, if f(Π) = g(Π), then f and g are indifferent. In other words, the state space serves
only to model randomness.

The class of non-empty, closed convex subsets of ∆(X) is denoted by K∆(X) and
metrized by the Hausdorff metric, ρH(A,B) := max (maxp∈A ρ(p,B),maxq∈B ρ(q, A)).

5A non-empty set and a σ-field of subsets.
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3.2. Characterization of Open-Mindedness. The objective approach to ambigu-
ous choice problems starts from preferences on K∆(X). In order for the subjective
approach to cover the same set of problems with a set of priors, it is necessary that
the set of priors can describe, via some X-valued measurable function, every element
of K∆(X).

Definition 1. A measurable, convex set of probabilities, Π, on a measure space (S,S)
is open-minded if for any compact metric space X and any A ∈ K∆(X), there exists a
measurable function fA : S → X such that {fA(p) : p ∈ Π} = A.

Recall that λ denotes the uniform distribution on the Borel σ-field for [0, 1].

Theorem 1. Π is open-minded if and only if

(a) there exist a measurable function fλ : S → [0, 1] such that for each µ ∈ Π,
f(µ) = λ, and

(b) there exists a measurable function f∆ : S → [0, 1] such that f∆(Π) = ∆([0, 1]).

Let Π◦ denote the following canonical set of priors: for each x ∈ [0, 1], λx is the
uniform distribution on {x} × [0, 1] ⊂ [0, 1]× [0, 1], and Π◦ is the closed convex hull of
{λx : x ∈ [0, 1]} in ∆(X). To verify the conditions of Theorem 1, define fλ(x, y) = y
and f∆(x, y) = x.

The conditions in Theorem 1 are minimum needed to guarantee that Π models risky
problems and problems in which the decision maker chooses between different sets
∆(F ). Fix an arbitrary compact metric space (M,d).

• The first condition guarantees that Π models all risky problems with M as
the space of consequences. For any Borel probability p on M , there exits a
measurable g : [0, 1]→M such that g(λ) = p. Therefore {p} = g(fλ(Π)).
• The second condition guarantees that Π models ∆(F ) for any closed F ⊂ M .

By the Borel isomorphism theorem (e.g. Dellacherie and Meyer (1978, Theorem
III.20) or Dudley (2002, Theorem 13.1.1)), there exists a measurable h : [0, 1]→
F that is onto (and h can be taken to be one-to-one with a measurable inverse
if F is uncountable). Therefore h(f∆(Π)) = ∆(F ).

It is striking that these minimal conditions are also sufficient.

3.2.1. The Classical Statistical Models. Breiman et al. (1964) characterize statistical
models of sequences of observations for which there exist consistent estimators. Let Π
be a set of probabilities on RN representing the distributions of sequences of observations
taking values in R.

From Dellacherie and Meyer (1978, Dfn. III.16), (Ω,F) is a Lusin measurable space
if it is measurably isomorphic to a measurable subset of a complete separable metric
space. The set of countably additive probabilities on a Lusin space is itself a Lusin
space with the Prohorov metric.

Definition 2. A set of probabilities Π on a Lusin space (Ω,F) is strongly zero-one
if there exists a measurable Ω′ ⊂ Ω and an onto measurable mapping ϕ : Ω′ → Π such
that for all µ ∈ Π, µ(ϕ−1(µ)) = 1.

Breiman et al. (1964) show that a set of probabilities is strongly zero-one if and only
if there exist consistent estimators for the probabilities in Π. The classical statistical
models take Π to be a smoothly parameterized set {µθ : θ ∈ Θ}, of i.i.d. sequences
where Θ is an open subset of Rp and maximum likelihood estimators are known to be
consistent.
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Corollary 1.1. The closed convex hull of a strongly zero-one set of non-atomic priors
is open-minded.

The “closed convex hull” in the previous arises because we here define open-mindedness
only for closed convex sets. The following are examples of such sets.

• For each x ∈ (0, 1), let µr be the necessarily non-atomic distribution of an i.i.d.
sequence of Bernoulli(r) random variables in the sequence space Ω = {0, 1}N.
To verify that this is a strongly zero-one set, define ψ(ω) = lim infT

1
T

∑
t≤T ωt,

set Ω′ = ψ−1((0, 1)), and define ϕ(ω) = µψ(ω).
• More generally, let Θ be an uncountable, measurable subset of a Lusin space,

and let θ 7→ pθ be a continuous, one-to-one mapping from Θ to the set of non-
degenerate distributions on a complete separable metric space (M,d). For each
θ, let µθ be the corresponding distribution on MN of an i.i.d. sequence of random
variables having distribution pθ. Let Ω′ denote the set of ‘ergodic’ sequences in Ω
with long run distribution equal to one of the Pθ, that is, limT

1
T

∑
t≤T 1E(ωt) =

Pθ(E), E ⊂ M a measurable set. For each ω′ ∈ Ω′, define ϕ(ω′) equal to the
corresponding µθ.

3.2.2. Almost Everywhere Continuity. For non-atomic probabilities, Skorohod (1956,
Thm. 3.1.1) shows that one can, without loss, replace convergence in distribution with
almost everywhere convergence — if a probability µ is non-atomic and ρ(pn, p) → 0,
then there exist measurable functions f, fn such that f(µ) = p, fn(µ) = pn and µ({s :
fn(s) → f(s)}) = 1. This replacement makes many arguments more transparent. For
open-minded sets of probabilities, one has the analogous continuity result for sets of
distributions. The following shows that if the set of induced distributions, An, converge
to a set A, and Π is open-minded, then it is without loss to assume that the measurable
functions converge µ-almost everywhere for each µ ∈ Π.

Corollary 1.2. If Π is open-minded and ρH(An, A) → 0 in K∆(X), then there exist a
sequence of measurable functions f, fn with f(Π) = A, fn(Π) = An, and µ({s : fn(s)→
f(s)}) = 1 for each µ ∈ Π.

Comments. Dumav and Stinchcombe (2016) gives an alternate characterization of
open-mindedness, “measurably mutually orthogonal and simultaneously Skorohod,”
that is intermediate between being strongly zero-one and the simpler conditions in
Theorem 1, and it proves the continuity result, Corollary 1.2. As well as being more
clearly interpretable, the simplicity of the conditions in Theorem 1 greatly simplify the
proofs.

3.3. Failures of Open-Mindedness. We begin with the general results about the
small descriptive range for single priors having an atom and for sets of priors that fail
to be open-minded. We then turn to the parallel result for sets of priors that fail to be
open-minded.

For subjectively risky choice models, non-atomicity is crucial for domain equivalence.
If a prior µ has an atom of size a, then f(µ) has an atom of size a or greater. The
following tells us that the descriptive range of a single prior with an atom must miss
(more than) a dense set when the utility relevant outcomes belong to [0,M ].

Lemma 2. For any a > 0 the set of probabilities
{
p ∈ ∆([0,M ]) : there exists x0 ∈

[0,M ] s.t. p(x0) ≥ a
}

is closed and nowhere dense.

A similar miss-a-dense-set result holds for sets of priors that fail to be open-minded,
though the descriptive range need not be closed.
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Theorem 2. If every open set in X is uncountable and F is a closed, convex set of
priors that fails to be open-minded, then there is a dense subset of K∆(X) that does not
belong to the descriptive range of F.

The examples in the previous section showed that for several previously suggested
sets of priors, the closure of the descriptive range has empty interior. This is much
stronger than missing a dense set.

3.4. Open-Mindedness without Countable Additivity. It is sometimes conve-
nient to work with priors that are finitely but not necessarily countably additive. In
this case, the induced measures, say on [0,M ], may not be countably additive. We give
two sufficient conditions for the open-mindedness of a set of priors that may not satisfy
countable additivity. We do not have necessary conditions.

For this subsection, priors on (S,S) are non-negative, finitely additive set functions
µ : S → [0, 1] satisfying µ(S) = 1. The set of priors is ∆fa(S), and this set is given
the weak∗-topology — a net µi → µ iff

∫
f dµi →

∫
f dµ for all bounded measurable

f : S → R, equivalently, iff µi(E)→ µ(E) for all measurable E.
Finitely additive probabilities p and q on the Borel σ-field of X are continuously

equivalent if
∫
v dp =

∫
v dq for all continuous v : X → R. If p and q are countably

additive, continuous equivalence implies equality, but this is not true if p or q fail to
be countably additive (Corbae et al., 2009, §9.8.a). The set of equivalence classes
of probabilities on the Borel σ-field of X, denoted ∆fa(X), is a compact, pseudo-
metric space with the Prohorov metric, ρ(·, ·). The non-empty, ρ-compact, convex
subsets of ∆fa(X) are denoted K∆fa(X), and meterized by the Hausdorff pseudo-metric,

ρH(A,B) := max (maxp∈A ρ(p,B),maxq∈B ρ(q,A)).

In the weak∗ topology, ∆fa(S) is compact, and for any measurable f : S → X, the
mapping µ 7→ f(µ) to the pseudo-metric space ∆fa(X) is continuous. Hence, for any
measurable f , f(Π) is a closed, hence compact, convex subset of ∆fa(X).

For risky choice, non-atomicity is still necessary and sufficient for domain equivalence.
For necessity, note that Lemma 2 still applies in the pseudo-metric space ∆fa(X). For
sufficiency we have the following.

Lemma 3. If µ ∈ ∆(S) is non-atomic and p ∈ ∆fa(X), then there exists a measurable
f : S → X such that ρ(f(µ), p) = 0.

The following gives sufficient conditions for open-mindedness.

Theorem 3. If Π is a convex, weak∗ compact subset of priors, then either of the
following conditions are sufficient for Π to be open-minded.

(a) Π is the weak∗-closed, convex hull of a countably infinite set of disjointly sup-
ported, non-atomic probabilities.

(b) Π is the weak∗-closed, convex hull of an open-minded set of countably additive
probabilities, Πca.

Comments. Theorem 3(b) shows that one can take the weak∗ closure — in the class
of finitely additive probabilities — of any open-minded sets of countably additive prob-
abilities and retain open-mindedness. Theorem 3(a) seems to involve only countable
sets of probabilities, but taking the weak∗ closure adds a set of mutually orthogonal (a
generalization of disjointly supported) probabilities having cardinality larger than the
continuum. Stinchcombe (1997) gives several general techniques for expanding state
space choice models so as to retain the structure of the problems being modeled while
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avoiding the paradoxes that can arise with failures of countable additivity. Unfortu-
nately, none of these approaches has yielded a characterization of open-mindedness for
finitely additive probabilities.

4. Axiomatics in the Presence of Open-Mindedness

Open-mindedness, through the larger domain of problems that it entails, changes the
meanings, implications and interpretations of previously developed axiomatic formula-
tions of subjective preferences in the presence of ambiguity. We show this by examining
the additional restrictions that open-mindedness implies for the functional forms that
these preferences take.

4.1. The α−MEU model. For fixed Π, continuous vNM expected utility function
v : X → R, and measurable f, g : S → X, define the corresponding mappings vf , vg :
Π → R by vf (µ) =

∫
v ◦ f dµ and vg(µ) =

∫
v ◦ g dµ. Ghirardato et al. (2004) require

that αf = αg in their modified Hurwicz criterion if vf (·) and vg(·) are positive affine
transformations of each other on the set Π.

Proposition 1. If Π is open-minded, f, g : S → X are measurable, v : X → R is
continuous and neither vf (·) nor vg(·) is constant, then there exists f ′, g′ : S → X such
that f ′(Π) = f(Π), g′(Π) = g(Π), and the mappings vf (·) and vg(·) are positive affine
transformations of each other.

Comments.

• With state independence, [f(Π) = g(Π)]⇒ [f ∼ g], this proposition yields the
constancy of f 7→ αf : state independence and f(Π) = f ′(Π) yield αf = αf ′ ;
g(Π) = g′(Π) yields αg = αg′ ; since vf ′(·) and vg′(·) are affine transformations
of each other, αf ′ = αg′ ; combining, αf = αg.
• Much less than the descriptive completeness of Π can force the f 7→ αf mapping

to be constant. For example, if Π = {βµ+(1−β)ν : c ≤ β ≤ d}, 0 ≤ c < d ≤ 1,
then for any pair f and g not delivering constant utilities on Π, vf (·) and vg(·)
are positive affine transformations of each other on Π.

4.2. Open-Mindedness and MBA Preferences. If one can loosen the conditions
under which one must have αf = αg for preferences with a variable α-Hurwicz rep-
resentation, then one can potentially encompass more variability in e.g. the wealth
dependence of attitudes toward ambiguity. The axiomatization of monotonic Bernoul-
lian and Archimedean (MBA) preferences in Cerreia-Vioglio et al. (2011) requires that
αf = αg only in the case that the mappings vf (·) and vg(·) are equal, that is, only in the
case that for each µ ∈ Π,

∫
u(f(s)) dµ(s) =

∫
u(g(s)) dµ(s). This seems a very stringent

condition, which, hopefully means that there is a great deal of flexibility in how αf can
depend on f . However, in the presence of state independence and an open-minded set
of priors, the following implies that αf = αg under the much weaker condition that the
ranges of vf (·) and vg(·) are equal.

Proposition 2. Suppose that Π is open-minded, that f, g : S → X are measurable,
and that v : X → R is continuous. If the sets vf (Π) and vg(Π) are equal, then there
exist measurable f ′, g′ : S → X such that f ′(Π) = f(Π), g′(Π) = g(Π) and for all µ ∈ Π,
vf ′(µ) = vg′(µ).
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4.3. The Smooth Ambiguity Model. The Klibanoff et al. (2005) smooth model of
ambiguity aversion also specifies preferences over measurable functions using sets of
priors, Π. However, instead of preferences depending on comparisons between f(Π)
and g(Π), they use a distribution, Q, on Π, and compare the distributions on f(Π) and
g(Π) that are induced. Here too, the open-mindedness of Π allows the subjective and
the objective versions of the model to cover the same set of choices.

For measurable functions, f � g in the smooth ambiguity approach if and only if

Smooth(f) :=

∫
Π
ϕ(〈u, f(µ)〉) dQ(µ) > Smooth(g) :=

∫
Π
ϕ(〈u, g(µ)〉) dQ(µ).

There are several parts to this representation: Π is a set of priors and Q ∈ ∆(Π) is
a distribution on Π; u(·) is the von Neumann-Morgenstern utility function for risky
choice; f(µ), g(µ) ∈ ∆(X); 〈u, f(µ)〉 is the integral

∫
X u(x) df(µ)(x) (with the same

definition for g); and ϕ : [0, 1]→ [0, 1] is increasing, concave and onto.
Let A = f(Π), B = g(Π), and let p and q in ∆(∆(X)) denote the distributions on A

and B that arise when picking µ according to the distribution Q. The objective version
of these preferences are represented by p � q if and only if

Smoothcov(p) :=

∫
A
ϕ(〈u, r〉) dp(r) > Smoothcov(q) :=

∫
A
ϕ(〈u, r〉) dq(r).

The question is whether every p and q can be induced by some measurable f and g
for some Π and some Q ∈ ∆(Π).

Proposition 3. There exists an open-minded Π and a non-atomic Q ∈ ∆(Π) that
allows for representation of every p in ∆(∆(X)), that is, there exists an f : S → X such
that p is the distribution of f(µ) when µ ∈ Π is distributed according to Q.

Comments.

• If Q is a non-atomic distribution on a measurable space (Z,Z), then the Sko-
rohod representation theorem tells us that the measurable functions f : Z → X
can induce any distribution on X. Here Q is a distribution on ∆(Z) but the
measurable functions still map Z to X and one wishes to induce a distribution
on ∆(X).
• One can construct non-atomic distributions Q on an open-minded set of priors

Π for which the representation result just given does not hold, but we do not
have a characterization of the set of Q for which it does hold.
• As with the previously studied preferences, open-mindedness allows for tractable

comparative statics analyses — one does not need to check that the choices are
describable as the necessary first step. For example, Proposition 3 guarantees
that different choices of f or g allow one to e.g. keep A fixed and vary p ∈ ∆(A)
to any q ∈ ∆(A). This would make it possible to have q be a mean preserving
spread of p, which captures a sense of there being more ambiguity.

5. Summary and a Coda

There are two main results in this paper. The first is a characterization theorem,
a closed convex set of priors can induce the uniform distribution on an interval and
it can induce the set of all distributions on an interval if and only if it can induce
any convex set of distributions on any compact metric space. The second gives the
pertinent implication of not meeting the given conditions — if a closed convex set of
priors does not meet these criteria, then it must necessarily fail to describe a dense
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class of convex sets. We view our results as showing that the costs of assuming open-
mindedness are small and the costs of not assuming it large. We are not arguing that
modelers should avoid sets of priors that fail open-mindedness if they think the set
of priors is appropriate. Rather, we are arguing that second result and the examples
demonstrate that the costs of using sets that fail to be open-minded are larger than
was known.6

If a subjective state space model cannot describe a class of options, then it does not
specify preferences over that class. The incompleteness of preferences can be drastic,
many of the commonly used sets of priors can describe so little as subjective uncertainty
that they cannot be used to pose questions about about the effects of ambiguity aversion
on choice. A central theoretical requirement in economic modeling is the ability to
answer questions about how decisions change as the situation faced by the decision
maker changes. The ability to conduct such comparative statics analyses with multiple
prior models requires that the changes in the situations can be described inside the
model. With an open-minded set of priors, it is not necessary to check this before
beginning the analysis.

As to other benefits of assuming open-mindedness, the canonical set of priors is as
easy to work with as the unit interval in probability theory. It provides an easy way
to check intuitions and to visualize proofs. Other familiar examples of open-minded
sets of priors include the (closed convex hull of) parametrized sets of distributions of
sequences of i.i.d. observations used in classical statistical models provide open-minded
sets of priors. Whichever open-minded set of priors one chooses to work with, we
reap the benefit of having the objective and subjective approaches to ambiguous choice
complementing and informing each other.

Beyond tying together disparate approaches to choice theory, open-mindedness pro-
vides a window on the implications of axiomatic approaches to preferences over measur-
able functions. The extant work has shown that preferences satisfying very weak sets
of axioms have representations involving a convex sets of priors Π and various integral
formulations of the utility functions over induced sets of distributions. It is the combi-
nation of Π with the class of measurable functions that determines what choices can be
represented, and what can be represented matters for the meaning and interpretation
of the axioms.

One can see this in the allowable patterns of wealth dependence of ambiguity atti-
tudes for both the Ghirardato et al. (2004) and the Cerreia-Vioglio et al. (2011) axioms.
The functional forms are variants of the Hurwicz criterion in which the weight on the
worst expected utility and the best expected utility can, in principle, vary with the
measurable function inducing the set of distributions. If the set of priors can describe
the full range of choices, i.e. if it is open-minded, then the weight on the worst utility
outcome cannot vary at all with the first set of axioms, and one cannot independently
change risk attitudes and the weights with the second set. Flexibility similar to hav-
ing have ambiguity attitudes be wealth dependent are also available if one uses an
open-minded set of priors in the smooth ambiguity model.

The smooth ambiguity model of Klibanoff et al. (2005) offers a flexible subjective
framework in which a decision maker has ambiguous beliefs about the lotteries their
choice yields. In this approach, the functional form involves a distribution over the set
of priors, and this distribution in turn induces a distribution over distributions on the
space of utility relevant consequences. Here again, comparative statics are not available

6Our thanks to an anonymous referee who made it very clear that we were not at all clear about this
point in the previous version of this paper.
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until one has checked what can be described, and here again, open-mindedness can be
used to render this first step superfluous.

A coda. Halmos (1960, p. vi) wrote, in his textbook about “naive” set theory, that
a prospective mathematician should “read it, absorb it, and forget it.” It is our hope
that choice theorists can treat open-minded sets of priors in much the same way. That
they can get on with modeling regularities in choice behavior in the face of ambiguity,
knowing, even if only in the back of their minds, that the people in their models can
represent as much subjective uncertainty as the theory requires of them.
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Proofs

Throughout, we use two results. The first is the Borel isomorphism theorem (Del-
lacherie and Meyer, 1978, Theorem III.20) or (Dudley, 2002, Theorem 13.1.1). A bi-
jection between measurable spaces is a measurable isomorphism if it is measurable
and its inverse is also measurable. Let B be a measurable subset of a complete sepa-
rable metric space (M,d) and B′ a measurable subset of a complete separable metric
space (M ′, d′). The Borel isomorphism theorem says that for B and B′ are measurably
isomorphic if and only if they have the same cardinality.

The second result provides an extension of Skorohod (1956, Thm. 3.1.1). Blackwell
and Dubins (1983) show that for any complete separable metric space (M,d) there
exists a jointly measurable bM : ∆(M)× [0, 1]→M such that

(i) for all p ∈ ∆(M), the image measure of λ under the function bM (p, ·) is equal to
p, that is, bM (p, λ) = p, and

(ii) if ρ(pn, p) → 0, then bM (pn, ·) → bM (p, ·) almost everywhere λ, that is, λ({x ∈
[0, 1] : bM (pn, x)→ bM (p, x)}) = 1.

We will also use the canonical set of priors, Π◦, defined as the closed convex hull of
the set of uniform distributions, λx, on the line segments {x} × [0, 1] ⊂ [0, 1] × [0, 1].
Every element of Π◦ can be expressed as an integral of the λx with respect to some
countably additive probability η on the set of λx, x ∈ [0, 1].
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Proof of Theorem 1. Fix A ∈ K∆(X) and let ψ : [0, 1] ↔ A be a measurable iso-
morphism. Define fA(s) = bX(ϕ(f∆(s)), fλ(s)) where bX(·, ·) is the Blackwell-Dubins
function. We verify that fA(Π) = A by showing the containment in two directions.

The first containment: fA(Π) ⊂ A. For each µ ∈ Π, fA(µ) ∈ A because ψ([0, 1]) = A,
A is a closed convex set, and fλ(µ) = λ.

The other direction: A ⊂ fA(Π). Fix p ∈ A and let x = ψ−1(p). By definition, there
exists µx ∈ Π such that f∆(µx) is the point mass δx. Since fλ(µx) = λ, fA(µx) = p. �

Proof of Corollary 1.1. Let Π′ be a strongly zero-one set of non-atomic priors and let
Π be its closed convex hull. Recall that for a random variable X taking values in [0, 1]
and having continuous cdf FX(·), the random variable Y = FX(X) has the uniform
distribution.

From the characterization of strongly zero-one sets in Dumav and Stinchcombe
(2016)[Theorem 1 and §3.2] we obtain simultaneously two measurable isomorphisms
ϕ : Π′ ↔ [0, 1] and g : Ω′ ↔ [0, 1] such that for all r ∈ [0, 1] and for all µ ∈ ϕ−1(r),
µ(g−1(r)) = 1. Consider the mapping µ 7→ Fµ(t) := µ(g−1([0, t]) from Π′ to the cdf of
the distribution g(µ). Because µ is non-atomic and g(·) is a measurable isomorphism,
the distribution g(µ) has a continuous cdf. The function fλ(ω′) := Fϕ−1(g(ω′))(g(ω′))

is measurable, as it is a composite of two measurable functions, and for each µ ∈ Π′,
fλ(µ) = λ.

By the Borel isomorphism theorem, there exists a measurable bijection ψ : Π↔ [0, 1].
Define f∆(ω) = ψ(ϕ(ω)). For each µ ∈ Π′, f∆(µ) is point mass on some x ∈ [0,M ].
Since Π is the closed convex hull of Π′, f∆(Π) = ∆([0, 1]). �

Proof of Corollary 1.2. Let A,An be a sequence in K∆(X). We will show the
existence of a sequence of measurable functions, h, hn : [0, 1]→ ∆(X), with h([0, 1]) =
A, hn([0, 1]) = An and hn(r) → h(r) for each x ∈ [0, 1]. Given such a sequence of
functions, define f(s) = bX(h(f∆(s)), fλ(s)) and fn(s) = bX(hn(f∆(s)), fλ(s)), where
bX(·, ·) is the Blackwell-Dubins function. Because [ρ(pn, p)→ 0] implies that bX(pn, ·)
converges to bX(p, ·) almost everywhere λ and ρH(An, A)→ 0, the result follows.

To define the sequence h, hn with the requisite properties, let ψ : [0, 1] ↔ [0, 1]N be
a measurable isomorphism, and let {vn : n ∈ N} be a countable sup-norm dense set
of continuous functions mapping X to [0, 1]. The identification p ↔ {

∫
vn dp : n ∈ N}

defines a linear homeomorphism between ∆(X) and a compact convex K ⊂ [0, 1]N.
Meterize the product topology on [0, 1]N with a strictly convex metric (e.g. the `2
norm). Define the mapping n(A, v) as the nearest point in A to v. Because the metric
is strictly convex, this mapping is jointly continuous. Finally, define h(r) = n(A,ψ(r))
and hn(r) = n(An, ψ(r)). �

Proof of Lemma 2. Let pn be a sequence in A with ρ(pn, p) → 0. We show that
p ∈ A. Let xn ∈ [0,M ] satisfy pn({xn}) ≥ a. Any subsequence of pn has a further
subsequence, still converging to p, for which xn → x for some x ∈ [0,M ]. By the
definition of ρ(·, ·), p({x}) ≥ a. If the closed set A had an interior, it would have to
contain a probability having a density with respect to Lebesgue measure, contradicting
the existence of an atom. �

Proof of Theorem 2. Because the composition of measurable functions is measurable
and F fails to be open-minded, no open-minded subset of K∆(X) can belong to R(F).
It is therefore sufficient to show that the class of open-minded sets is dense in K∆(X).
To this end, pick arbitrary A ∈ K∆(X) and ε > 0. Let Af denote a finite set of extreme
points for A such that d(A, co(Af )) < ε/2. For any δ > 0 and x ∈ X, let Bδ(x)
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denote the necessarily uncountable, open ball with radius δ > 0 around x ∈ X. By
the Borel isomorphism theorem, there exists ϕx,δ : [0, 1]× [0, 1]↔ Bδ(x) where ϕx,δ is
a measurable bijection with measurable inverse. Let Πx,δ denote the open-minded set
ϕx,δ(Π

◦) where Π◦ is the canonical open-minded set of priors given above. Pick δ < ε/2
such that the points in Af are at least 2δ from each other. Since the support sets are
disjoint, the closed convex hull of the set ∪x∈Af

Πx,δ is open-minded and within ε of
A. �

The following argument closely parallels the proof for countably additive priors, but
unlike the countably additive case, it does not extend to complete separable metric
spaces.

Proof of Lemma 3. Fix p ∈ ∆fa(X). Let En be a nested sequence of measurable
partitions of X into elements having maximal diameter less than 1/2n. Construct a
corresponding sequence of nested partitions of S, An having µ(An) = p(En) for each
En ∈ En. Pick xk,n ∈ Ek,n ∈ En and define fn =

∑
k xk,n1Ek,n

. For each s, fn(s)
is a Cauchy sequence, hence converges. The function f(s) := limn fn(s) is measur-
able, we must show that f(µ) is continuously equivalent to p. Let v : X → R be a
continuous, hence bounded, function. Being the uniform limit of the fn, f satisfies∫
S v(f(s)) dµ(s) =

∫
X v(x) dp(x) for all continuous v : X→ R. �

Proof of Theorem 3. Let {µn : n ∈ N} be the countably infinite set of non-atomic
probabilities supported on with disjoint supports, let A ∈ K∆fa(X), and let {pn : n ∈ N}
be a countable dense subset of A. From Lemma 3, there exists a measurable f : S → X
with f(µn) = pn. Taking weak∗ closure in ∆fa(X) and using the continuity of the
µ 7→ f(µ) mapping, ρH(f(Π), A) = 0. For the second statement, let A′ be the set
of countably additive probabilities on X at distance 0 from A. Pick a measurable
f : S → X such that f(Πca) = A′. Again, taking weak∗ closure in ∆fa(X) and using
the continuity of the µ 7→ f(µ) mapping, ρH(f(Π), A) = 0. �

Proof of Proposition 1. Let A = f(S) and B = g(S). Define the non-degenerate
interval [af , bf ] = {

∫
v dp : p ∈ A} and [ag, bg] = {

∫
v dq : q ∈ B}. We striate A and

B as follows: for u ∈ [af , bf ], define Au = {p ∈ A :
∫
v dp = u; for u ∈ [ag, bg], define

Bu = {q ∈ B :
∫
v dq = u. It is easy to show that there exists a jointly measurable

mf : [0, 1]× [0, 1]→ A such that for all x ∈ [0, 1], mf (x, ·) is a measurable isomorphism
between [0, 1] and Aaf+(bf−af )x. In a similar fashion, there exists a jointly measurable

mg : [0, 1]×[0, 1]→ B such that mg(x, ·) is a measurable isomorphism between [0, 1] and
Bag+(bg−ag)x. For later purposes, note that x 7→ af +(bf −af )x and x 7→ ag+(bg−ag)x
are positive affine transformations of each other.

Because Π is open-minded, there exists hλ : S → [0, 1] with hλ(µ) = λ for each
µ ∈ Π, and there exists hD : S → [0, 1] × [0, 1] such that hD(Π) = ∆([0, 1] × [0, 1]).
Define

f ′(s) = bX(mf (hD(s)), hλ(s)) and g′(s) = bX(mg(hD(s)), hλ(s)).

For each µ ∈ Π, f ′(µ) is a convex combination of probabilities in A and g′(µ) is
a convex combination of probabilities in B. Since A and B are convex, f ′(Π) ⊂ A
and g′(Π) ⊂ B. For any (x, y) ∈ [0, 1] × [0, 1], let µ(x,y) ∈ Π put mass 1 on h−1

D (x, y)
(because δ(x,y) ∈ ∆([0, 1]× [0, 1]), there exists such a µ(x,y)). Each p ∈ A and q ∈ B is
of the form f ′(µ(x,y)) and g′(µ(x,y)) respectively, so A ⊂ f ′(Π) and B ⊂ g′(Π). Finally
vf ′(·) is a positive affine transformation of vg′(·) because x 7→ af + (bf − af )x and
x 7→ ag + (bg − ag)x are positive affine transformations of each other. �
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Proof of Proposition 2. Let [a, b] = {
∫
v ◦ f dµ : µ ∈ Π} = {

∫
v ◦ g dµ : µ ∈ Π}.

The only increasing affine transformation of [a, b] with itself is the identity. Apply
Proposition 1. �

Proof of Lemma 1. F contains f(S) so that ∆(F ) contains f(∆(S)). The extreme
points in ∆(F ) are the point masses δx, x ∈ F . Because both ∆(F ) and f(∆(S)) are
convex, it is sufficient to show that for every ε > 0, there exists a probability in f(∆(S))
within ρ-distance of δx. Since x ∈ F , there exists a sequence sn in S with f(sn) → x.
Because singletons are measurable in S, ∆(S) contains δsn , point mass on each sn.
Finally, ρ(f(δsn), δx) = ρ(δxn , δx)→ 0. The second assertion is immediate. �

Proof of Proposition 3. Let Π be the canonical set of priors Π◦ ⊂ ∆([0, 1] × [0, 1])
given above, and let Q ∈ ∆(Π) be the uniform distribution on {λx : x ∈ [0, 1]}. Fix
a p ∈ ∆(∆(X)) and let ϕ : [0, 1] → ∆(X) have the property that ϕ(λ) = p. Define
f : [0, 1] × [0, 1] → X by f(x, y) = bX(ϕ(x), y) where, again, bX : [0, 1] ×∆(X) → X is
the Blackwell-Dubins function. When λx is picked, f(λx) = ϕ(x). Since Q picks the x
according to λ, p is the distribution of f(µ) when µ is distributed according to Q. �
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