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Abstract. A population game consists of a non-atomic, finitely additive prob-

ability space of agents, a set of actions, and, for each agent, a utility function

that depends continuously on their action and the population distribution of
actions. If the probability is not countably additive, then approximate equi-

libria may not exist. Existence failures are due to the positive mass of agents

that can only be represented as elements of the empty set in the original
model. These mislaid agents can be characterized using nonstandard analysis

or compactification-based representations of the distribution of utility func-

tions. Restoring the missing agents yields equilibrium existence and the finite
approximability of equilibria.

1. Introduction

A finite, positive, non-atomic measure space can model a large population of
“agents.” If the measure is non-atomic, then no individual agent’s choice of ac-
tion can change population aggregates. With agents’ utility depending on their
own choice and population aggregates, this class of models provides an extremely
powerful tool for the study of population-wide optimizing behavior.

A probability space (T, T , µ) in which µ fails to be countably additive is one
that, following Uhl (1984) “was unfortunate enough to have been cheated on its
domain.” The “cheated” aspect is the positive mass that has no representation,
but connotations of the words “unfortunate” and “cheated” can be too negative.
There are many cases in which such probabilities are a useful device, allowing one
to capture limit phenomena more easily. However, in other cases, the mass that
is missing a representation is quite “unfortunate,” it can mean that the model is
mis-leading.

This paper studies non-atomic population games when the measure space of
agents, (T, T , µ), is finitely additive but may not be countably additive. This is
another case in which the results can be misleading. For some games, the set
of agent characteristics that have no representation can, seemingly, lead to lack of
even approximate equilibria. Restoring the mislaid agents remedies this and related
problems.

1.1. Non-atomic Population Games. A non-atomic population game is speci-
fied by three objects: a non-atomic probability space of agents or “types,” (T, T , µ);
a compact metric space of actions, A, that each t ∈ T chooses from; and for each
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t ∈ T , there is a utility function, G(t), that is jointly continuous in own choices
and the population distribution of choices. If type t chooses an action according to
a(t)(·), a probability on A, then the population distribution of choices, νa ∈ ∆(A)
is defined by νa(B) =

∫
a(t)(B) dµ(t), B a Borel measurable subset of A.

Let C(A × ∆(A)) denote the set of continuous functions on A × ∆(A) with
the supnorm topology and associated Borel σ-field. Assume that t 7→ G(t) ∈
C(A×∆(A)) is measurable. A measurable t 7→ a(t) is an ε-equilibrium if

(1) µ({t : G(t)(a(t), νa) ≥ max
b∈A

G(t)(b, νa)− ε}) ≥ 1− ε,

and is an equilibrium if it is a 0-equilibrium.
There is no loss in assuming, as we do from here on, that ‖G(t)(·, ·)‖∞ ≤ +1 for

all t. Letting U = U(A ×∆(A)) denote the unit ball in C(A ×∆(A)), this is the
assumption that G : T → U.

The induced distribution on U is denoted p = G(µ) and defined by p(E) =
µ(G−1(E)). With the sup norm topology, U is a complete separable metric space
(csm). A probability q on a complete separable metric space (M,d) is tight if
for every ε > 0, there exists a compact K such that q(K) > 1 − ε. Strictly
weaker than tightness is neighborhood-tightness (n-tightness), for every ε > 0,
there exists a compact K such that that for every δ > 0, q(Kδ) > 1 − ε where
Kδ is the δ-neighborhood of K. Strictly stronger than tightness is conditional
tightness (c-tightness), which requires that for every measurable E with q(E) > 0,
the conditional probability q(·|E) is a tight probability on the metric space (E, d).

Results here, combined with small variants of examples in Khan et al. (2016),
given in §2, show the following.

• If p is c-tight, then equilibria exist and the approximate equilibrium corre-
spondence is continuous.
• If p is n-tight, then ε-equilibria exist for every ε > 0, but equilibria might

not exist.
• If p is not n-tight, then ε-equilibria may not exist for a range of ε.

The existence problems arise because a game model failing c-tightness has a
positive mass set of agents with utility functions that seem to be elements of the
empty set. This paper gives two methods for finding these mislaid agents and utility
functions and restoring them to the game, and both methods lead to equilibrium
existence and the continuity of the approximate equilibrium correspondence. The
empty set that needs filling arises from failures of countable additivity.

1.2. The Empty Set Marks the Spot. A finitely additive probability p is count-
ably additive if for every En ↓ ∅, p(En) ↓ 0, and it is purely finitely additive if
there exists a sequences of measurable sets En ↓ ∅ with p(En) ≡ 1. Limits strictly
between 0 and 1 are possible. From Yosida and Hewitt (1952), any finitely additive
p can be decomposed into a purely finitely additive part, qpfa, and a countably
additive part, qca,

(2) p = δqpfa + (1− δ)qca.
The δ in the composition is always unique, and is equal to the supremum of the set
of possible values of limn p(En) when En ↓ ∅.

Kingman (1967) calls the δ the discrepancy of the probability. He shows that
the lack of representation for the positive mass in the sets En ↓ ∅ leads to e.g.
Poisson jump processes or Brownian motions with polynomial time paths. The mass
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that has no representation in the space of polynomials is the mass that should be
assigned to time paths with jumps or with unbounded variation over finite intervals.

For population games, if the discrepancy of p = G(µ), the population distribution
of utility functions, is strictly positive, then it gives the mass of the agents that
are missing representations for their utility functions. Their utility functions have
been mislaid, and ‘should’ belong to ∩nEn, but En ↓ ∅ prevents this. The agents
too have been mislaid because G−1(En) ↓ ∅ although µ(G−1(En)) ≥ δ > 0.

1.3. Representing the Mislaid Agents and Utility Functions. This paper
presents two methods to recover, from µ and p = G(µ), representations of the
mislaid utility functions and agents.

• The first method replaces the spaces involved in specifying the game by
their counterparts in Robinson’s non-standard model for real and functional
analysis. The sets En ↓ ∅ correspond to sets ∗En, which are internal subsets
of the non-standard version of the unit ball, ∗U, of utility functions. Nested
sequences of internal sets have a finite intersection property — ∩n∗En = ∅
if and only if ∗EN = ∅ for some finite N . As each EN is non-empty, the
mislaid utility functions can be found in the non-empty set ∩n∗En, and the
mislaid agents in the inverse image of this set in ∗T .
• The second involves imbedding the space of utility functions, U, as a dense

subset of a compact Hausdorff space, Û, so that p has a unique countably

additive extension, p̂ that extends p in the sense that p̂(Ên) = p(En).
Being countably additive probability on a compact space, there is a nested

collection of non-empty compact Kn ⊂ Ên that “nearly fill” the Ên. The

nested sequence of compact sets, {K̂n : n ∈ N}, has the finite intersection

property, hence has non-empty intersection, implying that ∩nÊn is not

empty. The mislaid utility functions belong to ∩nÊn, and the mislaid

agents to T̂ , the appropriate compactification of T .

Restoring the mislaid agents and their utility functions to the model yields count-
ably additive games. After restoration, these game have equilibria and a continuous
approximate equilibrium correspondence. With either method, the basic properties
of the mislaid agents and utility functions can be recovered from the information
in µ, the population measure, and p, the induced distribution of utility functions.
The most basic properties of the utility functions depend on the tightness prop-
erties of p. For the nonstandard analysis extensions: if p is n-tight, then the new
utility functions are nearstandard in ∗U; and if p is not n-tight, then a positive
mass of agents have utility functions that are not close to any element of U. For
the compactifications: if p is n-tight, then with probability 1, the utility functions

belong to U after it has been imbedded in Û; and if p is not n-tight, then a positive

mass of agent utility functions belong to the complement of U in Û.

1.4. Outline. The next section covers, in decreasing order of stringency, the c-
tightness, tightness, and n-tightness of finitely additive probabilities on complete
separable metric spaces (such as U). Because c-tightness is equivalent to countable
additivity, games that have c-tight population measures have equilibria and the
limits of ε-equilibria are equilibria. We will see that n-tight games have ε-equilibria
for each ε > 0, and examples will show that such games may not have have equi-
libria. Other examples will show that games that fail n-tightness may, or may not,
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have ε-equilibria. Following this, §3 defines the nonstandard versions of population
games and gives the corresponding equilibrium existence and finite approximability
results. By taking the appropriate quotient spaces, §4 develops a useful represen-
tation of the requisite compactification of the space of utility functions and gives
the existence and finite approximability results for equilibria in the compactified
games. The final section discusses the relations between this work and a literature
in which finitely additive probabilities, as a tool, range from immensely useful to
completely misleading. The applications include maximization and noncoopera-
tive equilibrium models, stochastic process theory, betting/investing, social choice
theory, Pareto optimality in intergenerational equity, and learning foundations for
multiple prior models. The appendix contains the proofs as well as synopses of
finitely additive probabilities and nonstandard analysis.

Throughout, probabilities are assumed to be finitely additive, but they may fail
to be countably additive.

2. Tightness and Population Games

The space of agent characteristics, U, is the closed unit ball in the separable
Banach space C(A×∆(A)), hence is a csm (complete separable metric space). The
two variants of tightness, c-tightness and n-tightness (mnemomic for conditional-
tightness and neighborhood-tightness respectively) are defined for a general csm
(M,d) with Borel σ-field M. The examples are given in the unit ball of C([0, 1]).
This space is both well-studied and relevant to present concerns — if A is finite, then
C(A×∆(A)) can be represented as a finite disjoint union of the sets {a}×C([0, 1]),
a ∈ A.

2.1. Definitions and Characterizations. Tightness is a crucial property of count-
ably additive probabilities, and it is always satisfied for countably additive probabil-
ities on a csm (this is Ulam’s theorem, e.g. Billingsley (1968, Thm. 1.4, p. 10)). For
finitely additive probabilities, there is a stronger and a weaker version of tightness.
For any non-empty subset F ⊂ M and any δ > 0, F δ denotes the δ-neighborhood
of F , F δ = {x ∈M : d(x, F ) < δ}.

Definition 1. A finitely additive Borel probability q on a csm (M,d) is

(a) conditionally tight (c-tight) if for every measurable E ⊂M and for every
ε > 0, there exists a compact K ⊂ E such that q(K) ≥ (1− ε)q(E), it is

(b) tight if for every ε > 0, there exists a compact K ⊂ M such that q(K) >
(1− ε), and it is

(c) neighborhood tight (n-tight) if for every ε > 0, there exists a compact K
such that for all δ > 0, q(Kδ) > (1− ε).

Countable additivity is equivalent to c-tightness.1

Lemma 1. A finitely additive Borel probability q on M is c-tight if and only if it
is countably additive.

1All proofs are in Appendix B. Christensen (1971) systematically studies properties of finitely

additive Borel probabilities that guarantee countable additivity, showing that they are countably
additive if they “do not behave very irregularly on the closed sets.” The result closest to the

present study of finitely additive Borel probabilities is his Theorem 5.
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Being at Fortet-Mourier distance 0 from some countably additive probability is
equivalent n-tightness. For finitely additive p and q, define the pseudo-metric

(3) βM (p, q) = sup
{∣∣∫ f dp− ∫ f dq∣∣ : ‖f‖Lip ≤ 1

}
where ‖f‖Lip := supa∈A |f(a)| + supa 6=b |f(a) − f(b)|/d(a, b) is the Lipschitz norm
of the function f . From Fortet and Mourier (1953), βM (·, ·) is a metric, not
merely a pseudo-metric, on the class of countably additive probabilities. Further,
βM (·, ·) metrizes the weak∗ topology for countably additive probabilities on csm’s
— βM (pn, p)→ 0 if and only if

∫
M
f dpn →

∫
M
f dp for every continuous f : M → R

(Dudley, 1989, Theorems 11.3.1 and 11.3.3).

Lemma 2. A finitely additive Borel probability q on M is n-tight if and only if
there exists a countably additive qca such that βM (q, qca) = 0.

2.2. Examples. It is clear that c-tightness implies tightness and that tightness
implies n-tightness. Neither of the implication reverses, and n-tightness can fail.
The first and the third examples use the probability space (T, T , µ) where T =
R++, T is the (usual) Borel σ-field, and µ is a non-atomic, purely finitely additive
probability on T with µ([r,∞)) = 1 for all r ∈ R.

Example 1 (Tight but not c-tight). Let f 6= g be two functions in the unit ball
C([0, 1]). For each t ∈ T , define G(t) = f + 1

t g and let p = G(µ) denote the induced

measure on C([0, 1]). For each n ∈ N, p(En) = 1 where En := {f+rg : 0 < r < 1
n}.

Because En ↓ ∅, p is purely finitely additive, and by Lemma 1, not c-tight. However,
p(K) = 1 where K is the compact set {f + rg : 0 ≤ r ≤ 1}.

The next probability assigns mass 0 to every compact set, but assigns mass 1
to every open neighborhood of the origin in C([0, 1]), hence satisfies n-tightness.
Recall that convergence in the weak∗ topology for finitely additive probabilities is
defined by pα(E)→ p(E) for every measurable E, equivalently

∫
g dpα →

∫
g dp for

every bounded measurable g. By Alaoglu’s theorem (e.g. Corbae et al. (2009, Thm.
10.7.1)), the set of finitely additive Borel probabilities on C([0, 1]) are compact in
the weak∗ topology.

Example 2 (N-tight but not tight). It can be shown2that for every n ∈ N, there
exists a finitely additive pn with pn( 1

n · U) = 1 and pn(K) = 0 for all compact
K ⊂ U. Let p be a weak∗ accumulation point of the pn. For each δ > 0, p(Bδ({0}) =
limn pn(Bδ({0}) = 1 and for each compact K, p(K) = limn pn(K) = 0.

In the next example, the probability assigns mass 0 to the δ-ball around every
compact set in C([0, 1]), δ < 1/4.

Example 3 (Not n-tight). For each t ∈ T , define G(t)(·) by

(4) G(t)(x) =


1 if x ≤ 1

2 ,

1− t(x− 1
2 ) if 1

2 ≤ x ≤
1
2 + 2

t , and

−1 if 1
2 + 2

t ≤ x.

For each t, ‖G‖ = 1 so that p = G(µ) is a finitely additive probability on the unit
ball. The maximal absolute value of the slope of G(t) is t. Therefore, for any r ∈ R,
a µ-mass 1 set of agents have slope greater than r.

2See Lemma 7 in Appendix B1.
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Pick arbitrary compact K ⊂ C([0, 1]). By the Arzelà-Ascoli theorem (e.g. Corbae
et al. (2009, Theorem 6.2.61)), K ⊂ C([0, 1]) must be uniformly equicontinuous.
Since a µ-mass 1 set of agents have range from −1 to +1 with a slope having
absolute value greater than r, it can be shown3that p(K1/4) = 0.

2.3. Failures of Tightness in Population Games. A non-atomic population
game, Γ, is specified by the tuple ((T, T , µ),U,G). Here, (T, T , µ) is a finitely
additive, non-atomic probability space. U is the unit ball on C(A ×∆(A)) where
A is a compact metric space, and ∆(A) is the set of countably additive Borel
probabilities on A metrized by βA(ρ, ρ′) = sup{|

∫
A
f dρ−

∫
A
f, dρ′| : ‖f‖Lip ≤ 1}.

U is endowed with the supnorm topology and the corresponding Borel σ-field, and
G is a measurable mapping from T to U. The population distribution of utility
functions, G(µ), is denoted p.

Definition 2. A game Γ is c-tight/tight/n-tight as p is c-tight/tight/n-tight.

By Lemma 1, c-tightness is equivalent to countable additivity. Therefore, c-tight
games have equilibria and a continuous approximate equilibrium correspondence.

• Game 1 shows that games that are n-tight but not c-tight may fail to have
equilibria even if they have ε-equilibria for all ε > 0.
• Game 2 shows that games that not n-tight may not have ε-equilibria for a

range of ε.
• Game 3 shows that games that are not n-tight may have equilibria.

The games use the following probability space to model the agents: T = R++;
T is the (usual) Borel σ-field; and µ is a non-atomic, purely finitely additive prob-
ability on T with µ([r,∞)) = 1 for all r ∈ R. For the first two games, the action
space is A = {0, 1}, ∆(A) = [0, 1], and the utility function G(t) depends on at and
ν ∈ [0, 1] interpreted as the mass of agents in T that play a = 1.

2.3.1. N-tight but not C-tight. The following example, from Khan et al. (2016),
is tight but not c-tight. It has ε-equilibria for all ε > 0 but has no equilibrium.
Directly after the example is a sketch of how to modify the game to be n-tight but
not tight.

Game 1. If G(t) is the utility function a · ( 1
t − ν), the game has no equilibrium,

but it does have ε-equilibria for every ε > 0.

• For the no-equilibrium argument, suppose first that νa > 0 is the population
distribution of an equilibrium a(·). The action 1 is one of the best responses
for t ∈ T only if ( 1

t − νa) ≥ 0, that is only if t ≤ 1/νa. By assumption,
µ((0, 1/νa]) = 0, so, if the proportion of the population choosing 1 is strictly
positive, then it must be 0. On the other hand, if νa = 0, then for each
t ∈ T , 1

t > νa, so every t should (apparently) play the action 1, making
νa = 1.

3Let tn ↑ ∞ in T . If d(G(tn),K) ≤ 1
4

for infinitely many n, then, taking a subsequence if

necessary, there exists a sequence fn ∈ K such that ‖fn−G(tn)‖ ≤ 1
4

. Taking another subsequence

if necessary, fn → f for some f in the compact set K, and ‖f − G(tn)‖ ≤ 1
4

for each tn in the

subsequence. But ‖f − G(tn)‖ ≤ 1
4

implies that f( 1
2

) ≥ 3
4

because G(tn)( 1
2

) ≡ 1. Because

f is continuous, there exists some δ > 0 such that for each x in the interval ( 1
2
− δ, 1

2
+ δ)),

|f( 1
2

)− f(x)| < 1
4

. For all n with 1
tn

< δ, ‖f −G(tn)‖ ≥ 1
2

. Since µ({t : 1
t
< δ}) = 1, p(K

1
4 ) = 0.
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• For the ε-equilibrium existence, let a(t) = 1E(t) for E with µ(E) = ε, ε > 0.
Each t in a full measure subset of Ec is strictly best responding, while each
t ∈ E is losing at most ε of their possible utility.

In Example 2, the probability p puts mass 0 on all compact sets K and mass 1 on
all neighborhoods of 0. One can change the construction to yield a probability that
also puts mass 0 on the compacts while putting mass 1 on the intersection of each
Bδ(0) and the strictly positive orthant in U. Let t 7→ H(t) be a random point in
the strictly positive orthant of U having distribution q and set the utility function
equal to a · (H(t)− ν). The analysis of the ε-equilibria and the non-existence of an
equilibrium is essentially unchanged, and we now have a game that is n-tight but
fails to be tight.

2.3.2. Not N-tight. Unlike the previous game, the following, also due to Khan et al.
(2016), has no approximate equilibria. The induced distribution on utility functions
is taken from Example 3.

Game 2. G(t) is the utility function a · u(t, ν) where

(5) u(t, ν) =


1 if ν ≤ 1

2 ,

1− t(ν − 1
2 ) if 1

2 ≤ ν ≤
1
2 + 2

t , and

−1 if 1
2 + 2

t ≤ ν.

Note that the utility function of type t has a section between 1
2 and 1

2 + 2
t with

the absolute value of its slope equal to t. This means that the average maximal
slope,

∫
T
t dµ(t) is undefined (or equal to −∞ if one prefers that set of conventions).

The approximate best response sets in Game 2 have the following properties:

• for ν ≤ 1
2 , every t has a best response of 1, and they lose utility of 1 by

playing 0, so that ε-best responses must put mass at least 1 − ε on a = 1;
and
• for ν > 1

2 , we have µ({t : 1
2 + 2

t < ν}) = µ({t : t > 2(ν − 1
2 )}) = 1, so

that a mass 1 set of players loses utility of 1 by playing a = 1, and ε-best
responses must put mass at least 1− ε on a = 0.

The implications for ε-equilibria follow.

• If νa ≤ 1
2 is an ε-equilibrium distribution, then

∫
a(t)({1}) dµ(t) ≥ (1− ε)2

because at least 1 − ε of the population must put mass at least 1 − ε on
1. Thus, if νa ≤ 1

2 , then νa ≥ (1 − ε)2, which cannot be satisfied for

ε < 1− 1/
√

2.
• In the same fashion, if νa >

1
2 is the population play in an ε-equilibrium

a(·), then νa ≤ ε(1− ε), which cannot be satisfied for any ε.

2.3.3. Not N-Tight with Equilibria. It the following example, the population mea-
sure fails n-tightness, but the equilibrium analysis can, with the exception of some
interpretational difficulty, proceed without impediment.

Game 3. The type space, (T, T , µ), is unchanged, but now the action space is
A = [π, 2π], and agent t’s utility when νa ∈ ∆(A) is the population distribution is

(6) G(t) = sin(t · a(t))
[
1 +

∫
A
x dνa(x)

]
.

• The population measure puts no mass on δ-neighborhoods of any compact
set: the slope of type t’s utility function ranges from −t to positive t as
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the function cycles between +1 to −1; for any r ∈ R, µ([r,∞)) = 1, so the
slope must be, with probability 1, larger than any r ∈ R.
• For any t ∈ R, the strict best responses, denoted a∗(t), are independent of

what other agents choose. They consist of all solutions to sin(t · a) = 1 for
π ≤ a ≤ 2π.
• Equilibrium play involves each t playing some a ∈ a∗(t) and receiving

the utility 1 +
∫
x dνa(x). For different selections from a∗(·), the integral∫

x dνa(x) can be anywhere in [π, 2π].

The interpretational difficulty is that when t is infinite, the utility function cycles
between +1 and −1 infinitely often as t’s choice runs from π to 2π. Here however,
the game is easy to analyze because the measurable selections from a∗(·) are also
viable strategies for the expanded versions of the game.

3. Nonstandard Analysis Versions Population Games

A non-atomic population game, Γ, is specified by ((T, T , µ),U,G) as above. This
section works replaces the spaces defining Γ by larger versions of the spaces that
appear in nonstandard analysis.

3.1. The Nonstandard Analysis Setting. We work in a κ-saturated extension
of a superstructure containing, as a bounded element, the measure space T and the
compact set of actions A and κ is a cardinal larger than the class of all subsets of
the game Γ. For E a bounded element of the superstructure, ∗E, read “star E,”
denotes its nonstandard version.

The most relevant implication of κ-saturation is the existence of exhaustive
∗-finite (or exhaustive hyperfinite) sets: for non-empty X ⊂ Γ, PF (X) denotes
the finite subsets of X; κ-saturation guarantees that there exists an Xf ∈ ∗PF with
x ∈ Xf for each x ∈ X. It will be convenient to replace T and T by exhaustive
hyperfinite version of themselves below.

For any space X with topology τX in the superstructure, and for any x ∈ X, let
m(x) ⊂ ∗X denote the monad of x, defined as

⋂
G∈τX ;x∈G

∗G. The standard part

relation is defined by x = st(y) if y ∈ m(x). A point y in ∗X is nearstandard if
y ∈ m(x) for some x ∈ X, and the class of nearstandard points is denote ns(∗X). If
the topology τX is Hausdorff, then y 7→ st(y) is a function on the set of nearstandard
points in ∗X.

For the space R with the usual (Euclidean) topology, the standard part of y ∈
ns(∗R) is denoted ◦y, and when |y| < ε for every standard ε > 0 in R (not ∗R), we
write y ' 0 for “y is infinitesimal.” For nearstandard y, |y − ◦y| ' 0.

For an internal function g : ∗X → ∗[−1,+1], stV(g), is the standard value
version of g defined by x 7→ ◦g(x). Thus, stV(∗U) is the set of functions (a, ν) 7→
◦f(a, ν) where f ∈ ∗U, and for t ∈ ∗T , stV(∗G)(t) is the function (a, ν) 7→ ◦∗G(t)(a, ν).

The set of finitely additive probabilities on T , ∆(T ), is given the weak∗ topology,
which is defined by the property that a net µα → µ if and only if

∫
g dµα →

∫
g dµ

for all T -measurable g : T → [−1,+1]. Because ∆(T ) is a compact Hausdorff space
in the weak∗ topology, every µ′ ∈ ∗∆(T ) is nearstandard to a unique µ ∈ ∆(T ).
Explicitly, for µ′ ∈ ∗∆(T ), there exists a unique µ ∈ ∆(T ) such that for all T -
measurable g : T → [−1,+1],

∫
g dµ = ◦

∫ ∗g dµ′.
3.2. Games with Nonstandard Pieces. There is a focal nonstandard version
of the games Γ, while hyperfinite versions of the game are also useful. The focal
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nonstandard versions of the games are denoted ΓNS , they expand each part of Γ to
its nonstandard version (by “putting ∗’s in from of everything”), but, and this is
crucial, they take the standard part of the value of the probability and the utility
functions so that they take values in [0, 1] and [−1,+1] respectively.

Definition 3. For every game Γ, the game ΓNS is defined as

(7) ΓNS = ((∗T, σ(∗T ), ◦∗µ), stV(∗U), stV(∗G)).

In ΓNS : set of player coalitions is given by σ(∗T ), the smallest σ-field containing
∗T ; the population measure is given by the countably additive (Loeb) probability
◦∗µ : σ(T ) → [0, 1]; the set of possible utility functions, stV(∗U), is the set of
functions stV(u), u ∈ ∗U; the strategies are the ∗T -measurable, functions from ∗T
to ∗∆(A); and the value of characteristics mapping, stV(∗G) at any t ∈ ∗T is the
function stV(∗G(t)). This belongs to stV(∗U), and maps ∗(A×∆(A)) to [−1,+1].

The role of n-tightness can be seen in the following consequence of Lemma 2.

Lemma 3. If p = G(µ) is an n-tight probability on U, then ◦∗p(ns(∗U)) = 1.

3.3. Restored, Nonstandard Games. Restoring mislaid agents and their utility
functions delivers equilibrium existence to Games 1, 2, and provides interpretation
for the equilibria of Game 3.

For Game 1, the existence of ε-equilibria for all ε > 0 leads, by overspill, to
ε-equilibria for ε ' 0, and by the definition of stV(·) and ◦∗µ, these are equilibria.

Recall that the type space for all three games is (T, T , µ) = (R+,B, µ) where µ is
non-atomic and satisfies µ([r,+∞)) = 1 for all r ∈ R. Because the finitely additive
probabilities are a compact Hausdorff space in the weak∗ topology, µ is the weak∗

standard part of ∗µ, and indeed many other µ′ ∈ ∗∆fa(B).

NS-Game 1. If G(t) = a · ( 1
t − ν), then for a ◦∗µ-mass 1 set of agents, the utility

function stV(∗G(t)) = a · (−ν) because the nearstandard t ∈ ∗T are a null set. In
this game, the equilibria involve all but a null set of t ∈ T playing at = 0.

Game 2 had no approximate equilibria, and the population distribution of utility
functions put no mass on the neighorhood of any compact set. The mislaid utility
functions are therefore not nearstandard, and the equilibrium joint distribution of
actions and utilities depends on the cdf (cumulative distribution function) of ∗µ on
∗R. This is an important point, details of µ, as they appear in ∗µ, matter for the
analysis of the equilibrium.

NS-Game 2. Suppose that G(t) is the utility function a · u(t, ν) where

(8) u(t, ν) =


1 if ν ≤ 1

2 ,

1− t(ν − 1
2 ) if 1

2 ≤ ν ≤
1
2 + 2

t , and

−1 if 1
2 + 2

t ≤ ν.

Let F∗µ(·) denote the cdf of ∗µ. Let tc ∈ ∗R++ solve F∗µ(tc) = 1
2 + 1

tc
. The equilibria

involve — up to ◦∗µ-null sets of agents — all t < tc playing at = 1, and the
remaining t playing at = 0. The distribution of utility for those playing at = 1
depends on the cdf, e.g. if µ is the standard part of the uniform distribution on
[0, N ], N infinite, then tc ' N/2 + 2, and in equilibrium, an infinitesimal more
than 1

2 of the population is playing a = 1 and receiving utility uniformly distributed
on [0, 1], while the remainder of the population is playing a = 0 and receiving utility
equal to 0.
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In the previous games, the action space A was finite, hence equal to ∗A. In the
next game, ∗A contains every a ∈ A, as well as nonstandard points.

NS-Game 3. Suppose that the action space is A = [π, 2π], and G(t) is

(9) G(t) = sin(t · a(t))
[
1 +

∫
A
x dνa(x)

]
when νa ∈ ∗∆(A) is the population distribution. For a ◦∗µ-mass 1 set of agents, G(t)
is the infinitely variable utility function a 7→ κ · sin(t ·a) where κ ≥ 1 is independent
of t’s choice. The Pareto dominant equilibria involve every such agent playing the
largest solution to maxa∈∗A sin(t ·a), and in this equilibrium, a mass 1 set of agents
receive utility 1 + 2π.

3.4. Equilibrium Existence and Approximation. Games models are “well-
behaved’ if equilibria exist and the approximate equilibrium outcome correspon-
dence is continuous. For this, we need the outcome mapping and finite approxima-
tion to games. Taking the outcome mapping first, a strategy t 7→ σt in ΓNS induces
a joint distribution on the space of actions and utilities (∗A)× [−1,+1]. Denote by
O(σ) the distribution on the compact space A× [−1,+1] induced by the mapping
(a, r) 7→ (st(a), r).

To discuss finite approximations and the approximate equilibrium correspon-
dence, let F denote the set of finite, T -measurable partitions of T . Partially order
F by f % f ′ if f refines f ′ and define an f ∈ ∗F to be infinitely fine if f % f ′

for each f ′ ∈ F. By κ-saturation, ∗F contains infinitely fine f ’s. For any positive
δ > 0 and u ∈ U, the inverse image of the δ-ball around u, G−1(Bδ(u)), belongs
to T . Therefore, any infinite f has the property that the diameter of ∗G(B) is
infinitesimal for any B ∈ f .

For any such f , and define the hyperfinite approximation to ΓNS by

(10) Γf = ((∗T, T (f), ∗µ), ∗U, ∗G(f))

where T (f) is the smallest internal field of sets containing f , and Gf (t) = Eµ(G|Bt)
if t ∈ Bt ∈ f and ∗µ(Bt) > 0, and Gf (t) = ut for some ut ∈ G(Bt) if t ∈ Bt ∈ f and
∗µ(Bt) = 0. In this game, utilities take values in the nonstandard set of numbers,
∗[−1,+1], rather than in the set [−1,+1].

Recall that β(·, ·) is the Fortet-Mourier distance between probabilities.

Theorem A. Every ΓNS has an equilibrium. Further,

1. if f ∈ ∗F is infinitely fine, ε > 0 is infinitesimal, and af is an ε-equilibrium of
Γf , then af is an equilibrium of ΓNS,

2. if a∗ is an equilibrium of ΓNS and f ∈ ∗F is infinitely fine, then Eµ(a∗|f) is
an ε-equilibrium of Γf for some infinitesimal ε > 0,

3. the approximate equilibrium outcome correspondence, (f, ε) 7→ O(Eqε(Γf )), is
continuous as ε ↓ 0 and f becomes infinitely fine,

4. if p = G(µ) is c-tight, then there exists a one-to-one onto mapping between the
outcomes of the equilibria of Γ and the outcomes of equilibria in ΓNS, and

5. if p = G(µ) is n-tight and â is an equilibrium of ΓNS, then for all ε > 0, there
exists an ε-equilibrium, aε of Γ with β(O(â),O(aε)) < ε.

Comments. The first two parts use conditional probabilities for hyperfinite
spaces as developed in Anderson (1982). Equilibrium existence follows from the
first part and transfer of the statement that equilibria exist in finite population
games. The continuity of the approximate equilibrium correspondence is a direct
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application of the conversion of nonstandard results into statements about ultrafil-
ter limits, e.g. Robinson (1964, Thm. 5.1). The last part implies that n-tight games
always have ε-equilibria.

4. Compact Imbeddings and Population Games

The previous section found the missing pieces of the games using nonstandard
extensions. This section finds the missing pieces via imbeddings into subsets of
compact spaces. The results here are direct corollaries of the previous section
because the compact spaces into which we are imbedding the original game can be
expressed as quotient spaces of their nonstandard versions.4

If (H, τ) is a compact Hausdorff space and X is a non-empty set, then any
one-to-one ϕ : X → H is a compact imbedding. If X has a topology and ϕ is a
homeomorphism, then the closure of ϕ(X) in H provides a compactification, that
is, a homeomorphism between the original space and a dense subset of a compact
Hausdorff space. Endowing X with the topology ϕ−1(τ) turns a compact imbedding
into a compactification.

This section begins with the the general quotient space construction that we use,

then gives the properties of the two spaces (T̂ , T̂ , µ̂) and Û. The extension, Ĝ of G
follows, and the properties of the game Γ̂ follow from the previous section.

4.1. Generating Compact Imbeddings. The following construction will be used
repeatedly.

Definition 4. For X a non-empty internal set and F as a set of internal functions
from X to ∗[−1,+1], define x ∼F y if stV(f)(x) = stV(f)(y) for each f ∈ F , define
X ′ = X/ ∼ as the quotient space of equivalence classes, and define K (X;F) as
the topological space (X ′, τF ) where τF is the smallest topology on X making each
function stV(f) : X → [−1,+1], f ∈ F , continuous.

Comments. The sets X ′ and X are identical if F separates points, that is, if
x 6= y in X if and only if stV(f)(x) 6= stV(f)(y) for some f ∈ F . The set F need
not be internal and will, in one instance, contain functions that are not of the form
∗f for some f : X → R.

The following result is, basically, a restatement of the parts of Anderson (1982,
Theorem 4.3.3) needed here. For completeness, a proof is included in the appendix.

Lemma 4. K (X;F) is a compact Hausdorff space, and the supnorm closure of the
smallest algebra containing the functions stV(F) is the set of continuous functions.

Two classic compactifications demonstrate what is involved.

• If X = ∗N and F is the set of functions ∗g where g is a function from N to
[−1,+1], then K (X;F) is homeomorphic to βN, the Stone-Čech compact-
ification N.
• If (T, T ) is a non-empty set and a σ-field of subsets that separates points,
X = ∗T and F is the set of functions ∗g, g a T -measurable function from T
to [−1,+1], then K (X;F) is homeomorphic to the Stone space for (T, T ).

The Stone space has a central role to play.

4Robert Anderson, in private communication, has explained the utility of nonstandard versions
of a space by the observation that they contain, simultaneously, compactifications with respect to

all the properties one could want. This section provides one more instance of this general pattern.
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4.2. The Compact Imbedding of (T, T , µ). Define T̂ = K (∗T ;F) where F is

{stV(∗g) : g is a measurable function from T to [−1,+1]}.

It is immediate that T ⊂ T̂ , and, from the construction, that every measurable

g : T → [−1,+1] has a unique continuous extension ĝ : T̂ → [−1,+1].

4.2.1. More Continuous Extensions. Every measurable g taking values in a compact
Hausdorff space, H, not just in [−1,+1], also has a unique continuous extension.
This is useful for population games when the measurable function is G and the unit
ball, U, has been compactified. The unique continuous extension is given in steps.
First, homeomorphically imbed H in ×f∈U(H)If where U(H) is the unit ball in
C(H) and If = f(H) ⊂ [−1,+1] is the corresponding, necessarily compact range
of f . Second, each a measurable g : T → H becomes, after the homeomorphic
imbedding of H, a collection, gf , indexed by the f ∈ U(H), of [−1,+1]-valued

measurable functions. Each of these has a unique continuous extension, ĝf , to T̂ ,
and the mapping ĝ is the homeomorphic image of (ĝf )f∈U(H).

4.2.2. Extensions of Probabilities. For each E ∈ T , the function 1E is measurable
and takes values in {0, 1}, hence its unique continuous extension, denoted hE , takes

values in this two-point set. Let Ê denote the set of t ∈ T̂ for which hE(t) = 1, and

define T̂ to be the smallest σ-field containing all of the Ê.

The probability µ has a unique continuous extension to T̂ . Let Mb(T ) denote the
bounded measurable functions on T and define the positive, continuous, normalized,

linear functional Lµ : Mb(T )→ R by Lµ(g) =
∫
g dµ. C(T̂ ) is the set of extensions,

ĝ, of the g ∈ Mb. Thus, L̂(ĝ) := Lµ(g) defines a positive, continuous, normalized,

linear functional on C(T̂ ). By the Riesz representation theorem, L̂ can be uniquely
represented as an integral against a countably additive probability, denoted µ̂, on

T̂ .

4.3. The Compactification of the Unit Ball. U is the unit ball in C(M), where

M is the compact metric space, A ×∆(A). Define Û as K (∗U; Ψ) where Ψ is the
set of functions ∗ψ with ψ : U→ [−1,+1] a Lipschitz function.

4.3.1. Visualizing the Compactification. The next result prepares for the result that

makes these two spaces easy to visualize: M̂ is ∗M , and Û is the unit ball in the

set of continuous functions on M̂ .

Lemma 5. The sup norm topology on U is the smallest topology making every
ψ ∈ Ψ continuous.

Using this Lemma, the following tells us that for M = [0, 1], M̂ = ∗[0, 1] and

C(M̂) is the set of functions stV(f) where f ∈ ∗C([0, 1]) and ‖f‖ ≤ B for some finite

B. In particular, C(M̂) contains e.g. the infinitely steep functions in NS-Game 2.

Proposition 1. Û is the unit ball in C(M̂).

4.3.2. Visualizing the Expanded Spaces of Actions. We have already seen, in Game
2, that when A = {0, 1} and ∆(A) = [0, 1], we need to expand ∆(A) to capture the
equilibrium phenomena. The expansion did not involve expanding the two-point
space of actions nor the set purely finitely additive distributions on {0, 1} — a
finitely additive probability on a finite set is vacuously countably additive. What
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was needed was ∗µ((0, tc]) = 1
2 + ε where ε is a strictly positive infinitesimal and tc

is the nonstandard cut-off type indifferent between the actions a = 0 and a = 1.
Proposition 1 shows that there is a need to expand the space of actions A when it
is not finite — from Proposition 1, the utility functions are continuous functions on
a domain (much) larger than A×∆(A), and that domain is what the agents must
be choosing from.

The classical compactifications arise when F is a set of standard functions, but
for general analyses of population games, the requisite set of utility functions is ∗U,
which contains functions that are not of the form ∗f for f ∈ U. These nonstandard
functions include the infinitely steep functions required for the analysis and the

compactification, M̂ , of M = A×∆(A) covers this possibility.
Suppose, for the purposes of illustration, that the space of actions A = [0, 1]. If

F is a set of standard functions, then the quotient map ∗[0, 1] 7→ K (∗[0, 1];F) is
many to one. By contrast, if U([0, 1]) is the unit ball in C([0, 1]), then the quotient
map ∗[0, 1] 7→ K (∗[0, 1]; ∗U([0, 1])) is one-to-one and onto.5

4.4. Mislaid Pieces and Compactifications. A game is specified by a measure
space of types, the space of actions and population distributions over actions, a
set of utility functions, and an assignment of types to utility functions. Using the
pieces defined above, the compactified version of a game Γ is

(11) Γ̂ = ((T̂ , T̂ , µ̂), Û, Ĝ).

These compact imbeddings/compactifications deliver the following.

Theorem B. Each Γ̂ has an equilibrium. Further, if the characteristics measure,
p = G(µ),

1. is c-tight, then there exists a one-to-one onto mapping between the outcomes

of the equilibria of Γ and the outcomes of equilibria in Γ̂, and

2. if it is n-tight and â is an equilibrium of Γ̂, then for all ε > 0, there exists an
ε-equilibrium, aε of Γ with β(O(â),O(aε)) < ε.

5. Discussion and Interpretation

Khan et al. (2016) argue that Games 1 and 2 show that countable additivity
“is a necessity” for nonatomic population models, I argue that this is only part of
the story of finitely additive population models. The other part of the story starts
with the observation that finitely additive probabilities are the traces of countably
additive probabilities on larger spaces. The traces contain enough information
about the mislaid agents and their utility functions that representations can be
given. With the representations in place, the games become a useful tool to study
population wide maximization behavior.

These models on larger spaces are countably additive, and, as Khan et al. (2016)
show, countable additivity is essential for them to be well-behaved. But the resul-
tant models on the larger spaces are a new, and potentially very interesting, class
of models, and it is the finitely additive models that deliver the new class. §5.1
discusses a wide range of models used in economics and related fields in which the
larger spaces represent mislaid pieces, pieces that are crucial to the use and un-
derstanding of the models. §5.2 discusses several settings in which purely finitely

5This follows from transfer of following statement, “x 6= y ∈ [0, 1] if and only if there exists
u ∈ U([0, 1]) such that |u(x)− u(y)| = 1.”
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additive probabilities have been a very productive tool. §5.3 returns to discuss this
new class of models for large population games with these perspectives in mind.

5.1. Mislaid Pieces can Mislead. Finitely additive probabilities mislay pieces
of models in a wide range of contexts. The following examples demonstrate many
ways in which the lack of representations of parts of the model can be misleading,
or can render sensible analysis difficult, even impossible.

• If representations of maximizing behavior do not exist in the model, then
the study of the determinant of changes in maximizing behavior is not
possible.
• If representations of equilibria in normal form games do not to exist in the

model, then the study of their dependence on e.g. the utility functions of
the agents is not possible.
• If representations of time paths of stochastic processes with jumps do not

exist in the model, then the study of e.g. queueing systems becomes impos-
sible.
• If representations of the states at which a bettor/investor is glad to have

taken a bet/invested fail to exist, then expected utility maximizing agents
can, seemingly, be money pumped, and the inclusion of such agents in
models of markets renders interpretations of any equilibria that do exist
quite problematic.
• If representations of the dictators in Arrow’s impossibility theorem cannot

be found in the population model, then one has circumvented the force and
meaning of the “no dictatorship” condition in social choice theory.
• If representations of generations receiving 0 transfers do not exist in the

models used to study intergenerational equity, then sensible interpretation
of Pareto optimality becomes impossible.

These will be treated in turn, with more details for the first topic as the subse-
quent ones have strong parallels.

5.1.1. Maximization. Fix a non-empty, infinite set X with non-trivial σ-field X .
The finitely additive probabilities on X , ∆fa, are a convex subset of the dual
space of the bounded X -measurable functions on X. The weak∗ topology on ∆fa

is defined as the smallest making the mappings η 7→
∫
f dη continuous for each

bounded measurable f . With this topology, the convex set ∆fa is compact, and its
extreme points are “point-masses,” that is, the probabilities that satisfy ν(E) = 0
or ν(E) = 1 for all E ∈ T . Compactness and continuity are at the core of useful
models of maximizing behavior.

Suppose that f : X → R is bounded and measurable, but does not achieve
its supremum, rf , that is, there is no x ∈ X such that f(x) = rf . Despite the
non-existence of a solution to maxx∈X f(x), the problem

(12) max
ν∈∆fa

∫
f(x) dν(x)

does have a solution, and its value is rf . Since (12) involves maximizing a continuous
linear function over a compact convex set, at least one of the solutions is an extreme
point, that is, a point mass. However, this point mass has no support in the set X.

For the purposes of more explicitly demonstrating how this paper’s two tech-
niques for finding and representing the mislaid pieces of models work, take X to
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be [0, 1], X to be the Borel σ-field, and set f(x) = x if x < 1 and f(1) = 0 so
that rf = 1. The first approach replaces X by ∗X and replaces the utility function
being maximized, f(·), by u(x) := stV(∗f)(x). For any x in ∗X having standard
part less than 1, u(x) is equal to ◦x, the standard part of x. A point x ∈ ∗X solves
the nonstandard version of the problem if and only if it belongs to ∩n∈NEn where
En := ∗f−1([rf − 1

n , rf ]) = ∗{x ∈ X : rf − 1
n ≤ f(x) ≤ rf}. This non-empty set of

points consists of the numbers 1 − ε where ε > 0 is infinitesimal. The solution set
is the set of nonstandard numbers in ∗[0, 1] that are strictly larger than any real
number in [0, 1) but strictly smaller than 1.

The second approach imbeds [0, 1] as a dense subset of a compact, Hausdorff

space ̂[0, 1] having two dual properties: every bounded measurable function, g, on

[0, 1] has a unique continuous extension, ĝ, to ̂[0, 1]; and every finitely additive
probability, ν, has a unique countably additive extension, ν̂, to the Borel σ-field on̂[0, 1]. The continuous function f̂ achieves its maximum on the compact set ̂[0, 1].

The set of maxima belong to ∩n∈NÊn where Ên is the closure, in the compact space

X̂, of the set En := f−1([rf − 1
n , rf ]). These points are the standard part of the

1−ε solutions from the previous problem, but now the standard part is taken in the

compact, Hausdorff topology on ̂[0, 1]. These are, again, representations of points
to the right of every real number in [0, 1) but to the left of 1, points that do not
exist in the usual model of [0, 1], but which do exist in both of the extensions given
here.

5.1.2. Noncooperative Games. Harris et al. (2005) study normal form games with
a finite set of players, I, infinite sets of strategies Xi, and bounded utility functions
ui : ×j∈IXi → R. For each i ∈ I, let ηi be a finitely additive mixed strategy on
the class of all subsets of Xi, and let η = (ηi)i∈I . The authors characterize, from
several points of view, the class of games in which the existence of finitely additive
solutions to each agent’s maximization problem

(13) max
νi∈∆fa(Xi)

∫
ui(x) d(η \ νi)(x)

combine to yields a non-empty set of mixed strategy equilibria (where (η\νi) denotes
the vector η with νi in the i’th position). For this, it is necessary and sufficient that
Fubini’s theorem holds for all vectors of finitely additive probabilities (i.e. that the
order of integration not matter). Stinchcombe (2005) treats the complementary
class of normal form games.

For the class of games having utility functions for which Fubini’s theorem holds
for all vectors of finitely additive mixed strategies, Harris et al. (2005) show that the
equilibrium set is non-empty, that it varies upper-hemicontinuously in the agents’
utility functions, and that the approximate equilibrium correspondence is continu-
ous. One can arrive at these conclusions by the following steps: replace each Xi by

an exhaustive, hyperfinite Xf
i ; replace the utility functions by stV(∗ui); transfer the

Nash (1950) existence theorem for finite games to find an equilibrium for the hyper-
finite game; and take the standard part of the equilibria in the smallest topology on
the Xi such that the ui(·) are jointly continuous. From Harris et al. (2005), Fubini’s
theorem holds if and only if this is possible, and the quotient relation involved takes

the ∗Xi to X̂i that are compact metric spaces.
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5.1.3. Stochastic Process Theory. Kingman (1967) shows that there are purely
finitely additive probabilities, p, on the set P of polynomial time paths on [0,∞)
that have the same finite dimensional distributions as e.g. a Poisson process. In
more detail, let X ◦ denote the smallest field making measurable the coordinate
projections f 7→ f(t), t ∈ [0,∞), f ∈ P and containing {0} where 0 denotes the
polynomial identically equal to 0. Restricted to X ◦, a distribution µ specifies the
finite dimensional distributions (fidi’s) of a stochastic process. The fidi’s on a Pois-
son process lead to a well-defined µ on the field X ◦ of subsets of the polynomials.
This means that, sampling at points in the time line [0,∞), we are looking at a
non-constant pure jump process, but the space of paths is the polynomials.

To show that µ is pfa, define

(14) En = {f ∈ P : f 6= 0, f(k/2n) ∈ {0, 1, 2, . . .}, k = 1, . . . , n · 2n}.

It is immediate that En is a non-empty element of X ◦, properties of polynomials
imply that En ↓ ∅. However, µ(En) ≡ 1.

Both the nonstandard and the compactification approaches give representations
for this. In ∗P, the probability distribution ◦∗p puts mass 1 on ∗-polynomials that
rise from n− 1 to n at over nearstandard, infinitesimal intervals (τn − ε, τn + ε) ⊂
∗[0,∞) and are within ε of n between τn + ε and τn+1 − ε, where the τn’s are the

jump times of a Poisson process. The compactification of e.g. the unit ball in P̂
can be constructed just as the compactification of U(A ×∆(A)). In the resulting
space, the domain of the continuous, here polynomial, functions is expanded so
that step size 1 jumps can be realized by infinitely steep climbs over infinitesimal
intervals. When infinitesimal time intervals are not observable, this reduces to the
usual space of rcll step functions for point processes.

5.1.4. Expected Utility Maximization. An expected utility maximizer with the von
Neumann-Morgenstern utility function u(·) has wealth w, and the option to pay an
amount R to take a bet X. For any countably additive probability p, the law of
iterated expectations tells us E u(w + X) satisfies, for any partition {An : n ∈ N}
of the state space,

(15) E u(w +X) =
∑
nE (u(w +X)|An) · p(An).

Suppose that decision maker would take the bet, that E u(w +X) > u(w −R).
When X has variability larger than R, a partition can be arranged with the

property that for some An, E (u(w+X)|An) < E u(X −R), which, by the balance
equation (15), implies that for others, denoted Am, E (u(w+X)|Am) > E u(X−R).
Learning that the true state belongs to an An means that the decision maker has
learned that they regret taking the bet, but on the upside, learning that the true
state belongs to an Am means that the decision maker has learned that they are
happy to have taken the bet.

With finitely additive probabilities, the situation is much different, the balance
or “conglomerability” condition in (15) can fail. Dubins (1975) shows that when p
is nonatomic and purely finitely additive, as the priors in Savage (1972) are, there
exists a countable partition {An : n ∈ N} with the property that E (u(w+X)|An) <
E u(w+X) for each n ∈ N. This delivers, seemingly, the possibility of money pumps:
suppose that the decision maker has willingly paid R to take the bet X because
E u(w +X) > u(R); reveal which An in the partition {An : n ∈ N} has happened;
arrange matters so that conditional on each An, E (u(w +X)|An) < u(w − R); at
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this point, after the realization of each element in a partition of the state space,
the decision maker is willing to pay a positive amount to get out of the bet.

What makes the seeming paradox go is that
∑
n p(An) = 1 − δ for a strictly

positive δ. Defining En = ∪i≥nAi yields a sequence En ↓ ∅ with p(En) ≥ δ. The
mislaid states, the ones that should belong to ∩nEn, are the ones in which the
decision maker is happy to have taken the bet. Stinchcombe (1997) details how
both nonstandard versions of the spaces and compactifications of the spaces can
be used to construct isomorphic versions of sets of decision problems that contain
representations of the mislaid states. The isomorphic versions avoid money pumps,
and the other paradoxes, that arise in the finitely additive theory of choice under
uncertainty.

5.1.5. Social Choice Theory. Fishburn (1970) shows that when the domain is an
infinite set of individuals, all of the assumptions in Arrow’s impossibility theorem
can be satisfied by taking, as the class of decisive coalitions, sets in any maximal
free ultrafilter on the space of individuals. It is easy to check that F is a maximal
free ultrafilter if and only if η(E) := 1F(E) is a purely finitely additive point mass.
Kirman and Sondermann (1972) interpret the support points for such an η as an
“invisible dictator,” one that is not present in the original space of individuals.
The compactification of the measure space of agents used above parallels the Arm-
strong (1980) interpretation of invisible dictators as “ ‘agents’ in the Stone space
of the quotient algebra, in which context social welfare functions induce continuous
preference profiles.”

Here the mislaid agents are the dictators that Arrow’s axiom is meant to exclude.
Without a representation for the dictators, one comes to an Arrovian possibility
theorem for large population models. This is misleading — the ultrafilter social
choice rule in Fishburn (1970) picks a dictator, but one without a representation.
When the mislaid agents have a representation, the conclusion is the opposite, that
Arrow’s impossibility theorem also holds for large population models.

5.1.6. Intergenerational Equity. In studies of intergenerational equity, patient pref-
erences are operationalized as immunity to a range of perturbations of the genera-
tions. Khan and Stinchcombe (2018) show that this requires the tangents to patient
social welfare functions be representable as integrals against purely finitely additive
measures on the set of generations. This in turn allows for seeming violations of
the Pareto principle.

A probability, µ, is purely finitely additive if and only there exists a strictly
positive function g such that

∫
g dµ = 0 (see Lemma 6 in §A1 below for this). The

seeming violations of the Pareto principle arise when an allocation X is indifferent
to X + g where g is strictly positive for every generation but

∫
g dµ = 0. For non-

atomic population models, the existence of a reallocation that increases the utility
of a null set of agents does not violate Pareto optimality. The missing points in
the domain have been mislaid in the full µ-measure set of generations at which a
nonnegative function integrating to 0 takes the value 0. Again, one can represent
the elements of the full mass set of mislaid generations either with nonstandard
versions of the space of generations or with the appropriate compactification.

5.2. The Virtues of Finite Additivity. Purely finitely additive probabilities
have been spectacularly useful tools in several areas precisely because they do mislay
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pieces of the model, and they have been modestly useful in other contexts, e.g.
providing learning foundations for a subset of multiple prior models of choice.

5.2.1. Ultraproducts. The essential construction in both Robinson’s nonstandard
analysis and the ultraproduct approach to Banach spaces uses a purely finitely
additive point mass, η, on the set of all subsets of N. Define two sequences (xm)m∈N
and (ym)m∈N in a Banach space V to be equivalent if µ({m ∈ N : xm = ym}) = 1.
Then define ∗V, the nonstandard extension of V, as the set of equivalence classes
of all sequences in V.6 For a recent survey of the uses of ultraproducts across a
broad range of mathematics (e.g. stochastic differential equations, ergodic theory,
Ramsey theory, Banach densities on N), see Keisler (2010).

For ultrafilter and nonstandard analysis constructions, the equivalence class
structure directly captures asymptotic properties of sequences precisely because
µ is purely finitely additive and N lacks points at which one must represent the
behavior of the sequence “at infinity” as a point in V. This allows many analyses of
infinite dimensional spaces to proceed using tools and intuitions from finite dimen-
sional spaces. In general equilibrium theory, it allows the treatment of nonatomic
population models of exchange economies to proceed using tools and intuitions from
finite population exchange economies (see Anderson (1992) for a survey).

5.2.2. Multiple Priors. One way to provide a foundation for the multiple prior
theory of choice under ambiguity is to suppose that an independent and identically
distributed sequence of random variables, Xn, has been observed in (0, 1], and that
the probability that Xn ∈ (a, b], p((a, b]), has been learned for each a < b. Take
as the set of priors, Π(p), the set of all finitely additive probabilities consistent
with p on the field of sets generated by the (a, b]. These are countably additive
probabilities on the Stone space for (0, 1]. The set Π(p) has cardinality as larger
than the class of all subsets of R. The missing points that support these priors are
‘hidden’ as purely finitely additive point masses on the unit interval.

The sets of priors Π = Π(p) has a definite, albeit limited, use for multiple prior
models of choice. If K is a compact metric space of consequences and choices in the
presence of ambiguity/multiple priors are modeled as choices between measurable
functions from the state space to K, then the objects of interest are the sets of
induced distributions f(Π) = {f(µ) : µ ∈ Π}, f a measurable function. A “face” in
∆(K) is a set of distributions ∆(F ), F a closed subset of K. Stinchcombe (2016)
shows that the class of sets of induced distributions always contains the faces, and
if p is non-atomic, then it is exactly the set of convex combinations of faces. Some
interesting decision problems in the presence of ambiguity are of this form, but
most are not.

5.3. Population Games, with Mislaid Pieces Restored. For nonatomic pop-
ulation games, failures of countable additivity on the space of agents involve a lack
of representation for a positive mass of agent characteristics. This lack of represen-
tation can make the models misleading. Restoring the mislaid agents to the model
delivers equilibrium existence and continuity of the approximate equilibrium corre-
spondence. At issue is how complicated the restoration must be to “fix” nonatomic
population games.

6An index set larger than the integers is sometimes desirable, see the discussion of saturation,
p. 24 in §A2 below.

18



5.3.1. The Complications. For n-tight nonatomic population games, Theorem B
shows that the compactification approach allows a one-to-one onto mapping be-
tween equilibrium outcomes in the original game and the game with added points.
For non-atomic population games failing n-tightness, more complicated construc-
tions are required.

There is one essential reason for the complications — when the induced distri-
bution on characteristics/utility functions, G(µ), fails to be n-tight, representing
the mislaid pieces of the game requires adding extra utility functions. But the ex-
tra utility functions are functions on a larger domain, part of that domain is the
choices that the agents make, so that A must be expanded, and this in turn requires
expanding the set of population distributions of agent choices, ∆(A).

The most direct way to represent all of the requisite types and utility functions
is to use nonstandard extensions of the space of types, (T, T , µ), the unit ball in the
space of continuous utility functions, U(A×∆(A)), and the space of distributions
induced on U by the characteristics mapping G, and this is the content of the results
in §3.4. Including the requisite types and utility functions by compactification
requires a new class of compact spaces, studied in §4.

Proposition 1 contains the essential construction for §4. It gives the new, compact

Hausdorff space, M̂ , that is the domain for the new unit ball of continuous utility

functions, Û. With this space in hand, it is easy to recognize when the game needs
no extra points — when it is n-tight — and this is the content of Theorem B.

5.3.2. The Potential. The failures of countable additivity that matter most for
population games are the failures of n-tightness of the induced distribution on
characteristics. In these cases, it is necessary to add agents and utility functions to
analyze the equilibria of the game. Filling in the missing pieces has perhaps been
an uncomfortably elaborate process. After all, one could argue that the original
formulation of the game contained all that the modeler thought relevant, and if
this means that there are no equilibria or there are no representations of the limits
of ε-equilibria, then so be it. There are two counter arguments. First, the use of
purely finitely additive probabilities has, here, as in many other instances, mislaid
major parts of the model, and analysis of a model with pieces mislaid can be very
misleading. Second, and this points to possibilities for future research, finitely
additive probabilities are the traces of countably additive probabilities on larger
spaces, and these larger spaces provide a new class of models. These new models
may prove to be a more apt tool for the study of population wide optimization.
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Appendix

The first two parts of the appendix, A.1 and A.2, contain a synopsis of the
mathematics of finitely additive probabilities relevant to this paper, as well as a
synopsis of the properties of nonstandard extensions. The second two parts, B.1
and B.2, contain the proofs, first of the tightness results, and then the results on
the compactifications and equilibrium existence and approximability.

A. Synopses

A1. Synopsis: Finitely Additive Probabilities. Fix a non-empty set X and a
σ-field of subsets, X . Mb(X) denotes the Banach space of bounded X -measurable
functions with the supnorm.

Basics

The finitely additive probabilities on (X,X ), denoted ∆fa(X), are functions
µ : X → [0, 1] satisfying µ(X) = 1 and µ(E ∪ F ) = µ(E) + µ(F ) for disjoint
E,F ∈ X . ∆fa is a subset of the dual space of the Banach space Mb(X), and is
given the weak∗ topology, defined by µα → µ if and only if

∫
g dµα →

∫
g dµ for

every g ∈Mb(X).
A probability µ is countably additive if µ(∪nEn) =

∑
n µ(En) for each disjoint

collection {En : n ∈ N} ⊂ X , equivalently, if µ(En) ↓ 0 for every nested collection
{En : n ∈ N} ⊂ X with En ↓ ∅. The probability is purely finitely additive if
there exists a sequence of measurable sets, En ↓ ∅, with µ(En) ≡ 1.

Every finitely additive probability µ has a unique decomposition as µ = δµca +
(1 − δ)µfa where 0 ≤ δ ≤ 1 is unique, µca is countably additive, and µfa is
purely finitely additive (Yosida and Hewitt, 1952). Further, δ is the supremum of
limn µ(En) where the supremum is taken over all En ↓ ∅.

A Characterization

The following result, though simple, is often quite useful for understanding the
peculiarities of purely finitely additive probabilities.

Lemma 6. The following conditions are equivalent for a probability µ.

(a) µ is purely finitely additive.
(b) There is a countable partition {Fn : n ∈ N} ⊂ X with µ(Fn) ≡ 0.
(c) There exists a strictly positive g ∈Mb(X) with

∫
g dµ = 0.

Proof. (a) ⇒ (b). Suppose that En ↓ ∅ and µ(En) ≡ 1. Set E0 = X and define
Fn = En−1 \ En. The Fn are disjoint, and because P (En) = 1, P (Fn) = 0.
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(b) ⇒ (c). If {Fn : n ∈ N} is a countable partion with µ(Fn) ≡ 0, define
g =

∑
n rn1Fn for any strictly decreasing sequence rn ↓ 0. For any ε > 0, pick

rn < ε and note that µ({g ≤ rn}) = 1, so that 0 ≤
∫
g dµ < ε.

(c) ⇒ (a). If g is strictly positive and
∫
g dµ = 0, define En = {g ≤ 1/n}. Strict

positivity implies that En ↓ ∅. If µ(En) = γ < 1, then
∫
g dµ ≥ (1− γ)/n, which is

strictly positive. �

Conglomerability

Finitely additive probabilities can fail to be conglomerable. From Dubins
(1975), if µ is purely finitely additive and non-atomic, then for every measurable B
with 0 < µ(B) < 1, there is a countable partition An of positive mass sets such that
µ(B|An) < µ(B) and another countable partition Cn such that µ(B|Cn) > µ(B).
If one believe that countable partitions captured all of the mass of purely finitely
additive probabilities, one would conclude that models with such priors, e.g. Savage
(1972), must suffer from money pumps if the model includes random variables that
take on more than finitely many values.

Probabilities on Topological Spaces

Countably additive probabilities on topological spaces have special properties.
The same is true for finitely additive probabilities. For the following, suppose that
X is a topological space and X is its Borel σ-field.

• If X is a compact Hausdorff space, then for any finitely additive Borel prob-
ability µ, there exists a countably additive µ′ such that

∫
f dµ =

∫
f dµ′

for every continuous f : X → R. That is, for continuous purposes, there is
no difference between finitely additive and countably additive probabilities
on compact spaces.

• If X is a csm, (complete separable metric space), then Ulam’s theorem
(Billingsley, 1968, Thm. 1.4, p. 10) tells us that every countably additive
Borel probability µ is tight. Lemma 1 shows that c-tightness is equivalent
to countable additivitity, while Lemma 2 shows that, for continuous pur-
poses, there is no difference n-tight probabilities and countably additive
probabilities.

• If X is a csm, then for any purely finitely additive Borel probability µ,
any countably additive µ′, and any ε > 0, there is a measurable bounded
function g : X → [0, 1] such that |

∫
g dµ −

∫
g dµ′| > 1 − ε. That is, for

measurable purposes, there is a world of difference between finitely additive
and countably additive probabilities.

• If X is a non-compact csm, then there exists a purely finitely additive µ
such that for all ε > 0 and all countably additive µ′, there exists a Lipschitz
continuous f : X → [0, 1] with |

∫
f dµ −

∫
f dµ′| > 1 − ε. Failures of n-

tightness mean that even for continuous purposes, there can be a world of
difference between finitely additive and countably additive probabilities.

A2. Synopsis: Nonstandard Extensions. This is a quick development of the
essential ideas for nonstandard analysis. Lindstrøm (1988) is a more leisurely and
detailed introduction to nonstandard analysis that builds directly on intuitions from
sequences, while Hurd and Loeb (1985) gives a more axiomatic approach and covers,
using the nonstandard analysis it develops, point-set topology and a good deal of
functional analysis.
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The Basic Construction

For an arbitrary non-empty set X, let XN denote the set of sequences taking
values in X, and fix a purely finitely additive point mass probability, η, on N, that
is, suppose that the probability η satisfies η(E) = 0 or η(E) = 1 for each E ⊂ N.7

Define an equivalence relation in XN by (xn) ∼ (yn) if η({n ∈ N : xn = yn}) = 1,
let 〈xn〉 denote the equivalence class of (xn) ∈ XN. Define ∗X as XN/ ∼, that is,
as the set of all ∼-equivalence classes in XN. X is regarded as embedded in ∗X
by the mapping x 7→ 〈x, x, x, x, . . .〉. If X is infinite, then any sequence (xn) of
distinct elements is not equivalent to any constant sequence. Thus, ∗X contains
new elements if and only if X is infinite.

Examples

This construction can be used for arbitrary X, and examples help make clear
the range of uses.8

(1) If X = R, then ∗R contains the equivalence classes of sequences εn ↓ 0. For
any positive r ∈ R, η({n ∈ N : 0 < εn < r}) = 1. This means that ε := 〈εn〉
satisfies 0∗ < ε∗ < r for any positive r ∈ R. This is written ε ' 0, and
1/ε ' ∞.

(2) Let gr(f) denote the graph of a function from X to Y . The function
∗f : ∗X → ∗Y is defined, for every x := 〈xn〉 ∈ ∗X, by ∗f(x) = 〈f(xn)〉 in
∗Y . Thus, if X and Y are metric spaces, then f is continuous at x ∈ X if
[∗dX(x′, x) ' 0] ⇒ [dY (∗f(x′), ∗f(x)) ' 0], that is, infinitesimal movements
in the domain yields infinitesimal movements in the range.

(3) A function f : R → R has derivative r at x◦ if for all non-zero ε ' 0,

| f(x◦+ε)−f(x◦)
ε − r| ' 0. Directional and multidimensional derivatives are

essentially the same.
(4) If X is a metric space, then x′ ∈ ∗X is nearstandard if d(x′, x) ' 0 (where

the notation “d(x′, x)” is short for “∗d(x′, x)”). The standard part of a
nearstandard x′ is denoted st(x′), and when X = R, it is also denote ◦x′.

(5) If X is a compact metric space, then every x′ ∈ ∗X is nearstandard:
partition X into finitely many sets Ei having diameter less than 1/2n;
η({n ∈ N : xn ∈ Ei}) = 1 for only one of the En,i, denote it by En,i(n);
partition En,i(n) into finitely many sets En+1,i having diameter less than

1/2n+1; at most one of these sets, En+1,i(n+1) has an η-mass 1 set of
n with xn in it; continuing inductively, the xn belong to a sequence of
sets having diameter less than 1/2n; in X, there is exactly one element in
∩n closure(En), and for every ε > 0, µ({n ∈ N : d(xn, x) < ε}) = 1, that is,
d(x, x′) ' 0.

(6) Let Pf ([0, 1]) denote the class of finite subsets of [0, 1]. The hyperfinite
subsets of [0, 1] are ∗Pf ([0, 1]). Consider the set in ∗Pf ([0, 1]) given by
A := 〈An〉 where An = {k/2n : 0 ≤ k ≤ 2n}. For any dyadic rational q,
{n ∈ N : q ∈ An} has finite complement, hence q ∈ 〈An〉. The transfer
principle (discussed below) tells us that A “behaves like” a finite set, so

7If F is a maximal free ultrafilter on N, then setting η(E) = 1F (E) delivers such a point
mass. The Axiom of Choice, in its Hausdorff maximality principle form, implies that maximal
free ultrafilters exists.

8For detailed introductions to this material see Hurd and Loeb (1985) or Lindstrøm (1988),
for the bare essentials of the material used here, see Corbae et al. (2009, Ch. 11).
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this is a set that is dense in [0, 1] and yet allows for e.g. inductively moving
from one point to the next.

(7) Fix a non-emptyX, a σ-field of subsets X , and a finitely additive probability
µ : X → [0, 1]. It is easy to verify that the function ◦∗µ : ∗X → [0, 1] is a
finitely additive probability on ∗X . It can be shown, e.g. Corbae et al. (2009,
Thm. 11.2.4), that ∩n∈NEn = ∅ in ∗X if and only if there exists a finite N
such that ∩n≤NEn = ∅. This means that ◦∗µ is automatically countably
additive on the field ∗X , hence by Carathéodory’s extension theorem e.g.
Corbae et al. (2009, Thm. 7.6.2), ◦∗µ has a unique, countably additive
extension to σ(∗X ), called the Loeb measure generated by µ.9

(8) When X is a topological space and τX is its topology, then the monad
of y ∈ X is the set m(y) =

⋂
y∈G;G∈τX

∗G. When (X, τX) is a metric

space, m(y) = {x ∈ ∗X : d(x, y) ' 0}. In particular, X = ∆fa = ∆fa(X )
is compact with the weak∗ topology, so every µ′ ∈ ∗∆fa is nearstandard
(the argument for compact metric spaces generalizes), and the monad of a
µ ∈ ∆fa is the set of µ′ ∈ ∗∆fa with |

∫
g dµ −

∫
g µ′| ' 0 for all bounded

measurable g : X → R.

Superstructures, Transfer, and Saturation

The unification of all of the sets ∗X happens in a superstructure. Let P(X)
denote the class of all subsets of X. A superstructure on a set S is defined induc-
tively: V0(S) := S, V1(S) := P(V0(S)) ∪ V0(S), Vn+1 := P(Vn(S)) ∪ Vn(S), and
V (S) := ∪nVn(S). For example: if S contains a non-empty set X and R, then
V2(S) contains ordered pairs; V3(S) contains sets of ordered pairs, i.e. functions;
and V4(S) contains subsets of the functions, e.g. the continuous or the measurable
functions. For any object X in the superstructure V (S), e.g. the set of continuous
functions from [a, b] to R, one constructs ∗X as above, and V (∗S) is defined as the
collection of all of these sets.

One of the most powerful tools for nonstandard analysis is the transfer prin-
ciple, which says that logical statements that are true about objects in the su-
perstructure V (S) if and only if they are true in V (∗S) after “putting stars on
everything.” The simplest version of this reduces if-then statements to subset re-
lations. For example, to express the idea that all compact and continuous normal
form games have Nash equilibria, letting A denote the set of compact and continu-
ous normal form games, and B the set of normal form games with Nash equilibria,
the statement is A ⊂ B. It is clear from the “∗” construction that A ⊂ B if and only
if ∗A ⊂ ∗B, and this is the canonical example of the transfer principle. To prove that
all compact and continuous normal form games have equilibria, one transfers the
statement that all finite games have equilibria to find that all ∗-finite games have
equilibria, then show that the standard part of the mixed strategies are equilibria
of the original game. This part of the arguments is where, typically, the hard work,
if there is any, must be done.

The construction using a purely finitely additive η on the integers has the fol-
lowing saturation property: if A ∈ V (S) is countable, i.e. has cardinality ℵ0, then
there exists an Af ∈ ∗Pf (A) such that for every a ∈ A, a ∈ Af . Fix a cardinal num-
ber κ. It is possible to (carefully) construct point mass η’s on larger index sets such

9In honor of its discoverer and initial developer, see Loeb (1971).
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that for any A ∈ V (S) with cardinality κ or smaller, there exists an Af ∈ ∗Pf (A)
such that for every a ∈ A, a ∈ Af . Such a V (∗S) is called κ-saturated.

B. Proofs

B1 contains the proofs of the characterization results for and examples about
tightness, the equilibrium existence and continuity proofs are in B2.

B1. Characterizations of Tightness and Related Material. We now turn to
the arguments for the three kinds of tightness introduced above.

Proof of Lemma 1. Suppose first that q is countably additive. Let E ⊂ K denote
the class of sets with q(E) = sup{q(K) : K ⊂ E is compact}. E contains the closed
sets, is closed under complementation and countable unions, hence contains all of
the measurable sets.

Suppose now that q is c-tight. It is sufficient to show that for all En ↓ ∅ in M,
q(En) ↓ 0. Suppose not, that is, suppose that for some En ↓ ∅ inM, q(En) ↓ δ > 0.
Let rn ↓ 0 be a strictly decreasing sequence such that

∑
n rnq(En) < δ/2 (e.g.

rn = δ/2n+1). For each En, let Kn be a compact subset of En with q(Kn) >

(1− rn)q(En). For any positive N , q(EN \∩Nn=1Kn) ≤
∑N
n=1 rnq(En) < δ/2. Since

q(En) ≥ δ, this implies that q(∩Nn=1Kn) > δ/2 which is strict positive. Therefore,
the collection {Kn : n ∈ N} has the finite intersection property. By compactness,
∩nKn 6= ∅, contradicting ∩nEn = ∅. �

Proof of Lemma 2. Note first that q is n-tight iff for every ε > 0, there exists a
compact K such that for all δ > 0 and every continuous f satisfying 1Kδ ≥ f ≥ 1K ,∫
f dq > (1− ε). The proof uses this as an alternative definition of n-tightness.
If βM (q, qca) = 0 for some countably additive qca, then for every bounded,

Lipschitz continuous f : M → R,
∫
f dq =

∫
f dqca. Pick an ε > 0 and pick

K such that qca(K) > (1 − ε). For any δ > 0, consider the Lipschitz function
f(x) = max{0, 1 − 1

δd(x,K)}. The function f satisfies both 1Kδ ≥ f ≥ 1K and∫
f dq =

∫
f dqca ≥ qca(K) > (1− ε).

Fix a n-tight q, and for every bounded continuous f : M → R, define Lq(f) =∫
f dq. Lq is a continuous linear function on Cb(M), the bounded continuous func-

tion on M . In order that Lq be representable as an integral against a countably
additive qca, it is necessary and sufficient that for every sequence fn ∈ Cb(M) sat-
isfying fn(x) ≥ 0 and fn(x) ↓ 0 for all x, Lq(fn) ↓ 0 (this equivalence follows from
Lebesgue’s dominated convergence theorem and the Riesz representation theorem,
e.g. Corbae et al. (2009, Theorems 7.5.6 and 9.8.2)).

Fix a non-negative sequence fn in Cb(M) with fn ↓ 0. Pick ε > 0. We must
show that for sufficiently large N , Lq(fN ) < ε. Since f1 is bounded, there is no loss
in assuming that 1 ≥ fn(x) ≥ 0 for each x and each n. Pick a compact K such that
for all δ > 0 and every continuous g satisfying 1Kδ ≥ g ≥ 1K , Lq(g) > (1 − ε/3).
Because K is compact, we can pick N sufficiently large that fN is uniformly less
than ε/3 on K (by Dini’s theorem). Because fN is continuous, for each x ∈ K, there
exist δx > 0 such that for all y ∈M , if d(x, y) < δx, we have |fN (x)−fN (y)| < ε/3].
Because K is compact, there is a finite cover, {B(xi, δi) : i = 1, . . . , I}, xi ∈ K, of

K by such open balls. Pick δ′ > 0 such that Kδ′ ⊂ ∪iB(xi, δi). By n-tightness,

q(M \ Kδ′) < ε/3. Because Kδ′ ⊂ ∪iB(xi, δ), fN < 2ε/3 on Kδ′ . Combining,
Lq(fN ) < 2ε/3 + ε/3 = ε. �
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Proof of Lemma 3. From Lemma 2, there is a (unique) countably additive q with
β(p, q) = 0. Let εn be a decreasing of strictly positive numbers εn ↓ 0, let Kn be
an increasing sequence of compact sets with q(Kn) > 1− εn, and define Fn = Kεn

n .
The set F := ∪N ∩n≥N ∗Fn is a subset of ns(U) and ∗p(F ) ' 1. �

The following shows that there are n-tight probabilities that put mass 1 on every
δ-neighborhood of the origin but put mass 0 on any compact set.

Lemma 7. For every n ∈ N, there exists a finitely additive pn with pn( 1
n · U) = 1

and pn(K) = 0 for all compact K ⊂ U.

Proof. Let K denote the compact subsets of U. For every finite KF ⊂ K, let KF

denote the necessarily compact convex hull of the union of the compact subsets in
KF . Because it is compact, the set (R ·KF )∩U is a shy subset of C([0, 1]) (see e.g.
Stinchcombe (2001) for this). That is, there exists a Borel probability η on U such
that η(f + (R ·KF ) ∩ U) = 0 for all f ∈ C([0, 1]). In particular, setting f = 0, we
have η(R ·KF ) = 0.

Let P(KF ) denote the set of all finitely additive p such that p((R ·KF )∩U) = 0.
This is a weak∗-closed subset of ∆fa(U), hence is compact. The class

(B1) {P(KF ) : KF is a finite subset of K}
has the finite intersection property, hence has non-empty intersection. Any p in
the intersection is a purely finitely additive probabilities satisfying p(K) = 0 for all
compact K ⊂ U.

Let p be any element of the intersection and for each n ∈ N, let pn be the image of
p under the mapping f 7→ 1

nf . This guarantees that pn( 1
n ·U) = 1. By construction,

pn also satisfies pn(K) = 0 for all K. Finally, by the weak∗-compactness of the set
of finitely additive probabilities, {pn : n ∈ N}, has an accumulation point, and since
pn(K) ≡ 0 for each pn, p(K) = 0 as well. �

B2. Existence Results and Related Material. We now turn to the equilibrium
existence results, as well as the supporting material.

Proof of Theorem A. Pick infinite f that refines all finite partitions of T and an ε-
equilibrium af for a positive infinitesimal ε (which exists by transfer of the statement
that all finite population games have equilibria). By the definition of ε-equilibria,
there exists an E ∈ ∗T (f) with ∗µ(E) > (1 − ε) such that ∗G(t)(af (t), νaf ) >
maxb∈∗A

∗G(t)(b, νaf ) − ε. The set E belongs to ∗T , hence belongs to σ(∗T ) and
◦∗µ(E) = 1. Since the sup norm diameter of ∗G(f)(B) is infinitesimal for each B ∈ f ,
∗G(t)(af (t), νaf ) ' stV(∗G(t)(af (t), νaf )), hence for each t ∈ E, stV(G∗(t)(af (t), νaf )) ≥
maxb∈∗A stV(G∗(t)(b, νaf )) and af is an equilibrium for ΓNS .

Now suppose that a∗ is an equilibrium of ΓNS and define af = Eµ(a∗|f). Let
B ∈ σ(T ) denote the set

(B2) {t ∈ ∗T : stV(∗G(t)(a∗(t), νa)) ≥ max
b∈∗A

stV(G∗(t)(b, νa)).

By the definition of equilibria, ◦∗µ(B) = 1. Since the sup norm diameter of ∗G(B)
is infinitesimal for each B ∈ f ,

(B3) ◦∗µ({t ∈ ∗T : stV(∗G(t)(af (t), νaf )) < max
b∈∗A

stV(∗G(t)(b, νaf ))}) = 0.

By iterated expectation, νaf = νa∗ . Take any internal set Ef in ∗T (f) such that
◦∗µ(Ef∆Bc) = 0. Note that ∗µ(Ef ) ' 0. Playing the strategy af on the comple-
ment of Ef delivers an ε-equilibrium for some ε ' 0.
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The continuity of the approximate equilibrium correspondence is the usual con-
version of nonstandard results into statements about ultrafilter limits. For the last
two parts, one works with the distributional formulation of games as developed in
Mas-Colell (1984): any equilibrium outcome for ΓNS induces a joint distribution
over actions and types; if p is c-tight then the regular conditional probability for
the joint distribution of an equilibrium; if p is n-tight, apply Lemma 2. �

Proof of Lemma 4. For each f ∈ F , let If = {◦f(x) : x ∈ X}. Because f(X) is an
internal subset of ∗[−1,+1], If is compact. Give the compact product space, I =
×f∈FIf , the product topology. For x, y ∈ X, define x ∼ y if ◦f(x) = ◦f(y) for all
f ∈ F and letX ′ = X/ ∼ be the set of equivalence classes. The mapping ϕ : X ′ → I
defined by ϕ(x) = (f(x))f∈F from X ′ to I is, by definition, a homeomorphism.
Since I is a compact Hausdorff space, X ′ is also compact and Hausdorff. Since X ′

is a quotient space of X, X is compact, and it is Hausdorff if and only if for each
x 6= y we have x 6∼F y. �

Proof of Lemma 5. Every Lipschitz function is continuous. Therefore, for every
open G ⊂ R, every ψ−1(G) is open in the sup norm topology. In the other direction,
for every g ∈ U, the function ψg(f) := ‖f − g‖ is Lipschitz and ψ−1

g (−∞, ε) is the
ε-ball around g. �

Proof of Proposition 1 We have x 6= y in M if and only if there exists an f ∈ U(M)
such that f(x) = 0 and f(y) = 1. By transfer, x 6= y in ∗M if and only if there

exists an f ∈ ∗U(M) such that f(x) = 0 and f(y) = 1. By Lemma 4, M̂ = ∗M

is compact and Hausdorff. To show that Û = ∗U(M)/ ', note that by Lemma 5,

f ∼ g if and only if ∗ψ(f) ' ∗ψ(f) for all ψ ∈ Ψ. Finally, note that ∪r>0 r · Û is
a sup norm closed vector algebra of continuous functions containing the constants
and separating points in a compact Hausdorff space. By the Stone-Weierstrass
theorem, it is therefore equal to the set of continuous functions. �

Proof of Theorem B. Γ̂ has an equilibrium because the standard part of any equi-
librium for ΓNS yields one. If q is countably additive, apply Mas-Colell (1984) to
find an equilibrium for the distributional form of the game, then take a regular con-

ditional probability to represent it. If q is tight, hence puts mass 1 on U ⊂ Û, then

the difference between Γ and Γ̂ is infinitesimal. The last part follows from Lemma
2, which shows that n-tight probabilities are at weak∗-distance 0 from countably
additive ones. �
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