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 Southern Economic Journal 2005, 71(3), 636-660

 Supermodularity and Complementarity in
 Economics: An Elementary Survey
 Rabah Amir*

 The literature on supermodular optimization and games is surveyed from the perspective of potential
 users in economics. This methodology provides a new approach for comparative statics based only on
 critical assumptions, and allows a general analysis of games with strategic complementarities. The
 results are presented in a simplified yet rigourous manner, without reference to lattice theory, for the
 special case of one-dimensional parameter and actions sets, with the emphasis being on wide
 accessibility. Detailed applications are presented for well-known models of consumer behavior,
 monopoly pass-through, Bertrand and Cournot competition, strategic R&D, search, and matching.
 Wherever appropriate, useful tricks for applications and comparative comments are inserted.

 JEL Classification: A23, C60, C72, D43

 1. Introduction

 This survey provides an overview of the theory of supermodular optimization and games, with

 a marked emphasis on accessibility, for as broad an audience as possible. Supermodular optimization

 is a new methodology for conducting comparative statics or sensitivity analysis, that is, it determines

 how changes in exogenous parameters affect endogenous variables in optimizing models.1 As such,

 the use of this methodology is pervasive in economics, and the conclusions thereby derived are often
 one of the main motivations behind the construction of a model. The main characteristic of this

 methodology is that it relies essentially on critical assumptions for the desired monotonicity
 conclusions and dispenses with superfluous assumptions that are often imposed only by the use of the

 classical method, which is based on the Implicit Function Theorem and includes smoothness,

 interiority, and concavity. The main insight is indeed quite simple. If, in a maximization problem, the

 objective reflects a complementarity between an endogenous variable and an exogenous parameter, in

 the sense that having more of one increases the marginal return to having more of the other, then the

 optimal value of the former will be increasing in the latter. In the case of multiple endogenous
 variables, then all of them must also be complements in order to guarantee that their increases are

 mutually reinforcing. This conclusion follows directly from the underlying complementarity
 relationship and is thus independent of the aforementioned superfluous assumptions. It thus holds

 even if there are multiple optimal values of the endogenous variable(s).

 Is a new look at complementarity needed? Topkis (1998, p. 3) quotes Samuelson (1947) as

 asserting the following: 'Tn my opinion the problem of complementarity has received more attention
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 Complementarity in Economics 637

 than is merited by its intrinsic importance," only for Samuelson to correct himself later in Samuelson

 (1974) by adding "The time is ripe for a fresh modern look at the concept of complementarity. The

 last word has not yet been said on this ancient preoccupation of literary and mathematical economists.

 The simplest things are often the most complicated to understand fully." It is hoped that this survey
 will convince the reader of the correctness of Samuelson's latter view.

 Another major methodological breakthrough due to this framework of analysis is the theory of

 supermodular games, better known in economics as games with strategic complementarities. The

 main characteristic of these games is that they have monotonie reaction curves, reflecting
 a complementarity relationship between own actions and rivals' actions. As a consequence of

 Tarski's fixed-point theorem, the latter property guarantees the existence of pure-strategy Nash

 equilibrium points. Because the latter type of equilibrium is most often the desired concept in

 economic models, the scope of game-theoretic modeling in economics is thereby substantially
 enlarged. Another key observation in this respect is that supermodularity is often the relevant notion in

 the comparative statics of Nash equilibrium points. Furthermore, it will be argued that supermodular

 games are more conducive to predictable comparative statics properties than games with continuous

 best-responses, the latter being the other class of games with pure-strategy Nash equilibrium points.

 While maintaining rigor in the presentation of the concepts and proofs, some informal aspects in

 the exposition are adopted, whenever they result in substantial simplification. The major step in

 achieving such an accessible exposition lies in the restriction of the theory to the case of real action

 and parameter spaces. While this reduces the scope of the theory and masks its striking elegance, it

 does, nevertheless, cover most economic applications of broad interest. The main results from the

 theory of supermodular games are also, thereby, simplified and more accessible. The multidimen

 sional Euclidean framework is presented in summary form at the end of the survey. General

 comparative comments are given at various points to provide some sense of the scope, usefulness, and

 limitations of this theory from an applications-oriented perspective. A number of well-known

 economic applications are covered, including monopoly theory, Cournot and Bertrand competition,

 a two-stage R&D model, search, matching, and growth theory. Some of these are covered both with

 the cardinal and the ordinal notions of complementarity in order to provide some comparative

 perspective. Various practical tricks in fully exploiting the benefits of this theory are also illustrated

 via some of the applications presented.

 This survey is organized as follows. The next section presents the simplified version of Topkis's
 Monotonicity Theorem with real decision and parameter spaces and compares this result with the

 standard method. Section 3 introduces games with strategic complementarities and their key properties,

 including the comparative statics of their equilibria. Section 4 presents the ordinal complementarity
 conditions and Milgrom-Shannon's Theorem. The (Euclidean) multidimensional case forms Section 5.

 Concluding remarks and other aspects of the theory, not covered in this survey, are summarized in

 Section 6. Last but not least, several illustrative applications and comparative comments are presented

 throughout to bring out the added value of this new approach in an accessible manner.

 2. Monotone Comparative Statics

 This section provides a simplified exposition of Topkis's (1978) framework in the special case
 where both the parameter and the decision sets are subsets of the reals. A number of economic

 applications are then presented to illustrate, in very familiar settings, the relevance and the scope of

 application of this simplified version of the general theory.
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 Topkis's Monotonicity Theorem: The Scalar Case

 Topkis considered the following parameterized family of constrained optimization problems,

 where As a A, with the intent of deriving sufficient conditions on the objective and constraint set that

 yield monotone optimal solutions:

 a*(s) = arg max{F(s, a) : a E As}. (1)

 We take the parameter and action sets, S and A, to be subsets ofR, and As a correspondence from S to

 A, with As being the set of feasible actions when the parameter is s.

 A function F: S X A ?> R has (strictly) increasing differences in (s, a) if

 F(s',a')-F(s',a)(>) > F(s,a') - F(s,a), V a' > a,s' > s, (2)
 or, in other words, if the difference F(-, a') ? F(-, a) is an increasing function.2 This property does not

 discriminate between the two variables in that Equation 2 is clearly equivalent to

 F(s\a')-F(s,a')(>) > F(s',a)-F(s,a), V a' > a,s' > s. (3)
 For functions on R2, increasing differences is equivalent to supermodularity, so the two terms will be

 used interchangeably.3
 For smooth functions, supermodularity/increasing differences admit a convenient test.4

 Lemma 1. If F is twice continuously differentiable, increasing differences is equivalent to d2F(s,
 a)/dads > 0, for all a and s.

 Proof. Increasing differences is equivalent to F(-, a') ? F(-, a) being an increasing function
 (when a' > a), which is equivalent to d[F(s, a') ? F(s, a)]/ds > 0, or dF(s, a')/ds > dF(s, a)l/ds, that

 is, dF(s, a)/ds is increasing in a or d2F(s, a)/dads > 0. QED.

 Increasing differences is interpreted as formalizing the notion of (Edgeworth) complementarity:

 Having more of one variable increases the marginal returns to having more of the other variable. It

 turns out that some form of complementarity between endogenous and exogenous variables lies at the

 heart of any monotone comparative statics conclusion.

 A simplified version of Topkis's Monotonicity Theorem is now given. Though a special case of

 the original result, it is adequate for most applications. It is assumed throughout that F is continuous

 (or even just upper semi continuous) in a for each s, so that the max in Equation 1 is always attained.

 Furthermore, the correspondence a*(s) then always admits maximal and minimal (single-valued)
 selections, denoted a(s) and a(s), respectively.

 Theorem 1. Consider Problem 1 with S, A cz R and assume that

 (i) F has increasing differences in (s, a), and

 (ii) As = [g(s), h(s)], where h, g:S ? R are increasing functions with g < h.

 Then the maximal and minimal selections of a*(s), a(s), and a(s), are increasing functions.
 Furthermore, if (/) is strict, then every selection of a*(s) is increasing.

 Proof. By way of contradiction, assume that a(s) is not increasing, so that, for some s' > s,
 a(s') < a(s). Then, using Assumption (ii) and the facts that ?(s) G As and a(s') G As>, we have

 2 Throughout, a function/: S ?> R is increasing (strictly increasing) if jc > j => f(x) > (>)f(y).
 3 Supermodularity is defined later on when dealing with multidimensional comparative statics.

 4 Furthermore, if d2f(a)/da?daj > 0, for all / =?j, then F is strictly supermodular. On the other hand, the reverse implication does
 not quite hold.
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 g(s) < g(sf) < a(sf) < a(s) < h(s) < h(s'), so that a(s) G As> and a(s') G As. Now, using the latter facts
 along with ?(s) G a*(s), (i), and ?(s') G a*(s'), we have

 0 > F[s',?(s)] -F[?',?(j')] > T[s,a(s)} -F[s,a(s')] > 0, (4)

 so equality holds throughout. Hence, a(s) G a*(s'), a contradiction to the fact that a(s') = max{<2*(s')},
 in view of the fact that a(s') < a(s). Hence, a(-) is increasing. A similar proof holds for a(-).

 If Assumption (i) is strict, the same contradiction argument for any selection ?(s) of #*( ) shows that

 Equation 4 holds with a strict middle inequality, a contradiction (as 0 > 0). So ?(-) is increasing. QED.

 In this proof, the contradiction hypothesis, that is, a(s') < a(s), rules out the possibility that As D As> =

 0, or, equivalently, that sup As < inf As>. Indeed, if the latter were true, then one would necessarily

 have ?(s') > ?(s), from feasibility alone.
 To rephrase the result, in the one-dimensional case with smoothness, it is sufficient for monotone

 comparative statics that the objective satisfy d2F(s, a)/dads > 0 and the constraint set be a compact

 interval the end points of which increase in the parameter.

 There is an order-dual to Topkis's Theorem,5 giving obvious dual conditions under which an

 argmax is decreasing in a parameter.

 Theorem 2. Consider Problem 1 with S, A <z R and assume that

 (i) F has decreasing differences in (s, a), and

 (ii) As = [g(s), h(s)], where h, g: S ?> R are decreasing functions with g < h.

 Then the maximal and minimal selections of a*(s) are decreasing functions. Furthermore, if (/) is

 strict, then every selection of a*(s) is decreasing.

 An alternative way to think of Theorem 2 is that it can be derived from Theorem 1 simply by

 considering the parameter to be ?s instead of s. Thus, F(s, a) has increasing differences in (s, a) if and only

 if F(s, a) has decreasing differences in (?s, a). This connection will prove useful in applications below.

 Comparing with Standard Comparative Statics

 For comparative purposes, we now review the standard method for comparative statics taught in

 graduate economic classes. Consider Problem (1) and assume that F is smooth and the argmax is
 interior. Then the first-order condition is F2(s, a*(s)) = 0.6 As this is an identity with respect to s,

 under the conditions of the Implicit Function Theorem (here, strong concavity of F in a for each s,

 i.e., F22 < 0), we can differentiate them with respect to s. Solving for a*, one gets (because F22 < 0
 by the strong concavity of F in a)

 F2l(s,a*(s))
 F22(s,a*(s))

 if we assume F2\ > 0 (i.e., increasing differences of F in (s, a)).

 Thus Topkis's theorem dispenses with the need for assumptions of concavity and smoothness of

 the objective function, interiority of the solution and convexity of the feasible set. In not imposing

 interiority of the solution, Topkis's Theorem requires the constraint set to have the ascendancy
 property implicit in Condition (ii) of Theorem 1.

 5 Writing in the tradition of the operations research literature, Topkis (1978) actually considered the problem of minimizing an

 objective that has decreasing differences in the action and the parameter. Clearly, to go from his framework to the present one

 or vice versa, one simply needs to multiply the objective by ?1.
 6 Throughout, subscripts denote partials with respect to the corresponding variable.
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 This condition guarantees that the boundaries of the constraint set are increasing functions of the

 parameter, so that an argmax that lies on parts of the boundary of the feasible set for some parameter

 values would clearly inherit the desired monotonicity property, even if it switches back and forth

 between the interior of the feasible set and its boundary. In a nutshell, Topkis's Theorem is able to

 dispense with concavity requirements because, if these fail locally, the argmax will be on the
 boundary, and hence, increasing in the parameter by Condition (ii).

 The traditional comparative statics method only works when there is a unique argmax that varies

 smoothly with the parameter without ever straying against the constraint. As a result, traditional

 economic theory inherited an excessive tendency to impose assumptions of concavity of objective
 functions, Inada-type conditions, and convexity of feasible sets even in cases where these are not

 readily justifiable on economic grounds. Likewise, the development of theories where important

 nonconvexities are inherently present, due, for instance, to some form of increasing returns, was

 probably hampered or delayed. In other words, the scope and direction of economic research were

 probably negatively influenced by these important limitations of a purely methodological nature.

 Another key advantage of this new method, not covered here, is that it allows the parameter set

 to be any partially ordered set, such as a set of integers,7 or such abstract objects as a set of probability
 distributions partially ordered, for example, by first-order stochastic dominance8 or a set of sets

 ordered by inclusion. It also allows the decision set similar latitude.

 Economic Applications

 We now provide several simple illustrations of Topkis's Theorem drawn from various familiar

 settings in economics. While all of these examples demonstrate natural ways in which complementarity

 can arise and be exploited for comparative statics, some of the examples also serve to illustrate useful

 tricks in using this methodology. In particular, a monotone-transformed objective function may satisfy

 the conditions of Topkis's Theorem under some natural assumptions while obviously preserving the

 same optimal argmax. Also, the same machinery can be used to perform nonmonotone comparative
 statics on a change of the decision variable. The most frequent change of variable is to consider minus

 the original variable, allowing one to go back and forth between increasing and decreasing outcomes.

 To check the conditions of the Theorem, the cross-partial test will always be used due to its

 convenience, although smoothness is actually not needed for most of the results presented.

 Consumer Theory

 Consider the familiar problem of a consumer maximizing utility U(x\, x2) from the consumption

 of two goods jci and x2 at given respective prices px and p2 and income m. We wish to derive

 conditions under which xx is a normal good or the demand for x\ increases in m. The problem is then

 max {U(xi, x2) : pxxx +p2x2 ? m}. If U is increasing in x2, we can solve the constraint for x2 and plug

 it into the objective,

 7 In deriving the comparative statics properties of Cournot equilibria, Amir and Lambson (2000) show that the simplification of

 treating the number of firms as a real number?common in the literature, as in Seade (1980)?can lead to misleading or
 erroneous results.

 8 Thus, a comparative statics conclusion may well take the form that as social inequality increases (exogenously) according to

 some nonparametric measure of income distribution, then crime (endogenously) increases, or as an agent's market information

 improves in some nonparametric way, she invests more, and so on.
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 max{U(xu(m~pxxx)/p2) :x{ G [0,m/pi]}. (5)

 The constraint set [0, m/pi] clearly satisfies Assumption (ii) of Theorem 1, with g being the 0 function

 and h the function m/px. By Lemma 1, assuming U is smooth, the objective in Equation 5 has
 increasing differences in (xx, m) if and only if the familiar condition

 P2U2i(xuX2)-piU22(xux2) > 0, V xx,x2 > 0 (6)

 holds. It follows from Topkis's Theorem that Condition 6 is sufficient to guarantee that xx is a normal

 good. Observe that this conclusion survives if income is expressed in discrete units, or if demand

 x\(m) switches from being interior to being on a boundary as m changes, or if demand is multivalued
 for some income levels (the conclusion that xx is a normal good then holds for the extremal selections

 of x\(m)). Furthermore, no concavity-type assumptions on U are needed! In fact, the only assumptions
 needed here are Condition 6 and the fact that the utility function is increasing in the consumption of x2

 (in solving the budget constraint).

 Monopoly Pass-Through

 Consider a monopoly firm with constant unit cost c charging a price p G [c, oo) and facing a direct

 demand function D(). The profit function is

 Il(p,c) = (p-c)D(p), p G [c,oo).

 To verify increasing differences of the profit function directly, we have d2U(p, c)/dpdc = ?D'(p),

 which is > 0 iff D'(p) < 0. Because the feasible set [c, oo) has the form specified in Theorem 1,

 assuming D '(p) < 0 is sufficient for the conclusion that the extremal selections from the optimal price

 p* are increasing in c.

 We now present an alternative way to arrive at the same conclusion. As the optimal price is

 invariant under a monotone transformation, we may equivalently consider the objective

 logUip.c) =log(p - c) + logD(p), p G [c,oo).

 As d2 log U(p, c)/dpdc ? (p ? c)~2 > 0, the desired monotonicity conclusion follows. Observe here
 that D need not be decreasing in own price for this conclusion to hold!9

 We now present interesting comparative statics results of a nonmontone sort, simply by making

 use of a change of variable. Define mark-up (over marginal cost) as m A p ? c and write the equivalent

 objective with this change of variable as

 logn(m,c) = log(m) + log D(m + c).

 The latter objective has decreasing differences in (m, c) if D is log-concave (i.e., log D is concave).10

 Because the constraint set is [0, oo), it follows from Topkis's Theorem that the maximal and minimal

 selections from the optimal mark-up m*(c) are decreasing in c or, equivalently, that the extremal

 selections of p* have all their slopes <1 (because p*(c) = m*(c) + c). Overall then, p* has all its

 slopes in [0, 1] and is thus continuous and single-valued. Hence, there is always positive but partial
 pass-through.

 9 Observe here that taking monotone transformation of a nonsupermodular objective function may bring about supermodularity
 of the transformed objective. We will say more on this point later.

 10 Indeed, d2 log D(m + c)/dmdc = [DD" - D'2]/D2 > 0 if and only if DD" - D'2 > 0, that is D is log concave.
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 If D is log-convex, a similar argument shows that log fi(m, c) has increasing differences in
 (m, c), so that the extremal selections of m*(c) are increasing in c or, equivalently, the extremal selec

 tions of p* have all their slopes >1, so that pass-through exceeds 100%/l

 Assortative Matching

 Becker (1973) considered a model of marriage with n women and n men looking to match to

 form n couples. Each of the sexes is ranked by productive ability according to the natural order in {1,

 2,... , n}, with person 1 being the least productive and person n the most productive. If woman / and

 man j get married, they generate a surplus of/(/, j) as a couple. A matching is any list of n couples

 consisting of one woman and one man each. The social planner's problem is to find a matching that

 maximizes social surplus, defined as the sum ^2f(i,j) over all couples in a given matching. Becker's

 main question is to derive conditions on / that lead to assortative matching, that is, to the couples

 being (1, 1), (2, 2), ... , (n, n). He shows that, iff has strictly increasing differences,12 the optimal

 matching must be assortative. For otherwise, there would necessarily be two couples (i,j) and (/',/)

 with (say) /' > / but/ < j as part of the presumed matching, so that by increasing differences off,

 there would hold f(i',j) +/(/, /) > f(i, j) +/(/',/), which contradicts the optimality of the presumed

 matching, as it says that matching /' to j and / to / leads to a higher surplus than / to j and /' to /.

 Growth Theory

 Consider a two-period version of the standard Solow-Koopmans optimal growth model with

 possible increasing returns. Assume the utility function u is such that u' > 0 and u" < 0, the

 production function/is such that/' > 0 (no restrictions on/'), and the discount factor ? G (0, 1). With

 yt denoting savings, the planner's objective is
 2

 max Y^ u(x< ~ yt) subject to xt+x =f(yt) and yt G [0,*,]. t=\

 The two-period value function V2 satisfies

 V2(x) = max{u(x - y) + 8i*[/(y)] : y G [0,*]}.

 Here, the maximand need not be concave in v, so v* (x) may be multivalued. Because the maximand

 has increasing differences in (x, y) and the constraint set satisfies Condition (ii) of Theorem 1, it

 follows that the optimal savings correspondence y*(x) is increasing in x (no restrictions are actually

 needed on/).
 For an infinite-horizon extension of this example, where the parameter set includes ? and the

 length of the horizon, see Amir, Mirman, and Perkins (1991) and Amir (1996a).

 Many more examples are given in the next section in one of the most important general uses of

 Topkis's Theorem: When showing the best response map in a supermodular game is increasing in the

 rivals' strategies (viewing the latter as a parameter).

 11 As examples, consider two of the most widely used demand functions. For linear demand (clearly log concave), cost pass
 through is 50%, and for constant-elasticity demand (log convex), pass through is 8(1 + s)_1 > 1. The above results are
 a generalization of this illustration.

 12 The interpretation of increasing differences in this context is the standard one: The productive abilities of the two members of

 the couple are complements in production, or that having a higher ability mate increases a person's marginal productivity of

 own ability.
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 3. Supermodular Games

 A fundamental contribution of the methodology at hand is that it gave rise to a new class of games,

 introduced by Topkis (1979) and further developed by Vives (1990) and Milgrom and Roberts (1990b),

 which always have pure-strategy equilibrium points in addition to many other nice general properties.

 The importance of this class of games in economics is underscored by the fact that many standard

 models of oligopoly and macroeconomic coordination games are supermodular games under quite

 general?though not universal?conditions on their primitives. The class of supermodular games, also

 known as games with strategic complementarities, substantially enlarges the scope of application of

 noncooperative game theory in economics, particularly because it dispenses with the reliance on mixed

 strategies to ensure existence of Nash equilibrium, randomized behavior still being a controversial

 feature of game theory for economists. Recall that the classical approach to existence of pure-strategy

 Nash equilibrium generally requires the quasi-concavity of each payoff function in own action.13

 The Class of Supermodular Games

 An rc-player normal-form game is given by a tuple (N, A?, F?), where A?czR,N={l,2,... , n} is
 the player set and A? and F?: Ax X A2 X An ?? R are player fs action set and payoff function. Such

 a game is supermodular if, for every player, (i) the action set is a compact set and (ii) each payoff

 function has increasing differences in own action and in each rival's action.14

 The key property of supermodular games is an immediate consequence of Topkis's Theorem:

 For each player, the best-reply (or reaction) correspondence, mapping the rivals' action vector a~l

 vector into the player's set of best responses has extremal selections that are increasing in each rival's

 action. Thus, the overall best response mapping, taking the full-action vector a into the set of best

 responses, also has extremal selections that are increasing (coordinatewise). That either one of these

 selections has a fixed point?which is clearly a pure-strategy equilibrium of the game?is a direct
 consequence of Tarski's (1955) fixed point theorem stated without proof next.

 Theorem 3. Let A be a compact Euclidean interval and F: A ?> A be increasing. Then the set of

 fixed points of F is nonempty and has (coordinatewise) largest and smallest elements.

 In the one-dimensional case, Tarski's Theorem is easily illustrated graphically, say for a map
 from [0, 1] to [0, 1]. Then, considering the mapping G(a) A F(a) - a, one has G(0) = F(0) > 0 and

 G(l) = F(l) ? 1 < 0. Clearly, the graph of G can only have upward jumps, so for it to get from above

 to below the horizontal axis, it must necessarily cross it at some point a, for which, then, G(a) = a.

 An ?-player submodular game is defined in a dual way, the only change being that decreasing

 differences replaces increasing differences. By Theorem 2, the reaction correspondences of a
 submodular game are downward sloping.15 Because there is no version of Tarski's Theorem for
 downward-sloping mappings (a fact that is easy to see graphically), submodular games need not have

 pure-strategy equilibrium points. An interesting exception is the two-player case (n ? 2). If, in

 a submodular game, we think of (say) player 2's action vector as being -a2 instead of a2, then the

 13 Additionally, because existence is then established via the Brouwer-Kakutani fixed-point Theorem, the strategy spaces have

 to be convex, and the best-response correspondence upper hemicontinuous (with the latter requiring some form of continuity

 of the payoff in the actions).

 14 Each payoff must also be upper semicontinuous in own action to ensure that the best response of each player is well defined
 (i.e., that the maximum is attained).

 15 Thus, supermodular games and submodular games correspond to games with strategic complementarity and substitutability,
 respectively, in the now-standard language of Biilow, Geanakoplos, and Klemperer (1985).
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 game becomes a supermodular game because decreasing differences in (ax, a2) become increasing
 differences in (ax, ?a2), as can be easily seen.16 No such argument holds for n > 3.

 Coincidence of Solution Concepts

 For any normal-form game, let U a Ax X A2 X An denote the set of strategies that survive iterated

 deletion of strictly dominated strategies. It is well known that only pure strategies in U can have positive

 mass at any mixed-strategy or correlated-strategy equilibrium (see, e.g., Fundenberg and Tir?le 1991).

 Because the best-response map of a supermodular game is increasing, it is easy to see that there

 exist (coordinatewise) largest and smallest Nash equilibria. Denote these by a and a. The following is
 a simplified version of a key result in Milgrom and Roberts (1990b):

 Theorem 4. For any supermodular game, sup U = a and inf U ? a.

 Proof. Let 0 and 1 stand for the smallest and the largest action vectors of all player l's (say)

 rivals. We first show for player 1 that the largest best reply to 1, denoted rx(l), strictly dominates all

 larger actions. To this end, by increasing differences of Fx, for any action vector a_x of the rivals and

 any ax > rx(l), we have

 Fx(aua_x)-Fx(rx(\),a_x) < Fx(aXjl) - Fx(rx(l),l) < 0,

 because ri(l) is the largest best reply to 1. Hence, rx(l) strictly dominates all actions ax > rx(l).

 A similar argument shows that rx(0), defined as the smallest best reply to 0, strictly dominates all
 actions ax < rx(0).

 Now, the first step of the iteration is to eliminate all player l's actions that are >rx(l) or rx(0).

 Repeat this procedure for every other player, and then again starting with player 1, and so on. As

 shown in Figure 1, this process will clearly converge to [a, ?]. QED.

 Thus, a and a form the same bounds on most solution concepts for normal-form games, including

 pure, mixed, or correlated-strategy equilibrium. When there is a unique pure-strategy equilibrium,
 more can be said.

 Corollary 1. A supermodular game with a unique pure-strategy equilibrium, ?z*, is dominance

 solvable, and a* is also the unique mixed-strategy equilibrium and correlated equilibrium.

 Proof. This result follows from Theorem 4 because a ? a ? a^ ? U here, along with the fact that

 action profiles outside of U cannot be part of a mixed or correlated equilibrium. QED.

 The intuition behind this result can be captured by a simple graphical illustration in the case of two

 player games. In Figure la, one round of deletion of strategies that are not best replies to any strategy of

 the rival is shown. Continuing this process, starting at each round from the reduced interval of actions

 left from the previous round, would clearly converge to the unique equilibrium. In Figure lb, in view of

 the multiplicity of pure-strategy equilibria, the same process will clearly converge to the rectangle [a, a].

 Comparative Statics of Equilibrium Points

 To determine the direction of change of an equilibrium point as an exogenous parameter
 changes, Topkis's Theorem is not a priori applicable. Consider a parametric family of games with

 16 An alternative argument, due to Vives (1990), is as follows. For a submodular game, the extremal reaction curves rx and r2 are

 both decreasing, so the composition r{ o r2: Ax ?? Ax is increasing. By Tarski's theorem, the latter has a fixed point, a\. Then
 (a\, r2(a\)) is easily seen to be a Nash equilibrium.
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 Figure 1. (a) The first step of the process shrinks the joint strategy set from ABCD to A'B'CD'. This process converges
 to E. (b) The same process will converge to ? B C D here.

 Player /'s payoff given by F ?(a1, a \ s) where s G S is a parameter. Milgrom and Roberts (1990b)

 prove the following very useful result in applying the theory of supermodular games:

 Theorem 5. Assume that (i) for each s G S c R, the game is supermodular, and (ii) F? has

 increasing differences in (a1, s) for each a~l. Then the extremal equilibria of the game are increasing
 functions of s.

 Proof. Let Bs(-) : A ?> A denote the best-reply correspondence when the parameter is s. For each

 s G S, there are smallest and largest Nash equilibria, by the supermodularity assumption. Let sx > s2

 and a(s) denote the largest Nash equilibrium of the game with parameter s, s G S. For each /, player /'s

 reaction correspondence rs((a~l) shifts out as s increases, by the increasing differences assumption and

 Topkis's Theorem. Hence, Bs(-) also shifts out as s increases. Because ?(s2) is the largest fixed point of

 B(s2) and because BS{(-) > BS2(-), BSl(-) maps [a(s2), lA] into itself. By Tarski's Theorem, the latter
 restricted map has a fixed point in [a(s2), lA], which is then clearly >a(s2).

 A similar argument works for the smallest equilibrium a(s). QED.

 Thus, for a supermodular game with smooth payoffs, the extremal equilibria increase in the

 parameter if d2F?/dalds > 0 for all /. The intuition behind this result is nicely captured by Figure 2.

 Indeed, from Topkis's Theorem applied at fixed a-', the effect of Theorem 5 is precisely that player /'s

 reaction correspondence shifts up as s increases. It follows that the maximal and minimal equilibrium

 points both increase, while the middle equilibrium moves in the opposite direction, in the case of 3

 equilibria.17 The overall increase in the (extremal) equilibrium actions for each player can intuitively

 be regarded as consisting of two effects. The direct effect is the positive response of the player's action

 to the increase in the parameter, or the shift in his reaction correspondence. The indirect effect is the

 positive reaction of the player to the direct-effect increases of the other players' actions.

 17 Under multiple equilibria, it has long been known that the comparative statics properties of equilbria are intimately linked to
 their stability properties (say, in terms of Cournot best-reply dynamics). This is Samuelson's (1947, 1974) so-called
 Correspondence Principle. The connection with Theorem 5 is that the extremal equilbria of a supermodular game are always
 stable. See Echenique (2002) for a recent thorough study.
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 Figure 2. As the Reaction Curves Shift from the Solid Lines to the Dotted Lines, the Nash Equilibrium Shifts from E to E'

 This theorem has natural applications in a variety of settings in economic theory, some of which

 are explored below. It confirms that strategic complementarity of a game is a natural property that is

 easily compatible with clear-cut comparative statics properties.

 By contrast, a game with a continuous (single-valued) best-response mapping but without strategic

 complementarities need not possess clear-cut monotone comparative statics properties, as is easily seen

 graphically. In other words, outward shifts in the continuous reaction curves need not imply higher

 equilibrium actions unless the game is symmetric. Observe that the requisite fact that the reaction curves

 shift out as the parameter increases is a consequence of the fact that each payoff has increasing differences

 in own action and in the parameter. Thus, supermodularity plays a role in comparing equilibrium points

 even within the classical paradigm. Generally, with continuous reaction curves, the equilibrium will

 satisfy continuity in the parameter, a property that guarantees a sense of stability in that equilibria will not

 vary drastically for small parameter variations. However, in most cases in economics, one is actually

 interested in qualitative comparative statics and wishes to determine a monotone direction of response of

 endogenous variables to variations in the exogenous variables. In most exercises of comparative
 equilibrium points in applications, supermodularity is most often (at least tacitly) behind the analysis.

 There is no dual version of Theorem 5 for submodular games, or games with strategic substitutes,

 even in the two-player case. Indeed, if one only replaces "supermodular" by "submodular" in Theorem

 5, the analogous reasoning would tell us that the (then downward-sloping) reaction correspondences also

 shift outward as the parameter increases, but here it need not follow that the equilibrium actions will both

 increase, as can easily be seen from the analogous picture. It all depends on the relative magnitudes of the

 shifts of the two curves. In this case, a similar intuitive break-up of the overall response into a direct and

 an indirect effect will reveal that the two effects are conflicting, with the direct effect being the same as the

 above case and the indirect effect amounting to a decrease in the player's action. The overall effect then

 depends on the relative strengths of these two effects, hence the ambiguous final outcome.

 Other Important Properties

 Supermodular games possess other properties of interest, which have not been addressed here.

 An important property of supermodular games is that general learning schemes, so-called adaptive

 learning schemes,18 converge to the interval bounded by the extremal pure-strategy equilibria (Topkis

 18 This is a very broad class of learning schemes that includes the well-known special cases of Cournot best-reply dynamics and

 fictitious play.
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 1979; and Milgrom and Roberts 1990b; Vives 1990). This property has also been used by Topkis

 (1979) to devise algorithms for computing equilibria of supermodular games. Echenique (2001b)

 shows that a supermodular game with real action sets is also supermodular in mixed strategies when

 these are ordered with first-order stochastic dominance. Echenique and Edlin (2001) establish that

 mixed-strategy equilibria of supermodular games are unstable with respect to a large class of

 dynamics (as in coordination games, such as the Battle of the Sexes). For Bayesian games, such as

 some classes of auctions, an extension (Vives 1990) and an exploitation (Athey 2001) of the property

 of strategic complementarity are used to establish existence of Bayesian equilibrium. Finally,
 Echenique (2001a) shows that the class of supermodular games can be substantially enlarged if the

 partial order on the strategy sets is endogenous, as opposed to being fixed a priori.

 Examples of Supermodular Games

 We now provide several examples of well-known models in economic theory that are
 supermodular games under natural conditions.

 Coordination Games

 The standard 2X2 Battle of the Sexes given below is a supermodular game because 2+1 > 0 + 0.

 More generally, large classes of coordination-type games are typically supermodular games.

 0,0 I 2,1
 1,2 0,0

 Search

 In Diamond's (1982) model, agent / expands effort a1 G [0, 1] searching for trading partners,

 and has a payoff function given by (with s > 0 being a parameter characterizing the search environment)

 Fi(a\ a'1) = sa1 ^al - Ct(al).

 Because d2F?(al, a~l)/daldaJ ? s > 0 for all / ^ j, the game is supermodular for any cost functions.

 Furthermore, because d2Fildalds > 0, it follows from Theorem 4 that the largest and the smallest
 equilibria are increasing in s (which is a measure of the ease of search).

 Bertrand Oligopoly

 In price competition with differentiated products and linear costs, firm /'s profit function, when it

 charges price pl and its rivals' price vector is p~l, is

 Fiip',p-') = ip' - cdDiip^p-),

 where c? is its unit cost and Dt its demand function.19 We can clearly restrict consideration to the price

 set [c?, oo) for firm /, because prices in [0, c?) are dominated strategies. Because monotone
 transformations leave the best-reply structure unchanged and

 logF?G?/T1') = log(pl - Ci) + logDi[p\p-%

 19 It is assumed that firms satisfy whatever demand is forthcoming, that is, that there is no rationing.
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 it follows (Milgrom and Roberts 1990b) that the game is log-supermodular if log D? has increasing
 differences in (pl, p~l) or, equivalently, using the cross-partial test, if, for all j ^ i,

 The latter property has an intuitive and precise interpretation: Firm /'s price elasticity of demand is

 increasing in the rivals' prices. Most demand functions used in industrial economics satisfy this

 condition. Many examples are provided in Vives (1999) and Milgrom and Roberts (1990b), all of

 which lead to a unique pure-strategy equilibrium, so that by Corollary 1, the Bertrand oligopoly is
 then dominance solvable.

 Next, we illustrate the application of the comparative-equilibrium result. Because log(pl ? c?)

 clearly has increasing differences20 in (pl, c), where c is the vector of unit costs, it follows from

 Theorem 5 that, if log D? has increasing differences, the largest and smallest equilibrium prices are

 nondecreasing functions of c, that is, that higher costs from any subset of the firms result in all firms'

 prices being higher and are thus always passed on to consumers.21

 Cournot Duopoly

 For homogeneous-good quantity competition, if firm / produces output level q? at a cost Ci(q?)

 and P is the inverse demand function, firm / has profit

 Fi{<lu<l2) = <liP(<l\ + qi) - Qui).

 Because with P' < 0, we have

 d2Fi(qx,q2)/dqxdq2 = P'(qx + q2) + q\P"(qx + q2) < 0 for all quq2 > 0,

 if and only if

 P'(z)+zF'{z) < 0 for all z > 0,
 it follows that the game is submodular if the latter condition holds (see Novshek 1985; Amir 1996b).

 This conclusion is easily seen to be valid even in the ?-firm case, for all n.22

 Furthermore, for n = 2, if one thinks of (say) firm 2's decision as being ?q2 instead of q2, then,

 under the above condition on demand, we clearly have d2Fi(qx, q2)/dqxd(?q2) > 0, / = 1, 2, so that the

 Cournot duopoly is then a supermodular game. This order-reversing trick works for any two-player

 submodular game but does not work for three or more firms, that is, in general, a submodular ^-player

 game is also a supermodular game if and only if n = 2. For a generalization to differentiated products,

 see Hoerning (2003).

 R&D Competition

 Consider the following variant, due to Amir and Wooders (1999, 2000), of the standard two

 stage game of R&D with one-way spillovers and product market competition. The latter is modeled in

 20 Indeed, d2Fi{p)ldpidci = d2 log (p? - cd/dp'dc? = Hip1 - c,)2 > 0, and cfF^/d^dcj = 0 for y ? i.
 21 A firm whose unit cost increases will increase its price via the direct effect of responding to its own cost increase and via the

 indirect effect of responding to rivals' cost increases. A firm whose unit cost remains constant will still increase its price but

 only via the latter effect.

 22 Exploiting in a crucial way the special structure of the Cournot model, that a firm's profit only depends on its output and on

 the aggregate output of the rivals, Novshek (1985) showed that a submodular Cournot oligopoly always has a pure-strategy
 Cournot equilibrium, even though the game is then not supermodular.
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 reduced form by assuming a unique equilibrium in the second stage with equilibrium payoff to firm 1

 (say) given by II(ci, c2), where cx and c2 are the post-R&D constant unit costs for firms 1 and 2.

 Denoting their first-period decisions, their R&D cost reductions, by xx and x2, their postspillover cost

 reductions are, respectively (assuming without loss of generality that xx > x2): Xx =xx, and X2 = xx

 with probability ?, and x2 with probability (1 ? ?). Thus, ? here is the probability that a full spillover

 takes place, only from the firm ahead in R&D to the laggard. With c and/denoting the common initial

 unit cost and the R&D cost function, respectively, firm 1 's prespillover expected payoff is

 ?ll(c-xuc-xx)+ (l-?)n(c-xx,c-x2)-f(xx), ifXj > x2
 ?U(c-x2lc -x2) + (1 - ?)U(c -xXyc -x2) -f(xx), if*i < x2 .

 Assuming II is strictly submodular, Ux < 0, U2 > 0, and U(x, x) is decreasing23 in x, Amir and
 Wooders (2000) show that the above payoff is submodular24 in (xi, x2), so that the last paragraph of the

 Cournot Duopoly example applies to the present duopoly as well. They also prove that (i) this game

 always has asymmetric equilibria, but no symmetric equilibria (though the firms are exante identical),25

 and (ii) although firm /'s profit is submodular in (xh ?), so that optimal reactions shift inward as ?

 increases, the equilibrium R&D levels need not both decrease in ? (see Amir and Wooders 1999).

 4. Ordinal Complementarity Conditions

 The properties of supermodularity and increasing differences are clearly of a cardinal nature.

 They need not be preserved by monotone transformations of the objective function. Yet the

 monotonicity of the argmax clearly survives such transformations, a property of which the usefulness

 has already been illustrated in our applications above. For instance, in the monopoly example of
 section 2, it was shown that, while increasing differences of profits require the assumption that

 demand be nondecreasing in price, increasing differences of log profits hold without any assumption.

 This illustrates the possibility that applying a judicious monotone transformation to an objective

 function may change the comparative statics analysis. The question then naturally arises as to whether

 an ordinal version of the property of increasing differences could be developed (that would be
 invariant under monotone transformations).

 The Milgrom-Shannon Theorem

 Milgrom and Shannon (1994) provided an affirmative answer to the above question and
 proposed the following property as ordinal analog of increasing differences: A function F : SXA?>R

 has the single-crossing property in (s; a)if\/a>a',s>s',

 F(s'1a)-F(s\a') > 0 =? F(s,a) - F(s,a') > 0.

 The single-crossing property is strict if F(s', a) ? F(s', a') > 0 => F(s, a) ? F(s, a') > 0.
 Unlike the property of increasing differences, the single-crossing property discriminates between

 23 These three assumptions say, respectively, that a firm's equilibrium profit from the product market decreases with own cost,
 increases with rival's cost, as well as with a common cost increase.

 24 Observe that the convenient cross partial test cannot be used here because the payoff has a kink along the diagonal x\ = x2. So
 one must use Equation 2.

 25 The arguments used in this model constitute a general approach for constructing strategic games with a priori identical players

 but only asymmetric equilibria, that is, models with strategic endogenous heterogeneity.

This content downloaded from 128.83.172.140 on Wed, 24 Aug 2016 17:46:10 UTC
All use subject to http://about.jstor.org/terms



 650 Rabah Amir

 the two variables (action and parameter). In other words, satisfying the single-crossing property in
 (s; a) need not imply the same property in (a; s).

 It is straightforward to verify, directly from the definitions, that

 (i) the single-crossing property is more general than increasing differences, in that a function that

 satisfies the latter necessarily satisfies the former,

 (ii) if F satisfies the single-crossing property, then for any strictly increasing transformation g, g o F

 will also satisfy the single-crossing property (so that this is an ordinal property).

 The economic interpretation of this ordinal property is natural, but in terms of a limited form of

 complementarity. Thus, the single-crossing property says that, if a given increase in the decision

 variable is profitable when the parameter is low, the same increase will continue to be profitable when

 the parameter is high. Unlike increasing differences, though, it does not require the latter profitability
 level to exceed the former.

 An important generalization26 of Topkis's result is due to Milgrom and Shannon (1994).

 Theorem 6. Consider Problem (1) with S, A cz R and assume that (i) F has the single-crossing
 property in (a; s), and (ii) As = [g(s), h(s)l where h, g: S ? R are increasing functions with g < h.

 Then the maximal and minimal selections of a*(s), a(s), and a(s), are increasing functions.
 Furthermore, if (i) is strict, then every selection of a*(s) is increasing.

 Proof. Repeat the contradiction argument of Theorem 1 up to Equation 3, replacing it by

 F[s,?(s)]-F[s,?{s')] > 0 =* F[s',?{s)] - F[s',?{s')] > 0,

 that is, the single-crossing property. This implies that ?(s) G a*(s'). Together with the contradiction

 hypothesis a(s') < a(s), this is a contradiction to a(-) being the maximal selection of a*(s). A similar

 change works for the case of strict single-crossing property. QED.

 While the scope of this theory of monotone comparative statics is considerably enlarged by this

 result, as will be argued below via numerous examples, new difficulties appear with the verification of

 the underlying ordinal conditions in practical applications of the result. In particular, no differential

 characterization of these properties is available for smooth functions. Besides using the definition

 directly, which is often quite involved even for relatively simple problems, Milgrom and Shannon

 (1994) developed the following relatively practical test based on the well-known Spence-Mirrlees
 condition (defined by Equation 7 below).

 Theorem 7. Let F : R3 ?> R be continuously differentiable and F2(a, b, s) ^ 0. F(a, h(a), s)

 satisfies the single-crossing property in (a; s) for all functions h : R ?> R if and only if

 Fx(a,b,s)/\F2(a,b,s)| is increasing in s. (1)

 The proof is omitted (not insightful). This test is used in applications by verifying Equation 7 and

 concluding that the objective F(a, h(a), s) satisfies the single-crossing property in (a; s) for a suitable

 choice of function h (often the identity function, see examples below.)

 26 The version we state here is a special case of the original theorem, which captures its essential aspects, particularly as far as
 economic applications are concerned.
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 Some Economic Applications

 In order to facilitate comparison with the cardinal complementarity conditions, we derive

 assumptions on the primitives of some of the models from our previous examples that imply that the

 ordinal complementarity conditions hold. These examples confirm, indeed, that the scope of the

 theory has been significantly expanded by the ordinal complementarity notion. The scope of games

 with strategic complementarity has also been broadened because Theorems 4-7 continue to hold if

 supermodularity is replaced by the single-crossing property.27

 Cournot Duopoly

 The payoff to firm 1 (say) is Ux(qx, q2) = qxP(qx -\-q2~ Cx(qx). To show that firm l's reaction

 correspondence is downward sloping, let F(a, b, s) ? bP(a + s) ? C(b). Then Fx(a, b, s) = bP'(a + s),
 F2(a, b, s) = P(a + s) - C(a), and

 dFx(a,b,s)/\F2(a,b,s)\ ^b[P(a + s) - C(b)]P"(a + s) - Pf2(a + s)
 ds " [P(a + s)-C(b)}2

 Then Equation 7 holds here if [P(b + s) - C'(a)]P"(b + s) - P'\b + s) < 0, for which a sufficient
 condition is P(')P"(-) ? P'2(-) < 0, or the log concavity of P(-). Taking h as the identity function in

 Theorem 7, we conclude that F (a, a, s) ? aP(a + s) ? C(a) has the single-crossing property in (a; s), or

 that Ui(qx, q2) has the single-crossing property in (qx, q2). So the Cournot oligopoly is a game of

 strategic substitutes under very general conditions. Indeed, any concave demand function is log

 concave. Not being too convex is all that log concavity requires. The limit case is P(q) = e~q, which is

 convex and log linear.

 Amir (1996b) shows the same result using the definition of the single-crossing property directly.

 The proof is more involved but the result is a bit more general because the regularity conditions of

 Theorem 7 are not needed (see Appendix for the proof).

 A partial duality is also of interest: If the cost function is identically zero, then firm fs profit

 function satisfies the strict single-crossing property in (q?, q_?) if P is log convex, in which case, the

 Cournot oligopoly is a game of strategic complements! More precisely, profits are then easily seen to

 be log supermodular because log convexity of P() is equivalent to the log supermodularity of P(q{ +

 #_,), and log Fi(qh q_t) = log q? + log P(q? + <?_/), with the first term being trivially supermodular.

 Hence, the ?-firm oligopoly is a quasi-supermodular game (with the original or natural output sets).

 Log convexity requires a strong form of convexity, the limit case being also P(q) = e~q, and the typical

 example being the hyperbolic demand, for example, P(q) = l/qa. For details, see Amir (1996b).

 Monopoly Pass-Through

 As seen in section 2, II has increasing differences if D' < 0 while log II always has increasing

 differences. Because the exponential (exp) is a monotone transformation and exp(log) is the identity

 function, it follows that II also satisfies the single-crossing property for all D functions because the

 latter property is preserved by monotone transformations.

 27 One property of such games that does not extend to the ordinal realm is the fact that such games also have strategic
 complementarity in mixed strategies (Echenique 2001b).
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 Consumer Theory

 Consider the problem stated in the consumer theory example in Section 2. To ensure, using
 Theorem 7, that the objective in Equation 5 satisfies the single-crossing property in (xx, m) so that

 good 1 is a normal good, let F(a, b, s) = U(b, (s ? pxa)/p2). Then Fx(a, b, s) = (?p\/p2)U2(b, (s?pxa)l

 Pi)> F2(a, b, s) = Ux(b, (s ? pxa)/p2), and Equation 7 holds here if

 U2U2X - UXU22 > 0, V Jti,Jt2 > 0, (8)

 or, equivalently, if the ratio of marginal utilities Ux(xx, x2)/U2(xx, x2) is increasing28 in x2. From
 Theorem 7, with h as the identity function, we conclude that good 1 is normal.

 As a further comparative illustration, consider the specific example where U(xx, x2) ? x\x\.
 Evaluating the various partials, we have Ux = 2xxx\, U2 ? 2x\x2, U2\ = 4xxx2, and U22 = 2x\. It is easily
 seen by inspection that U is strictly quasi-concave in (xx,x2), though convex in each variable separately.

 Using the sufficient Condition 6, we can conclude that xx is a normal good if/?2^2i ?Px^ri ? ^x^iPi ~

 1*x2P\ > 0 or if 2x2p2 ? xxpx > 0, which clearly fails to hold globally (e.g., for sufficiently small values

 of Xx). Hence, we cannot conclude from Condition 6 that xx is a normal good at all price vectors.

 However, using Condition 8, we have U2U2X ? UXU22 ? Sx]x2 ? 4x\x\ ? 4x\x\ > 0, so that we
 can directly conclude that jci is a normal good at all price vectors. To verify, an elementary

 computation yields the familiar Cobb-Douglas demand functions x\ = m/2px and x\ ? m?2p2, so that
 both goods are indeed normal.29

 Bertrand Competition

 Consider the model of price competition stated in the Berthand competition example in Section

 3, but with each firm's cost function being convex. Milgrom and Shannon (1994) show that firm fs

 profit function then satisfies the single-crossing property in (ph p_t). A sense of the difficulty in

 establishing the single-crossing property can be gained by looking at this proof.

 Nonrenewable Resource Extraction

 Consider the two-period problem of resource extraction with stock-dependent utility, no
 discount, and with the notation of Growth Theory:

 2

 max 2^ \og[xt(xt ?yt) + 1] subject to xt+x = yt and 0 < yt < xt. t=\

 Since the one-period value function is clearly Vx(x) = log(y2 + 1), the two-period value function V2
 satisfies

 V2(x) = max{log[x(x - y) + 1] + log(y2 + 1)] : y G [0,*]}. (9)

 28 Because the first-order condition here is the familiar pjp2 = U\IU2, one can obtain the sufficient condition for ordinal

 complementarity from its cardinal analog by substituting the first-order relation into the latter. While this connection fails to

 hold as a general result, it does provide a good intuitive and informal way of relating the two sets of conditions.

 29 It is important to observe that, while Condition 6 is necessary and sufficient for cardinal complementarity, Condition 8 is

 sufficient, but not necessary, for ordinal complementarity. Either condition may hold while the other fails to hold for particular

 examples. In other words, we can also provide the reverse illustration to the one just provided. For Bertrand oligopoly, this is
 done in Amir and Grilo (2003).
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 The optimal savings correspondence is (for details, see Amir 1996a, p. 138):

 , x /{0,1}, if 0 < x < 1,
 y W~ \\{x + l- + ?(x4-x2 + \)l% if x > 1.

 The maximal and minimal selections of j*(x) are both increasing in x. Yet, the objective in Equation 9

 is submodular in (x, v) if x < 1 ! Indeed, the cross partial of the objective is equal to x(x ? l)l[x(x ? y) 4

 l]2, which is <0 if and only if x < 1. So the objective does not satisfy the single-crossing property for
 x < 1. The feasible set [0, x] satisfies our condition.

 This example establishes, in particular, that the assumptions in Milgrom-Shannon's Theorem are

 not necessary for the monotonicity conclusion. This is an important point to clarify because the
 Milgrom-Shannon Theorem is actually stated with necessary and sufficient conditions for
 monotonicity of the argmax with respect to both an ordinary parameter (such as s here) and the

 constraint set itself. Thus, this example, shows nicely that the conditions of the Theorem are not

 necessary if monotonicity is to hold only with respect to the parameter, as in the present treatment,

 given a constraint set satisfying Assumption (ii) of Theorem 1.

 There are other studies, mostly in industrial organization, in addition to those already mentioned,

 which make use of the theory of supermodularity. These include Bagwell and Ramey (1994),

 Friedman and Johnson (1997), Peitz (2000), and Athey and Schmutzler (2001). The analysis of

 endogenous timing in two-player games according to a natural scheme proposed by Hamilton and
 Slutsky (1990) is also best approached with the tools of supermodularity (see, e.g., Amir and Grilo

 1999). More applications are given in Milgrom and Shannon (1994), Shannon (1995), Topkis (1998),
 and Vives (1999).

 5. The Multidimensional Case

 Our simplified treatment is extended here to the multidimensional case. This presentation still

 falls short of the full generality of the theory. We begin with the requisite preliminaries. Let Rn denote

 ?-dimensional Euclidean space. Given x = (xx, x2,..., xn) and y = (yx, y2,..., yn) in Rn, denote by x v y
 and x a y the coordinatewise supremum and infinum of x and y,

 xVy= (max{jfi, ji},... ,max{x?, yn}), and x A y = (minfci, vj,... ,min{xn, yn}).

 The inequality x > y means x? > y? for all / (coordinatewise order), while x > y means x > y and x? >

 y? for at least one i. A rectangle in Rn is a Cartesian product of n real intervals. Thus, a compact

 rectangle in Rn is any set of the form Xl^l\a^bi} for some reals a?, b?. Le? S (parameter set) and A
 (action set) be rectangles in Rl and Rm, respectively.

 Cardinal Complementarity Conditions

 This part is based on Topkis (1978). A function F: A ?> R is (strictly) supermodular if

 F(a/\a')+F(aVa')(>) >F(a)+F{a'), V a,a' G A. (10)

 If F is smooth, F is supermodular if and only if d2F(a)/da?daj > 0, V / ^j, that is, if and only if all the
 nondiagonal terms of the Hessian matrix of F are positive (no restrictions on the diagonal terms).
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 A function F: S X A ? R has (strictly) increasing differences in (s, a) if

 F(s,a)-F(s,a')(>) > F(s',a) - F(s',a'), Va>a',s>s\ (11)
 or in other words, if the difference F(-, a) ? F(-, a') is an increasing function. If F is smooth, Equation

 11 is equivalent to d2F(a)/daidsj > 0, for all i, jr. Note that there are no restrictions here on partials of
 the form d2F(s, a^da?aj or d2F(s, a)/dsidsj.

 For the scalar case (l=m= 1) treated earlier, supermodularity and increasing differences are easily

 seen to be equivalent for/, as both are then characterized by d2F(s, a)/dads > 0. Supermodularity of

 a function/of n variables is equivalent to increasing differences or supermodularity of F with respect to

 all pairs of variables. This is a simple test, as it reduces to checking all pairwise relations only. Thus, the

 complementarity interpretation of supermodularity and increasing differences extends to the
 multidimensional case.

 A simplified multidimensional version of Topkis's Monotonicity Theorem is now given. This is

 still a special case of the original result, particularly with regard to the structure of As. The proof is

 a simple extension of the proof of Theorem 1.

 Theorem 8. Assume

 (i) F is supermodular in a for each fixed s,

 (ii) F has increasing differences in (sf a), and

 (iii) As = X [gi(s), h((s)], where hh g?: S ? R are increasing functions with g? < h?. Then the
 maximal and minimal selections30 of a*(s) are increasing functions. Furthermore, if (ii) is strict,

 then every selection of a*(s) is increasing.

 To relate this result to Theorem 1, observe that the added assumption here, supermodularity of

 F in a, is always trivially satisfied if a is scalar; hence, its omission in Theorem 1. If a is a vector, it

 is clear, intuitively, that such an assumption is needed to insure that the direct increases in the

 coordinates of a triggered by an increase in s are mutually reinforcing.31
 The following is a smooth version of Topkis's Theorem, based on Lemma 1 and the remarks

 following Equation 11.

 Theorem 9. Theorem 8 continues to hold if (i) and (ii) are replaced, respectively, by d2F(a)/

 da?daj > 0, V i ^ j and d2F(a)/daidsj > 0, V /, j, with (iii) kept as is.

 This smooth version makes transparent the fact that there are no restrictions on partials of the form

 d2F(a)/dsidsj. A sufficient condition for (i) and (ii) is to require F to be supermodular in the vector
 (a, s), which would unnecessarily require the latter partials to be > 0.

 Theorem 8 admits a natural dual for decreasing argmaxes.

 Theorem 10. If "increasing" is replaced by "decreasing" in Theorem 8's (ii) and (iii), with all

 else kept as is, the two given conclusions hold with "increasing" replaced by "decreasing."

 Of the other results from Topkis (1978), the following has proved useful in a number of

 applications (see, e.g., Amir, Mirman, and Perkins 1991; Amir 1996a).

 Theorem 11. Let a = (a!, a~J) ? A and assume F : A ? R is supermodular in a, then V(a~J) A

 max^j F(a) is supermodular in a~J.

 30 These are always well-defined, single-valued functions under Condition (i) of the Theorem.
 31 Without this assumption, one cannot guarantee a monotone comparative statics conclusion for all the coordinates of the

 vector a. See Samuelson (1974) for his coffee-tea paradox.

This content downloaded from 128.83.172.140 on Wed, 24 Aug 2016 17:46:10 UTC
All use subject to http://about.jstor.org/terms



 Complementarity in Economics 655

 In other words, this result says that maximization of a supermodular objective with respect to a subset

 of the variables preserves supermodularity with respect to the remaining variables. The use of the

 above results is illustrated in the following model.

 Monopoly with R&D and Advertising

 Consider a monopolist with three choice variables: price p, advertizing a, and investment in

 process R&D x. The market demand function is given by D(p, a, 0), where 6 G [0, 1] is a parameter

 capturing business cycle effects, with higher 9 meaning better macroeconomic conditions. Assume D
 satisfies32

 Dp < 0, Da> 0, D0 > 0, Da + pDap < 0, De + pDpQ < 0, DaQ > 0. (12)

 The first three parts of (12) express, respectively, the natural assumptions that sales decrease with

 price and increase with advertizing and with (upwings in) the business cycle. The fourth part says that

 revenue has increasing differences in (p, a), which requires a strongly submodular demand in (p, a),

 here as Da > 0, and is a rather restrictive condition. A similar comment applies to the fifth part of (12).

 The sixth part says that the extra sales generated by higher advertizing increase with the business

 cycle, a reasonable property.

 The firm has a constant unit cost, C (x, ?), depending on its process R&D investment x and on an

 interindustry spillover level ? G [0, 1]. We assume that

 C, < 0, C? < 0 and C?x < 0. (13)
 The last condition may be interpreted as saying that the marginal cost reduction is increasing in the

 level of spillovers. The overall profit function of the firm is

 TL(p, a, x- 9, ?) = \p - C(x, ?)]D(p, a, 0) - x.

 We first show that the optimal decision vector (?/?*, a*, x*) is increasing in (0, ?). To this end,

 observe that, in view of Assumptions 12 and 13, fl is supermodular in (?p, a, x) as

 Uhp)a = -?pa = -Da - pDap > 0, U{_p)x = -Upx = CXDP > 0, and ?ax - -CxDa > 0,

 and ? has increasing differences in [(?/?, a, x), (0, ?)] because

 n{.p)B = -upQ = -De -pDpQ > o, n(_p)? = -npP - c$dp > o; nfl? = -C$Da > 0,
 na6 - (p - C)DaQ > 0; and UxQ = -CXDQ > 0, Ux? = -Cx?D > 0.

 This establishes that, as 0 and ? increase, the optimal advertizing and R&D investment levels increase
 while the optimal price decreases (in the sense that all the selections from the three decisions are
 monotonie as indicated).

 Next, we address a somewhat different issue: relating short- and long-run responses to a given

 change. Suppose that, in the short run, technology or R&D investment is fixed. We can still conclude

 from our previous analysis that the optimal price and advertizing will then react as before to changes

 in 0 and ?. A question of interest is: Are these reactions greater in the short run or in the long run?

 The answer is that they are greater in the long run because, in the long run, a given change in 0 and

 32 Observe that the analysis below will not rely on any concavity or interiority assumptions whatsoever. Furthermore, while the

 smoothness assumptions are convenient to express complementarity conditions in intuitive ways, they are not needed in any
 crucial sense for the underlying analysis and results.
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 ? has all the short-run effects plus the direct effect of increasing R&D investment x, which, in turn,

 has the known indirect effects of increasing (?p, a). This is a simple expression of LeChatelier's
 principle (Milgrom and Roberts 1995b).

 Last, we show the optimal profit function II*(0, ?) A arg max{II(/?, a, x; 0, ?):p, a, x > 0} is
 supermodular in (0, ?). To this end, we invoke Theorem 11 as follows. H(p, a, x; 0, ?) is

 supermodular in (p, a, x; 0, ?) in view of Assumptions 12 and 13 and the fact that n0? = ?C?D0 > 0.
 (In other words, given the latter computation, the cross partial of II with respect to any two of the five

 variables is >0). Hence, because maximization preserves supermodularity, II*(0, ?) is supermodular

 in (0, ?). The interpretation is that the marginal profitability of higher R&D investment increases with

 (upswings in) the business cycle, again, a reasonable property.

 Ordinal Complementarity Conditions

 The ordinal versions of the multidimensional complementarity conditions, due to Milgrom and
 Shannon (1994), are as follows (with the same spaces and notation as above).

 A function/: A ?? R is quasi-supermodular if V a, a' G A,

 F(a) > F(a A a') => F (a V a') > F(a') and F (a) > F (a A a') =? F (a V a') > F(a'). (14)

 A function/: S X A -^ R has the single-crossing property in (a; s) if V a' > a, s' > s,

 F(s,a')-F(s,a) > 0 =* F(s',a') - F(s',a) > 0, and
 F(s,a')-F{s,a)>0 =? F(s',a') - F(s'1a) > 0.

 The single-crossing property is strict if F(s, a') ? F(s, a) > 0 =>> F(s', a') ? F(sf, a) > 0.

 Recall that the single-crossing property is not symmetric with respect to the two variables, in that

 it may hold for (a; s) and not for (s; a). On the other hand, quasi-supermodularity in a treats all

 coordinates of a symmetrically, and implies the single-crossing property in both (a?; aj) and in (a/, a?)
 for every / ^ j.

 A simplified version of the main result of Milgrom and Shannon (1994) is:

 Theorem 12. The conclusions of Theorem 8 hold if supermodularity is replaced by quasi
 supermodularity and (strict) increasing differences by the (strict) single-crossing property.

 A Comparative Discussion

 Milgrom and Shannon (1994) also show that all the above results shown in section 3 for
 supermodular games also hold for quasi-supermodular games (i.e., games satisfying the ordinal

 complementarity conditions). Indeed, these results actually rely on the monotonicity of the best

 response correspondences only, for which the ordinal conditions suffice.

 Besides the advantage of being much easier to verify in actual applications, the cardinal

 complementarity conditions sometimes lead to some desirable properties that are not satisfied under

 the ordinal conditions. In particular, the following two differences between the two notions are often

 of critical importance in many applications: (i) The single-crossing condition is not preserved by

 addition and (ii) Theorem 11 need not hold if supermodularity is replaced by quasi-supermodularity.

 Thus, maximization of a quasi-supermodular objective with respect to a subset of the variables need

 not give rise to a quasi-supermodular value function (with respect to the remaining variables).

 Although the ordinal conditions are more general than the cardinal conditions, in a typical
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 application with the objective function being a sum or other composite of primitive functions, the

 respective minimally sufficient conditions on these primitives that imply the two types of conditions

 are generally not comparable. For a detailed investigation of this point centering on Cournot
 oligopoly, see Amir (2004).

 There are some interesting analogies between supermodularity and quasi-supermodularity, on

 the other hand, and concavity and quasi-concavity on the other hand. Indeed, in both cases,

 (i) The ordinal condition is more general than the cardinal condition,

 (ii) The cardinal property survives addition while the ordinal property need not. This is a key
 difference in many economic applications because objective functions often take the form of
 a sum of some benefit terms and some cost terms.33 In such cases, the cardinal notions often turn

 out to be critically needed,

 (iii) The cardinal property is conveniently verified via a set of inequalities on the Hessian matrix

 while the ordinal property requires a more difficult test,

 (iv) The cardinal property is preserved by partial maximization (Theorem 11), while the ordinal

 property need not be.

 6. Other Aspects of the Theory

 Several other relevant aspects of the theory under consideration have not been covered in the

 present survey. In this section, we provide a nonexhaustive list of these aspects and a brief summary.

 Further details may be found in the given references.

 Parametric Optimization Under Uncertainty

 Athey (2001, 2002) develops several different general results dealing with monotone
 comparative statics and preservation of complementarity conditions for objective functions that are

 represented as the integral of a multivariate function against a transition probability (or a family of

 probability distributions). This work provides a unifying framework that encompasses most results on

 comparative statics under uncertainty in economics, as well as a new existence result for Bayesian
 games (such as auctions) in monotone strategies.

 Critical Sufficient Conditions

 As both Topkis's Theorem and Milgrom-Shannon's Theorem provide sufficient conditions for
 increasing optimal argmaxes, it is desirable to investigate how close to necessary these conditions are.

 The idea is to consider families of problems obtained by varying some model primitives such as a set

 of parameters. A condition is critical (with respect to a family of models) if, whenever it fails, the

 monotonicity conclusion will fail for some specific model from the designated family (see Milgrom

 and Shannon 1994; Milgrom and Roberts 1994a). For the model of Bertrand competition with
 constant unit costs, allowing the latter parameter to vary?thereby defining a firm?is a natural way of

 specifying the relevant family. See Topkis (1995) and Amir and Grilo (2003).

 33 In dynamic optimization problems, the objective to which Topkis's Theorem is applied is the right-hand side of the Bellman

 equation, a sum of today's reward and the value of the remainder (see the growth theory example in Section 2).
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 Strict Monotonicity of Argmaxes

 In some applications, it may be desirable to extend the conclusion of (weakly) increasing argmaxes

 to one of strict monotonicity. This requires two new assumptions: (i) smoothness of the objective

 function, (ii) a strengthening of the assumption of increasing differences to this property: The partial of

 the objective function with respect to the decision must be strictly (not weakly, as in Topkis's work)

 increasing in the parameter. See Amir (1996a), Edlin and Shannon (1998), or Topkis (1998, p. 71).

 Macroeconomics

 Models of Keynesian-type coordination failure can be usefully analyzed as supermodular games

 with multiple equilibria. See Cooper and lohn (1988) and Cooper (1999). A recent strand of literature

 deals with dynamic equilibrium models using super modularity techniques (Datta, Mirman, and
 Reffett 2002).

 Institutional Complementarity

 A rather different application of this framework is to study general socioeconomic systems using

 the underlying notions of complementarity as interpretative and descriptive properties in a much more

 precise manner than is typically done in related work. This general area of application is somewhat

 different from the material covered in the present survey in that, most often, no specific models of the

 issues under consideration are developed. Rather, the framework of economic complementarities is

 invoked to explain the observed presence of certain clusters in firms' strategies, institutional

 arrangements and other aspects of socioeconomic organization that are mutually reinforcing. See

 Milgrom and Roberts (1990a, 1995a) and Hall and Soskice (2001).

 Appendix: Proofs

 We provide the proofs of the various results stated in the main text, in order of appearance.

 Lemma 2. In Cournot oligopoly, assume that P(-) is strictly decreasing and log concave and each firm's cost function is

 strictly increasing and lower semicontinuous. Then the profit function satisfies the single-crossing property in (qh <?_,).

 Proof. We need to show that, for any q\ > q? and q'-.? > q_h

 q\P{q\ + <?_,) - CM,) < qiP{q, + ?_,.) - ?-fo,-) => q',P{q', + </!, ) - ?-fa?) < qfiq, + q'-i) - C/fa). (Al)

 Logconcavity of P(-) is equivalent to log submodularity of P(q? + q^?) in (q?, q_?), that is,

 \ogP(q'? + q'-i) + log/% + q-i) < logPfai + q-i) + log P(q? + q'-?),

 or

 P{q\ + qU)P(qi + q-i) < P(q] + q-i)P(q? + q'-i). (A2)

 With the left-hand side of Equation Al as a starting point,

 <?;/>(<?; + <?_,) - cm,) < q,p(q? + <?_,) - c,{q,) < ^H^~~~^- - c,(i,),

 by Equation A2. Multiplying across by P(q'? + qLi)lP(q'? + <?_/),

 Because Ct{q'?) > Cf?d and P(q'? + q'_?) < P{q'? + #_, ), it follows that
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 q'iP(q'i + q'-i) - C,(q:)<q,P(q, + q'-i) - C,(</,)

 Because Equation Al holds, the proof is complete. QED.
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