Assignment #6 for Mathematics for Economists Economics 362M, Spring 2010

Due date: Tue. Mar. 23.

Readings: CSZ, Ch. 3.6-7, 3.9, 4.1-2.

In this part of the class, we are going to finish looking at properties of sequences in \mathbb{R} : the equivalence of being convergent and being Cauchy; summability; monotonicity and convergence. Related to the convergence of Cauchy sequences is the existence of the supremum and the infimum of a bounded set of numbers. Finally, combining supremum/infimum and sequences, we will consider the properties of the $\liminf_n x_n$ and $\limsup_n x_n$.

We will then turn to the topic of Chapter 4, metric spaces. The metric, or measure of distance, in \mathbb{R} is given by d(x,y) = |x-y|. This function $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ satisfies d(x,y) = d(y,x), d(x,y) = 0 iff x = y, and $d(x,y) + d(y,z) \ge d(x,z)$. We are going to take these properties as the *definition* of a measure of distance. In other words, if we have a set M and a function $d: M \times M \to \mathbb{R}_+$ that satisfies these three properties, then we will call (M, d) a **metric space** and refer to d(x, y) as the distance between x and y. There are two points to be made here.

First, the metric spaces that we most care about in this class are $M = \mathbb{R}^{\ell}, \ell \in \mathbb{N}$, the space of length- ℓ vectors of real numbers with the metric $d_2(\mathbf{x}, \mathbf{y}) = (\sum_{i=1}^{\ell} |x_i - y_i|^2)^{1/2}$. If $\ell = 2$, then M is the usual Euclidean plane, and the Pythagorean theorem tells you that $d_2(\mathbf{x}, \mathbf{y})$ measures the distance of the straight line joining \mathbf{x} and \mathbf{y} . By induction, this is true for $\ell > 2$ as well, but after $\ell = 4$, visualization fails.

Second, for later mathematical developments, we want to make arguments that only depend on the three defining properties of a metric rather than arguments that depend on the geometry of the Euclidean plane.

From Chapter 3.6: 3.6.4, as well as parts 1 and 2 of 3.6.6.

From Chapter 3.7: 3.7.12, 3.7.16, and 3.7.17.

From Chapter 3.9: 3.9.3 and 3.9.5.

The following is a pair of uses of "a.a." and "i.o." that will be frequently useful: $[x_n \to x]$ iff $(\forall \epsilon > 0)[|x_n - x| < \epsilon]$ a.a., and $\neg [x_n \to x]$ iff $(\exists \epsilon > 0)[|x_n - x| \ge \epsilon]$ i.o.

Homework 6.A. Show the following:

(1) $\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = 0.$ (2) $\lim_{n}(\sqrt{n^2-n}-n) = \lim_{n}(\sqrt{n^2-n}-\sqrt{n^2}) = 1/2.$

Homework 6.B. Show the following:

(1) If $\sum_{t=1}^{n} x_t \to S$, then $x_t \to 0$. (2) $x_t \to 0$ need not imply that $\sum_{t=1}^{n} x_t$ is convergent.

Homework 6.C. Suppose than x_n is a sequence of non-negative numbers with $x_n \geq x_n$ x_{n+1} for all $n \in \mathbb{N}$, i.e. suppose that x_n is a non-increasing sequence on non-negative numbers.

(1) Show that the partial sums, $\sum_{t=1}^{n} x_n$ are bounded if and only if the partial sums

$$\sum_{k=1}^{n} 2^{k} x_{2^{k}} = a_1 + 2a_2 + 4a_4 + 8a_8 + \cdots$$

are bounded. [Hint: The sequence $x_n = 1/n$ is strictly positive and decreasing. We showed that the series $x_n = 1/n$ diverges by showing that the first term is greater than 1/2, the sum of the next 2 terms is greater than 1/2, the sum of the next 4 terms is greater than 1/2, the sum of the next 8 terms is greater than 1/2, and so on and so on.

(2) Using the previous, show that the sequence $x_n = 1/n^p$ is summable iff p > 1. [Don't forget $p \leq 0$ is a possibility.]

Homework 6.D (Root test for summability). For a sequence $(x_n)_{n \in \mathbb{N}}$, define

$$\alpha((x_n)_{n\in\mathbb{N}}) = \limsup_n (|x_n|)^{1/n}$$

- (1) Suppose that $\alpha((x_n)_{n\in\mathbb{N}}) < 1$. Show that there exists $\beta < 1$ such that $(|x_n|)^{1/n} < \beta$ a.a.
- (2) Show that if $\alpha((x_n)_{n\in\mathbb{N}}) < 1$, then the sequence x_n is dominated by a geometric sequence a.a., hence is summable.
- (3) Suppose that $\alpha((x_n)_{n \in \mathbb{N}}) > 1$. Show that $|x_n| > 1$ i.o., so that x_n is not summable.
- (4) Show that for the sequences $x_n = 1/n$ and $y_n = 1/n^2$, $\alpha((x_n)_{n \in \mathbb{N}}) = \alpha((y_n)_{n \in \mathbb{N}}) = \alpha((y_n)_{n \in \mathbb{N}})$ 1. [This means that the root test is not informative for the summability of the sequence $(x_n)_{n\in\mathbb{N}}$ if $\alpha((x_n)_{n\in\mathbb{N}})=1.$]

Homework 6.E. Consider the series (x_1, x_2, x_3, \ldots) given by

$$\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{2^2}, \frac{1}{3^2}, \frac{1}{2^3}, \frac{1}{3^3}, \frac{1}{2^4}, \frac{1}{3^4}, \cdots\right).$$

Show the following:

- (1) $\liminf_n \frac{x_{n+1}}{x_n} = 0$ and $\limsup_n \frac{x_{n+1}}{x_n} = +\infty$. [This means that the ratio test does not apply to this sequence.]
- (2) $\limsup_n (|x_n|)^{1/n} = \frac{1}{\sqrt{2}}$. [This means that the root test **does** apply to this sequence.]

Homework 6.F. We know that the sequence $x_n = 1/2^{n-1}$, $n \in \mathbb{N}$, is summable because it is geometric. Consider the following rearrangement,

$$(y_1, y_2, y_3, \ldots) = (1/2, 1, 1/8, 1/4, 1/32, 1/16, \ldots).$$

Show the following:

- (1) $\limsup_n \frac{y_{n+1}}{y_n} = 2$ and $\liminf_n \frac{y_{n+1}}{y_n} = 1/2.$ (2) $\limsup_n (|y_n|)^{1/n} = \liminf_n (|y_n|)^{1/n} = \lim_n (|y_n|)^{1/n} = 1/2.$

Assignment #7 for Mathematics for Economists Economics 362M, Spring 2010

Due date: Tue. Mar. 30. Readings: CSZ, Ch. 4.3-4. From Chapter 4.3: 4.3.6 and 4.3.11. From Chapter 4.4: 4.4.3 and 4.4.6.