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Abstract

Under study are games in which players receive private signals and then simultaneously choose ac-
tions from compact sets. Payoffs are measurable in signals and jointly continuous in actions. Stinchcombe
(2011) [19] proves the existence of correlated equilibria for this class of games. This paper is a study of
the information structures for these games, the discontinuous expected utility functions they give rise to,
and the notion of a balanced approximation to an infinite game with discontinuous payoffs.
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1. Introduction

This paper studies the properties of information structures of games in which players receive
private signals (their types), and then simultaneously choose actions from compact sets. By as-
sumption, the payoffs are measurable in signals, jointly continuous in actions, and integrable.
This class of games has been used to model firm competition with private information, strategic
signaling, purification of mixed strategy equilibria, and wars of attrition.
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Beyond their widespread use, there is a good theoretical reason to study this class of infinite
games. They are infinite extensive form games involving serious informational considerations,
yet still simple enough that normal form analyses are feasible. In this way, they provide a logical
bridge between infinite normal form games and infinite extensive form games.

1.1. Diffuse information

The companion to this paper [19] showed that, despite discontinuous expected utility payoff
functions, these games always have correlated equilibria. Simon [16] showed that these games
need not have Nash equilibria. However, if the joint distribution of signals is absolutely contin-
uous with respect to the product of its marginals, a diffuseness of information condition due to
Milgrom and Weber [13], expected utility functions are jointly continuous and the game has an
equilibrium.1

Theorem A shows that, with at most a small set of exceptions, failing the Milgrom and Weber
diffuseness condition has the following implication: the existence of a non-null set of signals, B ,
perhaps not in any player’s information set, conditional on which two or more players can infer
the value of some continuously distributed random variable. A simpler situation in which we have
this failure has two or more players observing (or being able to infer), say as one component of
a vector-valued signal, the value of a continuously distributed random variable, in which case
we can take P(B) = 1. Theorem A also shows that the existence of this kind of informational
commonality is strongly nongeneric in the set of all joint distributions of signals, a result in
accord with some, but not all, intuitions about the richness of informational environments.

1.2. Discontinuities

Theorem B examines the discontinuities of the expected utility functions that arise if there is
a commonly inferable continuously distributed random variable. The result is that, for a generic
set of utility functions, the expected utility functions are discontinuous in a number of equivalent
senses.

1. The strategy sets cannot be approximated by finite sets in the Fudenberg and Levine [8]
“most utility difference it can make to anyone” pseudo-metric.

2. The oscillation of the utility functions across elements of any finite product partition of the
strategy spaces is bounded away from 0.

3. There exists no way to embed the strategy sets into compact spaces so that the expected
utility functions are jointly continuous.

In the presence of such discontinuities, many intuitions/guesses about the limit behavior of
approximate games and equilibria are incorrect; Milgrom and Weber showed that limits of equi-
librium strategies may not be equilibria (see Example 3.1); the limits of strategies that fail to be
ε-equilibria for e.g. ε = 1 turn out to be correlated equilibria (see Example 5.1). Such examples
indicate that fine details of the approximations to these infinite games may matter.

1 Milgrom and Weber [13] unified and extended a large and disparate literature. Balder [3] weakened the assumptions
needed for existence in all other aspects of the description of the games except the diffuseness condition on the joint
distribution of signals.
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1.3. Balanced and unbalanced approximations

An approximation to an infinite game is a game in which each player is restricted to a subset
of their full strategy set. Seemingly well-behaved approximations to infinite games can alter and
deform information structures.2 An approximation is ε-balanced if each player can, against any
vector of the other players’ strategies in the approximation, guarantee payoffs that are within ε

of what they can achieve using their full strategy set. A net of approximations is balanced if, for
all ε > 0, it is eventually ε-balanced.

The essential device in the existence proof for correlated equilibria in [19] is the use of limits
of nets of equilibria when the players are restricted to play the game as if their information
arose from finite sub-partitions. A side-effect of restricting the players to use less than their full
information is that the approximations may be unbalanced.

An equilibrium of an ε-balanced approximation is necessarily an ε-equilibrium. An equilib-
rium of an unbalanced approximation may fail to be an approximate equilibrium. As detailed
in Section 5, the correlated equilibria studied here may be the limits of strategies that fail to be
approximate equilibria in this fashion.3

1.4. Outline

The next section sets the assumptions and notation. Section 3 studies the interpretation of the
informational diffuseness condition known to be sufficient for Nash equilibrium existence. Sec-
tion 4 shows that the existence of continuously distributed informational commonalities matters
lead, generically, to strongly discontinuous expected utility functions. Section 5 examines what
this class of infinite games teach us about balanced and unbalanced approximations. Section 6
contains conclusions and complements.

2. Notation and assumptions

The notation and assumptions are exactly as in the companion paper [19], and are repeated
here for ease of reference.

For each i ∈ I , I a finite set of players, the “type” ωi belongs to a measure space (Ωi, Fi ).
The joint distribution of ω = (ωi)i∈I ∈ Ω =×i

Ωi is given by a countably additive probabil-
ity P defined on a σ -field F ,

⊗
i Fi ⊂ F . Summarizing, an information structure is a triple,

(×i
(Ωi, Fi ), F ,P ).

Each i ∈ I has a compact, metric action space Ai , and A :=×i
Ai . The utility functions, ui ,

are assumed to belong to L1(P ;C(A)), the set of integrable functions from Ω to the separa-
ble Banach space C(A) (with the supnorm, ‖ · ‖∞, the associated topology and Borel σ -field).
Specifically, the assumption is that for all i ∈ I ,

∫
Ω

‖ui(ω)‖∞P(dω) < ∞. Player i receives
utility ui(ω)(a) if ω occurs and a is chosen by the players.

2 In signaling games and in games of almost perfect information, the limits do no more than introduce cheap talk, [9,12].
In normal form games, they may introduce specialized utility transfers by a randomizing referee [15]. More generally,
approximations can destroy information structures, forcing unwilling revelation of private information, allowing the
observation of what should be unobservable, or allowing players to hide information that they should not be able to
conceal [18].

3 As a referee pointed out, if one takes correlated equilibrium to be the appropriate solution concept, then including
correlation that arises as the limit of non-equilibrium phenomena is not problematic.
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�i is the set of (countably additive) Borel probabilities on Ai with the weak∗ topology and
the corresponding σ -field. Bi (Fi ) is i’s set of behavioral strategies, the Fi -measurable func-
tions from Ωi to �i . Bi (Fi ) is given the weak∗ topology, so that a sequence (or net if need
be) bn

i → bi iff
∫
Ω

〈vi(ω), bn
i (ω)〉P(dω) → ∫

Ω
〈vi(ω), bi(ω)〉P(dω) for all vi ∈ L1(P ;C(Ai))

where 〈f,μi〉 := ∫
Ai

f (ai)μi(dai) for f ∈ C(Ai) and μi ∈ �i . Cotter [6] showed that Bi (Fi ) is
compact, and metrizable if Fi is countably generated.

Given a vector b = (bi)i∈I ∈ B :=×i
Bi (Fi ), player i’s expected utility if b is played is

defined by

uP
i (b) =

∫
Ω

〈
ui(ω),×

i

bi(ω)

〉
P(dω) (1)

where 〈f, ν〉 := ∫
A

f (a)ν(da) for continuous f : A → R and Borel probabilities ν, and×i
bi is

the product probability on A having bi as the i’th marginal. For b ∈ B and b′
i ∈ Bi , (b\b′

i ) denotes
the strategy vector b with b′

i substituted into the i’th component. (Bi (Fi ), u
P
i )i∈I denotes the

normal form game.

Definition 2.1. A (Nash) equilibrium for (Bi (Fi ), u
P
i )i∈I is a vector b ∈ B such that for all i ∈ I

and all b′
i ∈ Bi , uP (b) � uP (b\b′

i ).

3. Continuously distributed informational commonalities

A continuously distributed informational commonality (CIC) arises if there is a continuously
distributed random variable, defined on a non-null set B of joint signals, and two or more players
can, after being told that B has occurred and observing their own signal, infer its value. The
known sufficient condition for Nash existence is that the joint distribution of the players’ signals
is absolutely continuous with respect to the product of the marginal distributions. The informa-
tion diffuseness condition rules out any CIC.

Theorem A shows that the set of joint distributions that have a CIC is generic in a very strong
sense, and is a subset of the joint distributions that fail the diffuseness condition. This provides
a strategic interpretation of the diffuseness condition, and shows that the known results for Nash
existence only apply to a nongeneric class of games. The last part of this section examines several
intuitive and non-intuitive aspects of the smallness of this nongeneric set.

3.1. Continuously distributed informational commonalities

For B ∈ F and G a sub-σ -field of F , G|B := {E ∩ B: E ∈ G} is the trace of G on B . For Q a
probability and f a measurable function, f (Q) denotes the image law of Q under the function
f . For B ∈ F with P(B) > 0, PB(·) := P(·|B).

Definition 3.1. A joint distribution of signals, P , has a continuously distributed informational
commonality (CIC) if there exists a B ∈ F , P(B) > 0, and ϕ : B → (0,1] that is (Fi ∩ Fj )|B -
measurable, and ϕ(PB) is non-atomic.

The continuous distribution of the commonly observed signal allows for arbitrarily fine coor-
dination between players. This gives rise to discontinuous expected utility functions.
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Example 3.1 (Milgrom and Weber, Cotter). For the two players, Ω1 = Ω2 = [0,1], P is the
uniform distribution on the diagonal so that, with probability 1, the common value of the ωi is
known to each player. The action spaces are Ai = {Li,Ri}. Payoffs are (10,10) if the players
coordinate on (L1,L2), (2,2) if they coordinate on (R1,R2), and (0,0) otherwise. Expected
payoffs are (6,6) if both play the strategy bn

i (ωi) = δLi
(pointmass on Li ) if ωi ∈ (k/2n, (k +1)/

2n] with k even, bn
i (ωi) = δRi

otherwise.
Let ηn denote the distribution on Ω × A induced by bn. The ηn have a unique weak limit, η,

determined by the equalities

η
(
E × {

(L1,L2)
}) = 1

2
P(E), η

(
E × {

(R1,R2)
}) = 1

2
P(E), (2)

E ∈ F . η represents a public signal correlated equilibrium, and has expected payoffs (6,6). By
contrast, the unique weak∗ limit of the bn

i is uncoordinated strategy (b∞
1 , b∞

2 ) where b∞
i (ω) ≡

1
2δLi

+ 1
2δRi

. This uncoordinated, non-equilibrium strategy vector delivers payoffs of (3,3).

The informational commonality in Example 3.1 has B being the diagonal in Ω = [0,1] ×
[0,1], and has ϕ equal to projection onto either axis. The measurability of ϕ with respect to both
Fi and Fj arises from P putting mass 1 on the diagonal. Conditioning on an unobservable set B

can be seen in the following example.

Example 3.2. Ω = [0,1] × [0,1] with the usual Borel σ -field. With probability 1
2 , (ω1,ω2) is

uniformly distributed on the line, B , joining (0,0) to ( 1
2 , 1

2 ). With probability 1
2 , (ω1,ω2) is

uniformly distributed on the complement of the rectangle (0, 1
2 ] × (0, 1

2 ]. When ωi < 1
2 , player

i does not know if ωi = ωj or if ωj is uniformly distributed over the interval ( 1
2 ,1]. However,

conditional on B , a set in neither player’s information set, projection onto either axis provides
the continuously distributed ϕ the value of which both players can infer.

There are informational commonalities that do not obviously involve non-atomic distributions
on the graphs of invertible functions from a subset of Ωi to a subset of Ωj . The following infor-
mational commonality is based on [4, Ex. 31.1, pp. 407–408], which introduces, for r ∈ (0,1),
Fr(·), the strictly increasing, continuous cdf of the random variable Xr = ∑∞

n=1 Xn2−n where
X1,X2, . . . is an i.i.d. sequence with P(Xn = 1) = r = 1−P(Xn = 0). Xr is, with probability 1,
concentrated on the set of x ∈ (0,1) having, in the limit, r of the terms in their non-terminating
binary expansion equal to 1. The mapping (r, s) 
→ F−1

r (s) is jointly continuous. If s is uniformly
distributed on (0,1), then F−1

r (s) is distributed as Xr .

Example 3.3. Define (ω1,ω2) = (F−1
r (s1),F

−1
r (s2)) where r, s1, s2 are i.i.d. and uniform, and

let P be the joint distribution of ω1 and ω2. To see that the value of r provides a continuous infor-
mational continuity, let bm(x) denote the m’th digit of x’s non-terminating binary expansion, and
let ϕm(x) = #{n � m: bn(x) = 0}/m. We have r = lim supm ϕm(ω1) = lim supm ϕm(ω2) P -a.e.
Take ϕ : Ω → (0,1] to be the uncountable-to-one common value of these limits.

If instead, (ω1,ω2) = (r,F−1
r (s1)), r is again commonly known, but the function ϕ has very

different formulations for the two players, one as projection, the other as a limit of ratios.
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3.2. Diffuseness and jointly continuous expected utility

The discontinuity of expected utilities in Example 3.1 requires correlation between players’
actions at arbitrarily fine scales. The following condition rules out this kind of coordination.

Definition 3.2 (Milgrom and Weber). A joint distribution P is continuous if it is absolutely
continuous with respect to the product of its marginals.

This condition delivers jointly continuous expected utility functions because integration
against conditional densities is, essentially, the same operation that defines the weak∗ topology
that makes the strategy sets compact.

If ωi and ωj are smoothly distributed, absolute continuity with respect to the product of
marginals requires that i’s posterior distribution about ωj have a density. This kind of diffuse
information rules out the coordination at arbitrarily fine scales. Neither “continuity” nor “dif-
fuseness” seem perfectly apt as names.

Example 3.4. If all but at most one of the ωi have countable support, then P is continuous.

3.3. CIC’s are generic

The following is based on Anderson and Zame’s [1] finite shyness/prevalence.4

Definition 3.3. A set S ⊂ �(F ) is one-dimensionally tiny if there exists a non-degenerate line
L = {αP + (1 − α)P ′: α ∈ [0,1]} ⊂ �(F ) such that for all finite signed measures x on F ,
(L + x) ∩ S contains at most one point. T is one-dimensionally full if �(F ) \ T is one-
dimensionally tiny.

Suppose that S is a subset of C, C an n-dimensional convex subset of R�, n � 2, e.g. C =
�(F ) if F is generated by a finite partition of n + 1 non-null sets. S being one-dimensionally
tiny implies that S is a Lebesgue null set relative to the affine hull of C in R�, but the reverse is
not true. If the signal spaces are topologically complete metric spaces, that is, the σ -field Fi is
the Borel σ -field for some metric making the space Ωi a complete metric space, then the one-
dimensionally tiny sets are a special subclass of Anderson and Zame’s shy subsets of �(F ).5

Let C I C ⊂ �(F ) denote the set of joint distributions of signals for which there is a CIC and
let D I S ⊂ �(F ) denote the set of joint distributions that are not absolutely continuous with
respect to the product of their marginals.

Theorem A. If Fi and Fj support countably additive non-atomic probabilities for at least two
players, i �= j , then:

4 Instead of requiring that (L + x) ∩ S contain at most one point as in the following definition, Anderson and Zame’s
one-dimensional shyness requires only that it be a Lebesgue null set of the α.

5 “Exceptional” or small sets in a form related to 1-shyness were first introduced by Aronszajn [2] to study the points of
non-differentiability of Lipschitz mappings between Banach spaces. A larger class of exceptional sets was studied more
extensively in Christensen [5] under the name of “Haar null sets.” They were independently described in Hunt, Sauer
and Yorke [11], from where we have the names “shy” and “prevalent.” Anderson and Zame [1] solved the rather delicate
problem of extending the definition of shy sets to subsets of convex sets that are themselves shy in the larger ambient
space. Stinchcombe [17] discusses some interpretational issues for this class of small sets.
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(1) C I C ⊂ D I S , and
(2) C I C is one-dimensionally full.

The following lemma will lead directly to Theorem A(1).

Lemma 3.1. Suppose that, for each i ∈ I , (Ω ′
i , F ′

i ) is a measurable space, F ′ = ⊗
i∈I F ′

i ,
gi :Ωi → Ω ′

i is measurable, Qi = gi(Pi), g(ω) = (gi(ωi)i∈I ), and Q = g(P ). Then [×i∈I
Pi �

P ] ⇒ [×i∈I
Qi � Q].

Proof. The set E ′ = {E′ ∈ F ′: ×i∈I
Qi(E

′) =×i∈I
Pi(g

−1(E′))} is a σ -field containing the
measurable rectangles, so that E ′ = F ′. Suppose that×i∈I

Qi(E
′) = 0. Showing that Q(E′) = 0

will complete the proof. ×i∈I
Qi(E

′) = 0 iff ×i∈I
Pi(g

−1(E′)) = 0. Since ×i∈I
Pi � P ,

P(g−1(E′)) = 0, which in turn implies that Q(E′) = 0. �
Proof of Theorem A. (1) Suppose P has a CIC but that×i∈I

Pi � P . Let B ∈ F , P(B) > 0,
with a measurable ϕ : B → (0,1] such that g := EPB (ϕ|Fi ) = EPB (ϕ|Fj ) PB -almost every-
where for some pair of players i �= j , and g(PB) is non-atomic. Define gi(ωi) = EPB (ϕ|Fi ),
gj (ωj ) = EPB (ϕ|Fj ), and g(ωi,ωj ) = (gi(ωi), gj (ωj )). By Lemma 3.1, g(PB) must be abso-
lutely continuous with respect to the product of its marginals. This contradicts g(PB) being a
non-atomic distribution on the diagonal in (0,1] × (0,1], completing the proof of the first state-
ment.

(2) Let S = �(F ) \ C I C . There are two steps to showing that S is one-dimensionally shy: (A)
there exist P �= P ′ having a CIC, and (B) when arbitrarily translated, the line joining P and P ′
intersects S at most once.

(A) There exist P �= P ′ having a CIC. There are three parts to this argument: (i), identifying
a set B; (ii), constructing a P ; and (iii), varying the construction of P to get a P ′.

(i) Identifying a set B: Suppose that Fi , Fi both support non-atomic distributions, Pi,Pj . Con-
struct a function ϕi on Ωi and a function ϕj on Ωj , both taking values in (0,1] such that
ϕi(Pi) = ϕj (Pj ) = U , where U is the uniform distribution on (0,1]. Let Ik,n = ( k

2n , k+1
2n ]

be the half-open k’th dyadic interval of order n. Define B = ⋂
n∈N

⋃2n−1
k=0 [ϕ−1

i (Ik,n) ×
ϕ−1

j (Ik,n)].
(ii) Constructing a P : For non-disjoint (a, b], (c, d] ⊂ (0,1], define pU(ϕ−1

i ((a, b]) ×
ϕ−1

j ((c, d])) = r − s where r = max(a, c) and s = min(b, d). For disjoint (a, b], (c, d] ⊂
(0,1], define pU(ϕ−1

i ((a, b]) × ϕ−1
j ((c, d])) = 0. Let G|B be the small σ -field of subsets

of B containing the sets ϕ−1
i ((a, b]) × ϕ−1

j ((c, d])). By the Carathéodory extension The-
orem, there is a unique countably additive extension of pU to a probability p̂U on G|B .
By the Hahn–Banach Theorem, p̂U has at least one extension, P , to F . P(ϕi = ϕj ) =
p̂(ϕi = ϕj ) = 1. Letting ϕ denote the common value of the functions, ϕ(P ) is the non-
atomic uniform distribution on (0,1].

(iii) Constructing a P ′: Replace the uniform distribution, U , with a probability V �= U that is
mutually absolutely continuous with U . This gives rise to a p̂V that is mutually absolutely
continuous with p̂U . Let P ′ be an extension of p̂V to F .
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(B) Arbitrary translations of the line joining P and P ′ intersect S at most once. Pick an
arbitrary signed measure x on F and set L = {αP + (1 − α)P ′: α ∈ [0,1]}. Let Ax = {α ∈
[0,1]: x + (αP + (1 − α)P ′) ∈ �(F )}. Because membership in �(F ) is determined by weak
linear inequalities, Ax is a closed, possibly empty, convex interval. To finish the proof, it is
sufficient to show that at most one α ∈ Ax can belong to S.

Let x|B be the restriction of x to G|B , xac
|B the part of x|B that is absolutely continuous with

respect to p̂U , hence with respect to p̂V , and x⊥|B the part of x|B that is singular with respect to p̂U ,
hence with respect to p̂V . There is at most one α◦ ∈ Ax such that xac

|B + (α◦P + (1 − α◦P ′)) is

the 0 measure. Let B ′ ⊂ B have the property that x⊥|B(B ′) = 0 while P(B ′) = P ′(B ′) = 1. For
any α ∈ Ax \ {α◦}, B ′ and ϕ : B ′ → (0,1] are a CIC. �

I conjecture that having a continuous informational continuity and failing absolutely continu-
ity with respect to the product of marginals are not only generically equivalent, but completely
equivalent.

3.4. Context and genericity

Whether or not genericity conclusions are compelling depends on whether or not the context is
correct. For example, the set S = {(x1, x2,0): x1 �= x2} is a small subset of R3, but is a very large
subset of the projection of R3 onto its first two coordinates. The question is whether Theorem A’s
conclusion about the smallness of the set of information structures not having a CIC is driven
by asking the question in too large a context, namely the set of all joint distributions of signals.
A pair of examples may help illuminate the issues, but neither seems entirely conclusive because,
in each case, the nongeneric set is quite rich.

Example 3.5. Suppose that each i ∈ I observes Si signals in R, Si finite, that is, suppose that Ωi

is a subset of RSi . If the joint distribution of the signals has a density with respect to Lebesgue
measure, a very rich class of models, then the information structure has no CIC.

However, with the same distribution, if any component of the Si is common between 2 or
more players, then the information structure has a CIC. Such a common component arises if
there is any continuous random variable in the environment, e.g. the continuous time arrival of
some event, that both players observe before making their choice of action.

Events unobservable to the players may also lead to a CIC.

Example 3.6. Suppose that each i ∈ I observes v + εi , where v is the unknown value of some
object and εi is a measurement error. If the εi have a joint density with respect to Lebesgue
measure, again a very rich class of models, the information structure has no CIC.

However, if there is a non-null set B , perhaps unobservable by any player, conditional on
which εi = εj for some pair of players, then there is a CIC. Such a set B might arise if the
players hire experts to evaluate v and the experts sometimes economize on their expenses by
giving the same report to more than one player.

4. The one-dimensional fullness of deep discontinuities

A subset S of a separable Banach space X is one-dimensionally tiny if there is a non-zero
v ∈ X such that for all u ∈ X, there is at most a single r ∈ R such that u + rv ∈ S. A subset T
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is one-dimensionally full if its complement is one-dimensionally tiny. Theorem B shows that for
any P having a CIC, there is a one-dimensionally full set of utility functions in L1(P ;C(A))

giving rise to badly discontinuous expected utility functions.
For strategy sets Ti and bounded utilities vi , i ∈ I , the Fudenberg and Levine [8] “most utility

difference it can make to anyone” pseudo-metric is defined by

di(si , ti ) = max
k∈I

sup
t∈T

∣∣vk(t\si) − vk(t\ti )
∣∣. (3)

The di -distance between si and ti is equal to 0 if and only if si and ti are strategically equivalent
so that di is a metric on equivalence classes of strategies. A game is finitely approximable if for
every ε > 0 and every i ∈ I , there is a finite T

f
i ⊂ Ti such that di(T

f
i , Ti) < ε.

Theorem B. If P has a CIC, then (Bi (Fi ), u
P
i )i∈I is not finitely approximable except for a one-

dimensionally tiny set of ui in L1(P ;C(A)).

Finite approximability fails only for games where the strategic content of the infinite strategy
sets is different than the strategic content of finite subsets. Harris, Stinchcombe, and Zame [10]
show that finite approximability has equivalent topological and measure theoretic formulations.6

From [18, Theorem 13], these are equivalent to satisfying the oscillation condition given below.
For finite partitions Pi of the spaces Ti , the product partition, P , is the class of sets of the form×i

Ei , Ei ∈ Pi .

Definition 4.1. For a product partition P , P -oscillation of a bounded function v = (vi)i∈I from×i
Ti to RI is

osc(f, P ) = max
E∈P

sup
s,t∈E

{∥∥v(s) − v(t)
∥∥}

. (4)

A game (Ti, vi)i∈I satisfies the oscillation condition if for all δ > 0, there is a finite product
partition P such that osc(f, P ) < ε.

For general I person games, the patterns of failure of the oscillation condition can involve
all subsets of I of size 2 or larger. To avoid this notational burden, the proof only discusses two
person subsets, {1,2} ⊂ I , but the general case is an immediate consequence.

Proof of Theorem B. Fix an arbitrary P with a CIC. Step 1 constructs a specific v ∈
L1(P ;C(A)). Step 2 shows that Γ (P,v) fails the oscillation condition. Step 3 completes the
proof by showing that for any u ∈ L1(P ;C(A)), there is at most one r such that Γ (P,u + r · v)

satisfies the oscillation condition.
Because P has a CIC, there exists a B ∈ F with P(B) > 0 and a ϕ : B → (0,1] that is

(F1 ∩ F2)|B -measurable, and ϕ(PB) is non-atomic. Extend ϕ to Ω by setting ϕ(Bc) ≡ 0.
Step 1: Pick arbitrary distinct points ai, bi ∈ Ai and ε > 0 such that the ε-balls around the

four points (a1, a2), (a1, b2), (b1, a2), and (b1, b2) are disjoint. Define the continuous function
f : A1 × A2 → R2 by

6 Topologically, a game is finitely approximable iff it is possible to embed each strategy space as a dense subset of a
compact metric space in such a fashion that the utility functions have jointly continuous extensions. Measure theoretically,
a game is finitely approximable iff the utility function is integrable with respect to all products of finitely additive
probabilities on the strategy sets.



M.B. Stinchcombe / Journal of Economic Theory 146 (2011) 656–671 665
f (x, y) = (2,2) · max

(
1 − 1

ε
d
(
(x, y), (a1, a2)

)
,0

)
+ (4,4) · max

(
1 − 1

ε
d
(
(x, y), (b1, b2)

)
,0

)
. (5)

Define the utility function v : Ω → C(A : R2) by v(ω) = f · 1B(ω).
Step 2: Each gi := E(ϕ|Fi ) is a function defined for ωi in some set Bi ⊂ Ωi . By [7, Theo-

rem 4.2.5, p. 97], gi can be extended to a measurable (0,1]-valued function on all of Ωi . Let G be
the continuous cdf of the distribution gi(PB). For n ∈ N and 0 � k � 2n, pick rk,n ∈ G−1(k/2n).
For each n ∈ N, define the strategies

bn
i (ωi) =

{
δai

if gi(ωi) ∈ (rk,n, rk+1,n], k even,

δbi
if gi(ωi) ∈ (rk,n, rk+1,n], k odd.

(6)

For all n, vP (bn
1 , bn

2) = (1 − P(B)) · (0,0) + P(B) · (3,3), and for all m �= n, vP (bn
1 , bm

2 ) =
P(B) · (3/2,3/2). Define δ = |vP (bn

1 , bn
2) − vP (bn

1 , bm
2 )| = 3P(B)/2.

Let Pi be an arbitrary finite partition of Bi , i ∈ I . Some E1 × E2, Ei ∈ Pi must contain two
distinct strategy vectors, (bn

1 , bn
2), (bm

1 , bm
2 ), n �= m. This means that both (bn

1 , bn
2) and (bn

1 , bm
2 )

belong to E1 × E2. Therefore, the oscillation of vP (·) on the product partition P1 × P2 is δ.
Step 3: Pick arbitrary u ∈ L1(P ;C(A)). Either (a) for all r ∈ R, Γ (P,u + r · vP ) fails the

oscillation condition, or (b), there exists at least one r◦ ∈ R such that Γ (P,u+r◦ ·vP ) satisfies it.
If (a) holds, there is nothing to prove. Assume that (b) holds, and pick arbitrary s �= 0. Showing
that Γ (u + (r◦ + s) · vP ) violates the oscillation condition will complete the proof.

Pick an arbitrary product partition P = P1 × P2 of B1 ×B2. Refining the partitions P1 and P2
if necessary, we can assume that the integrable function uP (·)+ r◦ ·vP (·) oscillates at most 1

4δ|s|
over P . This implies that oscillation of uP (·) + (r◦ + s) · vP (·) across P must be at least 1

2δ|s|.
Since this number is strictly positive and independent of P , Γ (P,u + (r◦ + s) · vP ) fails the
oscillation condition. �
5. Balanced approximations

The failure of a game to be finitely approximable in the Fudenberg and Levine pseudo-metric
of Eq. (3) does not imply that finite approximations are useless for equilibrium analysis. At issue
is whether or not an individual player can, in the finite approximations, guarantee themselves,
to within any ε > 0, the same payoffs as they can in the infinite game. This is an implication of
finite approximability, but is a strictly weaker condition. The difference is between own payoff
approximation and approximation of payoff differences for all players simultaneously.

The correlated equilibria of the companion paper [19] represent the limits of (generalized)
sequences of approximate equilibria of games in which the players are restricted to play strategies
that are measurable with respect to finite sub-fields of their information. The problem is that this
restriction is artificial, and may matter. In particular, the correlated equilibria that arise may
represent the limits of strategies that are not ε-equilibria because the approximations are not
balanced.

5.1. Balance

Fix a game (Ti, vi)i∈I with pure strategy sets Ti and payoffs vi : T → R, T :=×i∈I
Ti . Let

dH (·,·) be the Hausdorff pseudo-metric for bounded subsets of R.
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Definition 5.1. For×i∈I
Si ⊂×i∈I

Ti and ε � 0, (Si, vi)i∈I , is an ε-balanced approximation to
(Ti, vi)i∈I if for all j ∈ I and all s ∈×i∈I

Si ,

dH

(
vj

(
s\�(Sj )

)
, vj

(
s\�(Tj )

))
� ε. (7)

(Ti, vi)i∈I has balanced finite approximations, or more simply, is finitely balanced, if for all
ε > 0 and all finite S′

i ⊂ Ti , there are finite Si ⊂ Ti , S′
i ⊂ Si , such that (Si, vi)i∈I is an ε-balanced

approximation to (Ti, vi)i∈I .

In studying the question of equilibrium existence for discontinuous games, Reny [14, §8]
suggests that only the upper end of the utility range needs to be approximated rather than the
whole range. If balanced approximations exist for a game, then they also exist for any version of
the game with uniformly continuous transformations of the utility functions.

5.2. Balance for infinite games with type-dependent strategies

The proof of Theorem B can be adapted to show that in most games with a CIC, there are
unbalanced approximations. This can be seen in the following, two person game, Γ .

Γ : Suppose that I = {1,2}, Ω = Ω1 × Ω2, Ωi = [0,1] (with the usual Borel σ -field), P is
the uniform distribution on the diagonal in Ω , each Ai is a two-point set {ai, bi}, and ui(ω, a) is
independent of ω and given in the matrix

a2 b2

a1 (6,6) (3,0)

b1 (0,3) (9,9)

At each ω = (ω1,ω2), the three Nash equilibria, (a1, a2), (b1, b2), and (( 1
2 , 1

2 ), ( 1
2 , 1

2 )), give
the utilities (6,6), (9,9), and (4 1

2 ,4 1
2 ) respectively. Players’ utilities are equal in all of these

equilibria.

Example 5.1 (Unbalanced approximations to Γ ). Let F n
1 be the field generated by the sets

{( 3k
3n , 3k+2

3n ], ( 3k+2
3n , 3k+3

3n ]} while F n
2 is generated by the partially overlapping sets {( 3k

3n , 3k+1
3n ],

( 3k+1
3n , 3k+3

3n ]}, 1 � k � 3n−1 − 1. For each n ∈ N, the following strategies are equilibria if the
players are constrained to play F n

i -measurable strategies:

bn
1(ω1) =

{
δa1 if ω1 ∈ ( 3k

3n , 3k+2
3n ],

δb1 if ω1 ∈ ( 3k+2
3n , 3k+3

3n ], bn
2(ω2) =

{
δa2 if ω2 ∈ ( 3k

3n , 3k+1
3n ],

δb2 if ω2 ∈ ( 3k+1
3n , 3k+3

3n ]. (8)

The associated utilities are (6,5), which does not correspond to anything in the convex hull of
the Nash equilibria.

The approximations Bi (F n
i ) are not ε-balanced for ε < 1 — each player would strictly prefer

to change their actions in the middle third of each interval ( 3k
3n , 3k+3

3n ], thereby gaining a utility of
either 3 or 6 with probability 1

3 .

Example 5.2 (Balanced approximations to Γ ). Fix any finite set, S′
i , of pure strategies for i =

1,2. There is a smallest finite field, F ′
i ⊂ Fi , making each strategy in S′

i measurable. Let G be
the smallest field of subsets of [0,1] containing F ′ ∪ F ′ . Let Si ⊃ S′ be the set of G -measurable
i j i
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pure strategies. If i is restricted to strategies in S′
i , then mixtures over Sj allow j to achieve

exactly the same set of utilities as if they used their pure behavioral strategies, B
pure
j , that is, these

approximations are 0-balanced. To see this, not that for all si ∈ Si , uj (�(Sj ), si) = uj (B
pure
j , si).

In any equilibrium for a balanced approximation, the utilities of the two players are equal.
This corresponds to the correlated equilibria that are in the convex hull of the Nash equilibria of
the matrix game.

For the class of infinite games with type-dependent strategies studied in this paper, the exis-
tence of finitely balanced approximations is an open question. For the games in which finitely
balanced approximations do exist, an immediate corollary of the existence result in [19] is the
existence of a non-empty closed subset of correlated equilibria. In Examples 3.1 and the game Γ ,
this is the set of measurable functions from Ω to the convex hull of the Nash equilibria of the
matrix game, and this yields a strict subset of the set of correlated equilibria.

5.3. Some general balance considerations

Further examples give more information about balanced approximations to infinite games.

Example 5.3. If each Ti is compact and each vi is jointly continuous, then (Ti, vi)i∈I is balanced.
Further, if Sα

i is any (generalized if need be) sequence of finite approximations converging to Ti

for each i ∈ I , then for all large α, (Sα
i , vi)i∈I is ε-balanced.

More generally, we have

Lemma 5.1. If (Ti, vi)i∈I is finitely approximable, then it is balanced.

Proof. From [10, Theorem 1], a game is finitely approximable iff it is nearly compact and con-
tinuous, that is, iff each Ti can be embedded as a dense subset of a compact metric space, Ci ,
so that the utility functions have a jointly continuous extension. Take Sn

i to be any sequence of
finite subsets of the dense image of the Ti in the Ci that becomes dense in Ci . �

As seen above, some discontinuities in the payoffs allow for balance, but only with careful,
joint choice of the Si . The following is a more direct example of a game which is balanced but
not finitely approximable.

Example 5.4. Let T1 = T2 = [0,1], let D ⊂ T1 × T2 be the diagonal, and let vi(ti , tj ) = ti ·
1D(ti , tj ). The game (Ti, vi)i∈I is not finitely approximable because the metric given in (3)
reduces to di(si , ti ) = max{si, ti}. This implies, for example, that there are uncountably many
points in Ti at distance greater than 1

2 from each other, so that no finite set can ε-approximate
for ε < 1

2 .
If Sn is a sequence of finite sets converging to [0,1], then setting Sn

1 = Sn
2 = Sn gives a

sequence that is ε-balanced for large n so that (Ti, vi)i∈I is balanced.

Some games are neither finitely balanced nor finitely approximable.

Example 5.5. Let T1 = T2 = (0,1] and set vi(ti , tj ) equal to the sign of (tj − ti ) (the “pick the
smallest positive number” game). Again, the game (Ti, vi)i∈I is not finitely approximable, the
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di -metric of (3) yields di(si , ti) = 1 if si �= ti . No finite sets can give an ε-balanced game for
ε < 1 since each player, i, has, in Ti , a number smaller than any element of a finite subset of Tj .

6. Conclusions and complements

The present paper is a piece of a larger project — the development of a general theory of
infinite extensive form games. For the larger project, this paper provides two main lessons. The
first is that approximating information about moves of Nature by finite sub-fields is a workable
and fruitful strategy. Whether or not this approach to information will be as useful for information
about moves of other players remains to be seen.

The second lesson comes from the distinction between finite balance and finite approximabil-
ity. Failure of finite approximability indicates that we have an infinite game in which the infinite
strategy sets do not resemble any finite approximations in a strong and well-known sense. How-
ever, this does not rule out the existence of finite approximations useful for equilibrium analysis.
Balanced approximations focus on the ability of an individual player to guarantee their own set
of payoffs, and this is closer to what is needed for equilibrium analysis.

For the smaller project of analyzing the present class of games, there are two complementary
points to be made: Section 6.1 shows that approximating Ω by finite subsets rather than by finite
partitions may lead to unacceptable information leakage; Section 6.2 shows that the assumption
of a product structure for the set of signals is without loss.

6.1. Finite subset approximations to signals

Approximating Ω by finite subsets requires approximating the joint distribution of signals,
P , by finitely supported probabilities. We start by defining τsf , the strong finite topology on
measures, which has the property that the finitely supported probabilities are dense, but no
tighter (i.e. larger or finer) topology has this property. Example 6.1 shows that sequences of
τsf -approximations may not be close enough to P to approximate information structures.

Definition 6.1. τsf , the strong finite topology on �(F ), is the topology generated by classes of
the form

Gsf
(
P ; (En)

N
n=1

) =
N⋂

n=1

{
Q ∈ �(F ):

∣∣Q(En) − P(En)
∣∣ = 0

}
, (9)

where P ∈ �(F ) and the En belong to F .

A net of probabilities, P α , on (Ω, F ) converges in τsf to P iff for every E ∈ F , there exists
α′ such that for all α � α′, P α(E) = P(E). This can also be said as P α converges to P iff for
each E ∈ F , P α(E) converges finitely to P(E).

There are two useful comparisons, the strong topology and the weak∗ topology. A basis for τs ,
the strong topology, is the class of sets of the form

Gs

(
P ; (En, εn)

N
n=1

) =
N⋂

n=1

{
Q ∈ �(F ):

∣∣Q(En) − P(En)
∣∣ < εn

}
, (10)

where P ∈ �(F ), the En belong to F , and the εn are strictly positive. Whether or not εn = 0 is
allowed distinguishes the strong and the strong finite topologies.
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If Ω is a metric space and F is its Borel σ -field, the weak∗ topology has, as a basis, the class
of sets of the form

Gw∗
(
P ; (En, εn)

N
n=1

)
=

N⋂
n=1

{
Q ∈ �(F ):

∣∣Q(
Eεn

n

) − P(En)
∣∣ < εn, and

∣∣P (
Eεn

n

) − Q(En)
∣∣ < εn

}
, (11)

where for any E ∈ F and ε > 0, Eε = ⋃
ω∈E B(ω, ε) is the ε-ball around E, and again,

P ∈ �(F ), the En belong to F , and the εn are strictly positive.
A σ -field, F , is said to be Hausdorff if {ω} ∈ F for each ω ∈ Ω . As strong as it is, the finitely

supported probabilities are still τsf -dense.

Lemma 6.1. If F is Hausdorff, then the finitely supported probabilities are τsf -dense in �(F ).

Proof. Let G = Gsf (P ; (En)
N
n=1) be a basis set for τsf . Let {Fm: m � M} be the partition gen-

erated by (En)
N
n=1. For each m, pick ωm ∈ Fm. The finitely supported probability, Q, defined by

Q(ωm) = P(Fm) belongs to G. �
One of the reasons to like the strong finite topology is that, for any finite collection of

events E1, . . . ,EN , all of the conditional probabilities P(En|Em), n,m � N , are matched by
P α(En|Em) for all large α. Matching conditional probabilities might seem to lead to matching
the informational structures of the players. The difficulty is that a P α may agree on a given finite
partition and still be far different for finer partitions. Exploiting this, the next example constructs
a net P α converging to P in the strong finite topology and a set D with the following property:
P({ωj : P(D|ωj ) = 1}) = 0 yet P α({ωj : P α(D|ωj ) = 1}) = 1

2 . In words, in the continuous
game, no-one assigns mass 1 to the set D, but in the approximations to P , half of the time, both
players assign mass 1 to D.

Example 6.1. Let Ωi = [0,1], i = 1,2, let λ2 be the uniform distribution on the two-dimen-
sional Ω , let λ1 be the uniform distribution on the one-dimensional diagonal, D = {(ω1,ω2):
ω1 = ω2}, and let P = 1

2λ2 + 1
2λ1 so that P has a CIC. For each ωi , each player’s posterior dis-

tribution puts mass 1
2 on D. Let Ej be the event that P(D|ωj ) = 1

2 and note that P(Ej |ωi) ≡ 1.
Strong finite approximations will be shown to allow half of the posterior distributions to put
mass 1 on D.

Let P = {Fm: m ∈ M} be a finite partition of Ω . For each Fm ∈ P , pick ωm =
(ω1,m,ω2,m) ∈ Fm. Define Qα({ωm}) = P(Fm) so that Qα agrees with P on P . Let A ⊂ [0,1]
be the set of numbers of the form ωi,m, i = 1,2, and let Ωf = A × A. Since {(ω1,m,ω2,m):
m ∈ M} ⊂ Ωf , Qα is supported on Ωf .

Let PD be the trace of the partition P on the diagonal set D. There are M ′ ⊂ M elements of
PD with λ1(Em′) > 0. Since A is finite, for each m′ ∈ M ′, there is a bm′ /∈ A such that (bm′ , bm′) ∈
Em′ . Let B = {bm′ ∈ [0,1]: m′ ∈ M ′}. If m′ ∈ M ′, transfer the mass on ωm′ to (bm′ , bm′), i.e.
define P α({(bm′ , bm′)}) = Qα({(ω1,m′ ,ω2,m′)}). For m ∈ (M \ M ′), set P α = Qα . For each Fm,
Qα(Fm) = P α(Fm). Since P(D) = 1

2 , the switch from Qα to P α moves mass at least 1
2 from

A × A to B × B .
Finally, consider the finite signal structure Ωf = (A ∪ B) × (A ∪ B) with probability distri-

bution P α . When ωi ∈ B , an event having probability 1
2 , both players posterior assigns mass 1

to the diagonal, D.



670 M.B. Stinchcombe / Journal of Economic Theory 146 (2011) 656–671
6.2. The generality of the product structure

The assumption that Ω is a product space is without loss of generality in the class of games un-
der study. An alternative formulation of the information structure starts with a probability space
(Ω, F ,P ) and a collection (Fi )i∈I of sub-σ -fields of F ⊃ σ((Fi )i∈I ). With such a structure, the
game would have i’s strategies being the Fi -measurable functions from Ω to �i . It is possible
to pass back and forth from this non-product structure to the product measure space formulation
so that all strategic and expected utility structures are preserved.

If F � σ((Fi )i∈I ), add a dummy player i = 0 to I and set F0 = F . For each i ∈ I , define
ω ∼i ω′ if for all Ei ∈ Fi , 1Ei

(ω) = 1Ei
(ω′), let Ω̇i be the quotient space Ω/∼i , κi the canonical

mapping of Ω onto Ω̇i , and let Ḟi be the σ -field κi(Fi ). The product formulation of the infor-
mation structure is (×i

(Ω̇i , Ḟi ),
⊗

i Ḟi , Ṗ ) where Ṗ is the image of P under the embedding
ω 
→ (κi(ω))i∈I .

Let M be a separable metric space and G the class of measurable functions from M to [0,1].
To every Ḟi -measurable ḟ : Ω̇i → M , associate the Fi -measurable function f (ω) = ḟ (κi(ω)),
and to every Fi measurable function f : Ω → M , associate the Ḟi -measurable function ḟ (ω̇i) =
f (κ−1

i (ω̇i)). Let Ṗi be the restriction of Ṗ to Ḟi , i.e. Ṗi = κi(P ). The routine proof of the
following change-of-variable lemma is omitted.

Lemma 6.2. The associations just described are inverse images of each other and for all mea-
surable g : M → [0,1], ∫

Ω
g(f )dP = ∫

Ω̇i
g(ḟ ) dṖi .

An immediate consequence of Lemma 6.2 is that uP (b) = u̇Ṗ (ḃ) for any strategy vec-
tor b. Thus, (bi)i∈I is a (correlated) equilibrium for the game with the information structure
((Ω, F ,P ), (Fi )) if and only if the associated (ḃi)i∈I is a (correlated) equilibrium for the game
with the information structure (×i

(Ω̇i , Ḟi ),
⊗

i Ḟi , Ṗ ).
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