Due date: Mon. Oct. 14.

Readings: Chapters 4.8, 4.9, 4.10, 5.2, and 5.3

Problems

We now turn to continuity, uniform continuity, and Lipschitz continuity, as well as some of the beginnings of convexity.

- A. From Chapter 4.8: 4.8.7 and 4.8.9.
- B. From Chapter 4.8: 4.8.10, any two of the four parts of 4.8.13, 4.8.16.
- C. From Chapter 4.9: 4.9.2.
- D. From Chapter 4.10: 4.10.4 and 4.10.5.
- E. A function $f: M \to \mathbb{R}$, (M, d) a metric space, is **upper semi-continuous (usc)** iff $f^{-1}([r, \infty))$ is closed for every $r \in \mathbb{R}$. The closed sets $[r, \infty)$ open upwards, which is one reason to call these functions *upper* semi-continuous.
 - 1. $f : \mathbb{R} \to \mathbb{R}$ is **right-continuous** if $(\forall x \in \mathbb{R})[f(x) = \lim_{\epsilon \downarrow 0} f(x + \epsilon)]$. Show that any non-decreasing, right-continuous f is usc. Give an example of a discontinuous, non-decreasing, right-continuous f.
 - 2. The sequence characterization of upper semi-continuity: Show that f is use iff $(\forall x \in M)(\forall x_n \to x)[f(x) \ge \limsup_n f(x_n)].$
 - 3. The ϵ - δ characterization of upper semi-continuity: show that f is usc iff $(\forall x \in M)(\forall \epsilon > 0)(\exists \delta > 0)[[d(x, x') < \delta] \Rightarrow [f(x) + \epsilon > f(x')]].$
 - 4. Show that the set of usc functions is a cone, that is, if f, g are usc and $\alpha, \beta \ge 0$, then $\alpha f + \beta g$ is usc.
 - 5. If $f : M \to \mathbb{R}$ and there is a sequence of continuous functions, f_n , with the property that for all $x \in M$, $f_n(x) \downarrow f(x)$, then f is usc.
 - 6. $f : M \to \mathbb{R}_+$ is use iff the correspondence $x \mapsto [0, f(x)]$ is upper hemicontinuous, i.e. iff

$$(\forall x \in M)(\forall \epsilon > 0)(\exists \delta > 0) \left[\left[d(x, y) < \delta \right] \Rightarrow \left[\left[0, f(y) \right] \subset \left[0, f(x) \right]^{\epsilon} \right] \right].$$
(1)

- 7. $K \subset \mathbb{R}^{\ell}$ is compact iff for all usc $f : K \to \mathbb{R}, (\exists x^* \in K) [f(x^*) \ge f(X)].$
- 8. Show that the class of usc functions on \mathbb{R}^{ℓ} is **not** separable, that is, for any countable dense subset $D \subset \mathbb{R}^{\ell}$, there are two usc functions f, g such that $f_{|D} = g_{|D}$ but $f \neq g$.
- F. Read Chapter 5.2.
- G. Read Chapter 5.3.