This alternative proof that a concave function is continuous on the relative interior of its domain first shows that it is bounded on small open sets, then from boundedness and concavity, derives continuity.

Theorem 1. If $f : C \to \mathbb{R}$ is concave, $C \subset \mathbb{R}^{\ell}$ convex with non-empty interior, then f is continuous on int(C).

Three lemmas deliver the proof. Throughout, we maintain the assumptions that $f: C \to \mathbb{R}$ is concave, that C is convex, and that it has non-empty interior. We first show that a concave f is bounded below on small balls around any point in the interior.

Lemma 1. For all $\mathbf{x}_{\circ} \in int(C)$, there exists $\epsilon > 0$ and $r \in \mathbb{R}$ such that $f(B_{\epsilon}(\mathbf{x}_{\circ})) \geq r$.

Proof. Pick $\epsilon' > 0$ such that $B_{2\epsilon'}(\boldsymbol{x}_{\circ}) \subset C$. Consider the $2 \cdot \ell$ points $S = \{\boldsymbol{x}_0 \pm \epsilon' \boldsymbol{e}_i : i \in \{1, \ldots, \ell\}\}$ where \boldsymbol{e}_i is the unit vector in the *i*'th direction. By concavity, any $\boldsymbol{y} \in \mathbf{co}(S)$ is a convex combination of the $\boldsymbol{x} \in S$, therefore $f(\boldsymbol{y}) \geq \sum \alpha_{\boldsymbol{x}} \boldsymbol{x} \geq \min\{f(\boldsymbol{x}) : \boldsymbol{x} \in S\}$. Now pick $\epsilon > 0$ such that $B_{\epsilon}(\boldsymbol{x}_{\circ}) \subset \mathbf{co}(S)$.

We now show that f is bounded on small balls around any point in the interior.

Lemma 2. For $B_{\epsilon}(\boldsymbol{x}_{\circ}) \subset C$, if $f(B_{\epsilon}(\boldsymbol{x}_{\circ})) \geq m$, then $|f(B_{\epsilon}(\boldsymbol{x}_{\circ}))| \leq |m| + 2f(\boldsymbol{x}_{\circ})$.

Proof. Translate $B_{\epsilon}(\boldsymbol{x}_{\circ})$ by subtracting \boldsymbol{x}_{\circ} , i.e. suppose that $\boldsymbol{x}_{\circ} = 0$. For any $\boldsymbol{y} \in B_{\epsilon}(0), f(0) \geq \frac{1}{2}f(\boldsymbol{y}) + \frac{1}{2}f(-\boldsymbol{y})$, so that

$$\frac{1}{2}f(\boldsymbol{y}) \le f(0) - \frac{1}{2}f(-\boldsymbol{y}), \text{ or } f(\boldsymbol{y}) \le 2f(0) - f(-\boldsymbol{y}).$$
 (1)

Now $2f(0) - f(-\boldsymbol{y}) \le 2f(0) - m \le 2|f(0)| + |m|$ and $m \le f(\boldsymbol{y})$, we have $m \le f(\boldsymbol{y}) \le 2|f(0)| + |m|$, so in particular, $|f(\boldsymbol{y})| \le 2|f(0)| + |m|$.

We now show that f is Lipschitz continuous on small neighborhoods.

Lemma 3. For $B_r(\boldsymbol{x}_{\circ}) \subset C$ and B its closure, if $|f(B)| \leq M$, then for any $\epsilon \in (0, r)$, f is $\left(\frac{2M}{\epsilon}\right)$ -Lipschitz on $B_{(r-\epsilon)}(\boldsymbol{x}_{\circ})$.

Proof. Pick $\boldsymbol{x} \neq \boldsymbol{y} \in B_{(r-\epsilon)}(\boldsymbol{x}_{\circ})$. We want to show that $|f(\boldsymbol{y}) - f(\boldsymbol{x})| \leq \frac{2M}{\epsilon} \|\boldsymbol{y} - \boldsymbol{x}\|$. Consider the point $\boldsymbol{z} := \boldsymbol{y} + \frac{\epsilon}{\|\boldsymbol{y}-\boldsymbol{x}\|}(\boldsymbol{y}-\boldsymbol{x})$ that belongs to B, and note that \boldsymbol{y} is between \boldsymbol{x} and \boldsymbol{z} , specifically, $\boldsymbol{y} = \frac{\epsilon}{\epsilon + \|\boldsymbol{y}-\boldsymbol{x}\|}\boldsymbol{x} + \frac{\|\boldsymbol{y}-\boldsymbol{y}\|}{\epsilon + \|\boldsymbol{y}-\boldsymbol{x}\|}\boldsymbol{z}$. By concavity, $f(\boldsymbol{y}) \geq \frac{\epsilon}{\epsilon + \|\boldsymbol{y}-\boldsymbol{x}\|}f(\boldsymbol{x}) + \frac{\|\boldsymbol{y}-\boldsymbol{y}\|}{\epsilon + \|\boldsymbol{y}-\boldsymbol{x}\|}f(\boldsymbol{z})$, hence $(\epsilon + \|\boldsymbol{y}-\boldsymbol{x}\|)f(\boldsymbol{y}) \geq \epsilon f(\boldsymbol{x}) + \|\boldsymbol{y}-\boldsymbol{y}\|f(\boldsymbol{z})$, or

$$\epsilon(f(\boldsymbol{x}) - f(\boldsymbol{y})) \le \|\boldsymbol{y} - \boldsymbol{x}\|(f(\boldsymbol{y}) - f(\boldsymbol{z})).$$
(2)

Now $(f(\boldsymbol{y}) - f(\boldsymbol{z})) \leq 2M$, hence $(f(\boldsymbol{x}) - f(\boldsymbol{y})) \leq \frac{2M}{\epsilon} \|\boldsymbol{y} - \boldsymbol{x}\|$. Interchanging the names/roles of \boldsymbol{x} and \boldsymbol{y} , $(f(\boldsymbol{y}) - f(\boldsymbol{x})) \leq \frac{2M}{\epsilon} \|\boldsymbol{y} - \boldsymbol{x}\|$. Combining, $|f(\boldsymbol{y}) - f(\boldsymbol{x})| \leq \frac{2M}{\epsilon} \|\boldsymbol{y} - \boldsymbol{x}\|$.