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Tentative schedule (first part)

Topic Source Week/date

Questions Week 1, Jan. 16, 2014
Convergence, Cones, etc. [Corbae et al., 2009] Week 2, Jan. 23, 2014
TVS’s [Robertson and Robertson, 1980] Week 3, Jan. 30, 2014
TVS’s and Duality [Robertson and Robertson, 1980] Week 4, Feb. 6, 2014
Dynamic programming [Smith and McCardle, 2002] Week 5, Feb. 13, 2014
Monotone comparative statics [Athey, 2002] Week 6, Feb. 20, 2014
Monotone comparative statics [Milgrom, 1994] Week 6, Feb. 20, 2014

The idea is that we will cover the math background in a lecture format with some
assigned problems to be divvied up between the students, and then we will divvy up
the papers between students for presentation.
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Overview

The next section begins with simple versions of the four questions this class is aimed
at. The presumption is that you can do basic proofs using continuous functions. In a
variety of places, we will mention measurable functions. These generalize continuous
functions: every continuous function is measurable, and they consist of the class of
functions that we can integrate. We will not seriously use them until we cover them,
which will be in the second half of the course. However, it is worth talking about them
early, if only to give you the motivation to go through learning what they are and how
we use them.

1. Four Questions

We will study properties of value functions for dynamic programming, supermodu-
larity in expected utility maximization problems, specification testing in econometrics,
and informational continuity results for infinite games with differential information.
Getting to the point that you know your way around these topics will mean that you
are ready for a huge variety of (yet) more advanced topics.

1.A. Dynamic Programming. Finite state Markovian dynamic programming: state
space S = {1, 2, . . . , `}, random state Xt ∈ S at time points t ∈ {0, 1, . . .}; for each
i ∈ S, a finite action set A(i) with possible state-action pairs (i, a) ∈ ×i∈SA(i); a
Markovian transition, P : ×i∈SA(i) → [0, 1], Pi,j(a) := P (Xt+1 = j|Xt = i, at = a);
a stage utility function (i, a) 7→ u(i, a). The value to starting in i ∈ S is the maxi-
mum/supremum expected discounted value, v∗(i) := maxE (

∑∞
t=0 β

tu(Xt, at)|X0 = i),
maximum taken over all possible choices of policies, functions from histories to actions
at ∈ A(Xt).

For an infinite state space, e.g. S = [0, 1], need to specify exactly what we mean by
Pi,j(a), which will require the beginnings of measure theory.

Iterative procedure:

v0(i) := max
a∈A(i)

u(i, a), (1)

v1(i) := max
a∈A(i)

[
u(i, a) + β

∑
j

v0(j)Pi,j(a)

]
, (2)

...
...

vk+1(i) := max
a∈A(i)

[
u(i, a) + β

∑
j

vk(j)Pi,j(a)

]
. (3)

The properties of v0(·) depend on properties of u(·, ·) and ×i∈SA(i). The properties
of v1(·) depend on properties of u(·, ·), ×i∈SA(i), v0(·), and the Pi,j(a). After this, the
properties of vk+1(·) depend on properties of u(·, ·), ×i∈SA(i), vk(·), and the Pi,j(a).

Question: What are the properties of the vk and v∗ = limk→∞ vk? And what
exactly do we mean by limk→∞ vk?
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1.B. Expected Utility Maximization. In the middle of the previous problem, we
have problems that look like

V (β) = max
a∈A

U(a, β) =

∫
S

u(i, a) dβ(i) or (4)

a∗(β) = argmax
a∈A

U(a, β) =

∫
S

u(i, a) dβ(i). (5)

Here β ∈ ∆(S), the set of probabilities on S, things are easy if S is finite, a bit more
complicated if S is an infinite subset of R.

Question: What are the joint properties of u(·, ·), orders on A, and orders on ∆(S)
such that [β′ % β]⇒ [a∗(β′) % a∗(β)]?

1.C. Specification Testing. A parametric model for the expectation of a random
variable Y ∈ R1 given X ∈ Rk is a class of functions f : X ×Θ→ R where the set of
parameters, Θ, is a subset of Rp. The model is correctly specified if for some θ◦ ∈ Θ,
E (Y |X = x) = f(x, θ◦) for a probability 1 set of realizations x.

We will cover, in some detail, the observation that the almost everywhere unique
measurable function, x 7→ g(x), that solves the problem

min
x 7→g(x)

E (Y − g(X))2 (6)

has the property that g(X) = E (Y |X). Now, this means that E (Y − g(X)|X) is
equal to 0 almost everywhere. With this in mind, let θ∗ ∈ Θ denote the best fitting
parameter, e.g. the solution to

min
θ∈Θ

E (Y − f(X, θ))2. (7)

Define ε = Y − f(X, θ∗).
The model is correctly specified if e(x) := E (ε|X = x) = 0 almost everywhere.

Being a function of X, the random variable e(X) is equal to 0 if and only if the inner
product, E e(X) · h(X), is equal to 0 for any function h(X) for which the expectation
just given is finite. To check such a thing with data, (Yn, Xn) ∈ (R1 × Rk)n, we

construct a sequence of estimators θ̂n(Yn, Xn) → θ∗ and check whether we get the
sample version of E e(X)h(X) equal to 0 plus/minus noise for a “rich enough” class
of functions, h.

Question: Can we find classes of functions, H, that simultaneously have the prop-
erty that suph∈HE e(X) · h(X) = 0 implies that e(·) is 0 almost everywhere, and for

which we can succesfully estimate suph∈HE e(X)·h(X) = 0 using ên = Yn−f(Xn, θ̂n)?

1.D. Games With Differential Information. A random ω ∈ Ω is drawn according
to a distribution P , each i in a finite set of agents, I, observe signals, si(ω) ∈ Si, and
as a function of what they observe, choose a mixed strategy, σi ∈ ∆(Ai). Payoffs
are ui(ω, a) where a = (ai)i∈I . The utility functions are measurable in ω, continuous
in a, and integrable. Following [Milgrom and Weber, 1985], information is continuous
if the joint distribution of the vector s = (si)i∈I , has a density with respect to the
product of its marginal distributions, which requires, inter alia, that there not be
any continuously distributed common components in the signals. If this condition is
violated, there is a three player game without a Nash equilibrium [Simon, 2003].
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1.D.1. Cournot competition with private information. Firms i ∈ I have increasing,
convex cost functions ci(·). As a function of the privately known, stochastic cost
structures, ci(·), and signals about demand conditions, ωi, they pick their quan-
tities qi ∈ [0, qi]. Expected profits conditional on signal ωi are E (πi(c, q)|ωi) =
E ([qipi((qj)j∈I)− ci(qi)]|ωi) where pi(·) is i’s, possibly random, demand function. One
might expect the cost functions and the signals about demand conditions to con-
tain, in general, many continuously distributed common components, including input
prices, technological knowledge, and other market information. The question of Nash
equilibrium existence is open.

1.D.2. Signaling games with finite signal spaces. Two players observe their private
information, ω1 and ω2. Then the sender chooses a1 in a finite space A1. The receiver
observes a1 and picks a point in K(a1), a compact metric space. Thus, the receiver’s
action space is A2 = ×a1∈A1K(a1).

If the ui are measurable in ω, continuous on each K(a1), and integrable, then the
signaling game fits into the class considered here. When ω2 is a degenerate random
variable and A1 is not finite, [Manelli, 1996] shows that, to accomodate limits of ap-
proximations and to guarantee equilibrium existence, the appropriate strategy space
for the sender includes an expansion to allow for cheap talk. When ω1 and ω2 have
a continuously distributed, commonly observable information, the question of Nash
equilibrium existence is open.

1.D.3. Purifications. Randomization is crucial to the existence of saddle points in 0-
sum games, and, more generally, to Nash’s (1950) equilibrium existence theorem for
finite games. Despite its crucial role in game theory, randomization is, to many, not an
attractive behavioral assumption. [Bellman and Blackwell, 1949] and [Dvoretzky et al., 1951]
were early studies of the extent to which randomization might not be needed in games.
Harsanyi [Harsanyi, 1973] shows that, generically at least, mixed strategy equilibria
are observationally equivalent to pure strategy equilibria of infinitesimal perturbations
of the game. A stronger version of this result is in [Govindan et al., 2003].

Fix a game G(v) = (Ai, vi)i∈I where each Ai is finite, v = (vi)i∈I , and the utilities
vi ∈ RA, A = ×iAi. For all v outside a closed set having Lebesgue measure 0, every
equilibrium of G(v) = (Ai, vi)i∈I is regular.

Let (ωi)i∈I be an independent collection of random vectors in RA assigning, for all
i ∈ I and for any fixed strategy σ−i of the players, mass 0 to the event that (ωi(ai, ·)−
ωi(a

′
i, ·)) lies in the hyperplane orthogonal to σ−i (e.g. if the distribution of the ωi has a

density with respect to Lebesgue measure). A perturbation of G(v) is an incomplete
information game in which each i ∈ I observes the vector ωi, picks an ai ∈ Ai, and
payoffs are vi(a) + ωi(a). A perturbation is a δ-perturbation if the distribution of
the ωi is within δ of point mass on 0 in the weak∗ topology.

For regular equilibria σ, [Govindan et al., 2003] shows that for all ε > 0, there is
a δ > 0 such that any δ-perturbation of G(v) has an essentially strict, hence pure
strategy, equilibrium inducing a distribution on A that is within ε of σ. The interpre-
tation is that mixed strategies played in equilibrium are, observationally, impossible to
distinguish from strict pure strategy equilibria in nearby games. These nearby games
have independent idiosyncratic shocks to utilities, and the pure strategy equilibria of
these nearby games “purify” the (regular) mixed equilibria of G(v).
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The independence of the ωi(a) rules out the existence of any continuously dis-
tributed common information, and is crucial to the existence of Harsanyi’s purifi-
cations. [Radner and Rosenthal, 1982] give a generic game G(v) and expand it using
ωi(a) that are uniformly distributed on a bounded triangle in RA. Posterior distribu-
tions are, with probability 1, atomless, which is part of what is needed for purification.1

Because of the way that independence of the signals fails in Radner and Rosenthal’s
example, the game has a unique equilibrium in which the players randomize after
seeing a probability 1 set of signals.

The finiteness of A is also crucial to exact purification. [Khan et al., 1999] present
a game in which Ai = [0, 1] and exact purification is not possible, even when types are
smoothly and independently distributed. They further show that exact purification is
possible when the Ai are countable.

1.D.4. Wars of attrition. Two players have types ti smoothly distributed in (0, 1). A
bounded, increasing value function v : (0, 1) → [0, v] gives the value of an object, in
terms of the cost of time spent fighting, to a player of type ti. A pure strategy for i is
a mapping bi from (0, 1) to Ai = [0, 2 ·v], with bi(ti) being the time at which the player
stops fighting for the object. If player j plays a strategy giving an atomless cdf Fj on
Aj, the payoff to i of fighting until a is ui(ti, (a, bj)) =

∫ a
0

(v(ti)−s) dFj(s)−a(1−Fj(a)).
In games with independent types, [Milgrom and Weber, 1985] show that the first

order conditions ∂ui/∂a = 0 contain a great deal of information about pure strategy
equilibria. The independence of types rules out any continuously distributed common
information, and is the leading special case of Milgrom and Weber’s informational
diffuseness requirement. They show that if the joint distribution of the types is diffuse
in the sense of having a density with respect to the product of its marginals, then
the game has jointly continuous expected utility functions and compact strategy sets,
leading to Nash equilibrium existence.

Questions: Strategies are measurable functions from Si to ∆(Ai). Can we, and
if so, how, do we measure the distance between these measurable functions so that
expected payoffs are jointly continuous and the set of strategies compact? And what
kinds of continuity do we have in the information structures, here modeled as the
functions si : Ω→ Si?

1.E. Review Problems. Later, the problems will contain extensions of results given.
For now, they are aimed at (me) being sure that we are all on the same page in terms
of background.

On dynamic programming, §1.A.

DynPg 1. Suppose that S = {1, 2, . . . , `} and that vk,v
∗ : S → R. If for each k ∈ N,

vk is non-decreasing, that is, for each s < s′ ∈ S, vk(s) ≤ vk(s
′). If for each

s ∈ S, vk(s)→ v∗(s), then v∗ is non-decreasing.
DynPg 2. Suppose that S = {1, 2, . . . , `} and that vk,v

∗ : S → R. If for each k ∈ N,
vk is decreasing increments, that is, for each s < s′ < s′′ ∈ S, vk(s

′′) −
vk(s

′) ≤ vk(s
′) − vk(s). If for each s ∈ S, vk(s) → v∗(s), then v∗ is has

decreasing increments.

1In related work, [Aumann et al., 1983] showed that each player having, with probability 1, a
nonatomic posterior is sufficient for approximate purification.
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DynPg 3. Suppose that S = [0, 1] ⊂ R and that vk,v
∗ : S → R. Suppose also that

each vk is continuous and that vk(t)→ v∗(t) for each t ∈ [0, 1]. Show that
v∗ need not be continuous (at any point t ∈ [0, 1]).

DynPg 4. Suppose that S = [0, 1] ⊂ R and that vk,v
∗ : S → R. Suppose also that

each vk is continuous and concave, and that vk(t)→ v∗(t) for each t ∈ [0, 1].
Show that v∗ is concave but may not be continuous.

DynPg 5. Suppose that S = [0, 1] ⊂ R and that vk,v
∗ : S → R. Suppose also that

each vk is Lipschitz continuous, that the Lipschitz constants for the vk are
uniformly bounded, and that vk(t) → v∗(t) for each t ∈ [0, 1]. Show that
v∗ is continuous.

On expected utility maximization, §1.B

Eu 1. Suppose that i ∈ S ⊂ R, a ∈ A ⊂ R, that c : A → R is a monotonically
increasing function, and that u : S × A→ R has increasing differences, that is,
for all a′ > a ∈ A and i′ > i ∈ S, u(a′, i′)− u(a, i′) ≥ u(a′, i)− u(a, i).
a. If β′ first order stochastically dominates β, what can we say about the com-

parison of the solutions to the problems

maxa∈AU(a, β) =

[∫
S

u(i, a) dβ′(i)

]
− c(a) and (8)

maxa∈AU(a, β) =

[∫
S

u(i, a) dβ(i)

]
− c(a)? (9)

b. How would the answer change if c(·) is not monotonic?

On specification testing, §1.C

Spec 1. Suppose that X is a random variable taking values in [0, 1] and that it has a
strictly positive density, fX(·), i.e. that P (X ∈ A) =

∫
A
fX(t) dt.

a. If h(x) = x, give some and characterize all of the functions x 7→ e(x) such
that E e(X)h(X) = 0.

b. If h(x) = x2, give some and characterize all of the functions x 7→ e(x) such
that E e(X)h(X) = 0.

c. If H = {x, x2}, give some and characterize all of the functions x 7→ e(x)
such that E e(X)h(X) = 0 for all h ∈ span (H).

On differential information games, §1.D

DfG 1. [Ignorance is bliss] If θ = θ0, the payoffs to players 1 and 2 to are given by
the left matrix (below), if θ = θ1, they are given by the right matrix, and
P (θ = θ0) = P (θ = θ1) = 1

2
.

L R
A (8, 0) (4, 2)
B (6, 4) (2, 0)

L R
A (6, 4) (2, 0)
B (10, 0) (6, 2)

θ0 θ1

a. Suppose that neither player observes the value of θ, e.g., suppose that they
observe constant signals. Give the stable equilibrium outcome.
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b. Suppose that player 1 observes the value of θ before making any choice, but
that player 2 observes only a constant signal. Give the stable equilibrium
outcome.

c. Suppose now that player 1 can choose whether or not to observe the value
of θ before making any choice, but that player 2 observes only a constant
signal. Give the stable equilibrium outcome.

2. Convergence

The use of bi-linear functionals in the following will be crucial in defining conver-
gence, to answer the questions raised in dynamic programming. It will later be crucial
in defining cones and their associated partial orders, to answer the questions raised in
expected utility maximization.

If X is a real vector space (think R` or C([0, 1]) as we haven’t formally defined this
yet), and ‖ · ‖ is a norm on X, then X† denotes the set of continuous linear functions
x 7→ x†(x). We will, throughout, use the notation 〈x,x†〉 for x†(x). The mapping
(x,x†) 7→ 〈x,x†〉 is bi-linear, that is, for all x,x ∈ X, all x†,y† ∈ X†, and all α, β ∈ R,
we have

〈αx + βy,x†〉 = α〈x,x†〉+ β〈y,x†〉, and (10)

〈x, αx† + βy†〉 = α〈x,x†〉+ β〈x,y†〉. (11)

The first holds because x† is linear, the second holds because that is how we define
scalar multiplication of and addition of functions.

2.A. Norm Convergence in R`. Here vk ∈ X = C(S) = M(S) = RS (continuous
and measurable functions on S). We give X = C(S) the norm ‖x‖ = maxi∈S |x(i)|.

The norm distance between x and y is d(x,y) := ‖x− y‖. The triangle inequality
for norms is ‖x‖ + ‖y‖ ≥ ‖x + y‖, letting x = (r − s) and y = (s − t), we have
d(r, t) ≤ d(r, s) + d(s, t).

Definition 2.A.1. Strong convergence or norm convergence is vk → v∗ iff
‖vk − v∗‖ → 0.

In the finite dimensional case, strong convergence will be, essentially,
all that we will study. This is because there is a unique topology on
R` such that (x,y) 7→ (x + y) and (r,x) 7→ rx are jointly continuous.
We will develop the alternative approaches here because everything is
simpler to visualize, but the equivalence will not generalize to infinite
dimensional cases.

Part of the “essentially” in the above comes from things called pseudo-metrics.

Definition 2.A.2. A pseudo-metric on a set M is a function ρ : M ×M → R+

such that for all x, y, z ∈ M , ρ(x, y) = ρ(y, x) and ρ(x, y) + ρ(y, z) ≥ ρ(x, z). If a
pseudo-metric also satisfies ρ(x, y) = 0 iff x = y, then it is a metric

Example 2.A.1. A simple pseudo-metric is ρ(x,y) = |x(1)− y(1)|, which measures
only the distance between the first coordinates. Note that x = (7, 9,−23)′ and y =
(7,−506, 1010)′ are very different, but that ρ(x,y) = 0.
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2.B. The Dual Space. Notation: X = R`; X† the continuous dual of X, that is, the
set of all norm-continuous linear functions x† : X → R; the bi-linear (x,y) 7→ 〈x,y〉
given by 〈x,x〉 =

∑
i∈S x(i)y(i) (here the usual inner product). From a long time ago,

we know the following, which says that X and X† are the same space. To say this in a
fancy way, X is reflexive, that is, equal to its own dual space. We call results of this
form “representation theorems” because they tell us how to represent the continuous
dual space.

Theorem 2.1 (Representation). If X = RS and S is finite, then for any y ∈ X, the
function x 7→ 〈x,y〉 is continuous and linear, and if x† ∈ X†, then there exists a
unique y ∈ RS such that for all x ∈ X, x†(x) = 〈x,y〉.

Proof. Fill in. �
In this finite dimensional case, linearity guarantees continuity. When this is not

true, we will need to distinguish between the algebraic dual of X, the set of all linear
functions, continuous or not, and the continuous dual of X.

The norm X† is ‖x†‖ := max{|〈x,x†| : ‖x‖ ≤ 1}. You should be able to put things
together to prove the following.

Lemma 2.2. If x† ∈ X† is represented by x†(x) = 〈x,y〉, then ‖x†‖ = ‖y‖.

Strong (or norm) convergence in the dual space X† is convergence of the norm
difference to 0.

Notation: X†† is the dual space of X†. Since X is reflexive, X = X††. This is another
thing that will not be generally true when we get away from functions on a finite
domain.

2.C. Semi-Norms for Convergence. For S a class of subsets of X†, we will talk
about S-convergence: vk →S v∗ if for all F ∈ S,

sup
x†∈F
|〈vk,x†〉 − 〈v∗,x†〉| → 0. (12)

The functions x 7→ supx†∈F |〈x,x†〉| in (12) are semi-norms.
We have been using the norm ‖x‖ = maxi∈{1,...,`} |xi|. There will be many other

norms depending on context. Here is the general definition.

Definition 2.C.1. A function p : X → R+ is a semi-norm if (∀λ ∈ R)(∀x ∈
X)[p(λx) = |λ|x and (∀x,y ∈ X)[p(x + y) ≤ p(x) + p(y)]. If a semi-norm also
satisfies p(x) = 0 iff x = 0, then it is a norm.

Note that taking λ = −1 yields p(−x) = p(x). This will reappear later as A =
{x : p(x) < r} being a balanced set, i.e. x ∈ A iff −x ∈ A. You should check that
‖x‖ := maxi∈{1,...,`} |xi| really is a norm. This is also a consequence of the following

Lemma 2.3. For non-empty, norm bounded F ⊂ X†, pF (x) := supx†∈F |〈x,x†〉| is a
semi-norm, and it is a norm if F spans X†.

Proof. Fill in. �
From Micro I and/or II, we know that the supremum of a collection of linear func-

tionals is a convex function. This means that each of the pF (·) is convex. This is true
of all semi-norms
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Lemma 2.4. If p : X→ R+ is a semi-norm, then for all x,y ∈ X and all α ∈ (0, 1),
p(αx + (1− α)y) ≤ αp(x) + (1− α)p(y).

Proof. From the second property of semi-norms, p(αx+(1−α)y) ≤ p(αx)+p((1−α)y).
From the first property, p(αx) = |α|p(x) = αp(x) and p((1 − α)y)|(1 − α)|p(y) =
(1− α)p(y). �

Of particular later use to us is the observation that for r > 0, the set {x : p(x) < r}
is balanced, convex, and contains the origin, 0.

2.D. Uniform Convergence on Subsets of Dual Spaces. We are about to define
convergence of vn to v∗ in terms of convergence of a collection of semi-norms, pF (vn−
v∗), to 0. Looking ahead, we will define topologies induced by collections of semi-
norms in the same way. Because semi-norms are convex, the sets {x : p(x) < λ} are
convex open subsets of the origin. The general term that will describe this situation
is local convexity of the topology.

Returning to our convergence theme, if S is a collection of subsets of X†, then
vk →S v∗ iff pF (vk − v∗)→ 0 for all F ∈ S.

Keep in mind the following simple switch of perspective: Since X = X††,
we are also using subsets of X to define convergence in X†.

Example 2.D.1. Let U = {x† ∈ X† : ‖x†‖ ≤ 1} be the norm-closed unit ball in X†

and let S = {U}. From the results above, S-convergence is norm convergence.

Lemma 2.5. If S = {F ⊂ X† : F is norm bounded}, then S-convergence is equivalent
to norm convergence.

Proof. Fill in. �

Example 2.D.2. If S = {{x†} : x† ∈ X†} is the class of singleton sets, then vk →S v∗
iff (∀x† ∈ X†)[〈vk,x†〉 → 〈v∗,x†〉].

The reason to look at the following in some detail is because we use a special class
of x†, one with a rich span.

Lemma 2.6. (∀x† ∈ X†)[〈vk,x†〉 → 〈v∗,x†〉] iff (∀i ∈ S)[vk(i)→ v∗(i)].

Proof. Taking x† = ei (the unit vector in the i’th direction) and noting that v(i) =
〈v, ei〉, we have (∀x† ∈ X†)[〈vk,x†〉 → 〈v∗,x†〉]⇒ (∀i ∈ S)[vk(i)→ v∗(i)].

To go in the opposite direction, note that any x† is of the form
∑

i∈S αiei, αi ∈ R, so
that 〈v,x†〉 =

∑
i∈S αi〈v, ei〉 so that (∀i ∈ S)[vk(i)→ v∗(i)]⇒ (∀x† ∈ X†)[〈vk,x†〉 →

〈v∗,x†〉]. �

Lemma 2.7. If S is the class of finite subsets of X†, then vk →S v∗ iff (∀i ∈
S)[vk(i)→ v∗(i)].

Crazy big classes of sets S can make convergence into a silly notion.

Lemma 2.8. If S is the class of all subsets of X† than vk →S v∗ iff (∃K)(∀k ≥
K)[vk = v∗].

Proof. Fill in. �
It is for this reason that we always restrict attention to classes S that contain only

norm bounded sets. Here is an example of S with norm unboundedness only in one
direction. Things are still bad.
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Example 2.D.3. If X = R3 and S = {(1, 0, 0)′, (0, 1, 0)′, {(0, 0, r) : r ∈ R}}, then
vk →S v∗ iff vk(1)→ v∗(1), vk(2)→ v∗(2), and (∃K)(∀k ≥ K)[vk(3) = v∗(3)].

Here is the result that all of these convergences except the last two are the same.
We say that S spans if the span of the x† ∈ E for some E ∈ S is norm dense in X†.

Theorem 2.9. ‖vk − v∗‖ → 0 iff for all spanning S consisting of norm bounded sets,
vk →S v∗.

Side comment: if S is not spanning, we end up with pseudo-metrics. For example,
taking S to contain only the set {(1, 0, 0)}, we get the pseudo-metric of Example 2.A.1.

Proof. (⇐) is really easy because {U} is a norm bounded and spanning set. For the
other direction, suppose that ‖vk − v∗‖ → 0, i.e. sup{|〈x,vk − v∗〉| : x ∈ U} → 0. If
F is a norm bounded set, then for some κ > 0, F ⊂ κ · U .

sup{|〈x,vk − v∗〉| : x ∈ F} ≤ κ sup{|〈x,vk − v∗〉| : x ∈ U} → 0. � (13)

2.E. Finite Versus Infinite Dimensionality. We will come back and prove many
of the assertions given in this subsection. For now, we just want a taste of how things
are different.

Let X = C([0, 1]) with the norm ‖x‖ = maxt∈[0,1] |x(t)|.

Theorem 2.10 (Representation). If µ, ν ∈ ∆([0, 1]) with µ(E) = 1 and ν(E) = 0 for
some measurable E ⊂ [0, 1] and α, β ≥ 0, then the functional

x 7→ α

∫
[0,1]

x(t) dµ(t)− β
∫

[0,1]

x(t) dν(t) (14)

belongs to X†. For any x† ∈ X†, there exists a pair µ, ν ∈ ∆([0, 1]) and a pair α, β ≥ 0
such that for all x ∈ X,

x†(x) = α

∫
[0,1]

x(t) dµ(t)− β
∫

[0,1]

x(t) dν(t). (15)

Further, the signed measure ηx†(A) := αµ(A) − βν(A) is uniquely determined by x†,
i.e. if x† 6= y† then ηx†(A) 6= ηy†(A) for some measurable A.

To put this another way, the dual space for C([0, 1]) is the set of countably additive
finite signed measures on [0, 1], denoted ca([0, 1]). We again use the bracket notation,
〈x,x†〉 =

∫
x(t) dη(t) where η is the signed measure associated with x†. Notation: η

(rather than x†) is the appropriate notation for elements of X†. The bracket function,
(x, η) 7→ 〈x, η〉 is, once again, bi-linear. We will very often be interested in ∆([0, 1]),
which is a spanning, strict subset of C([0, 1])†.

Example 2.E.1 (Pointwise convergence). Let S be the class of singleton subsets of X†

consisting of point masses (on points in [0, 1]), S = {{δr} : r ∈ [0, 1]}. Then xk →S
x iff for all r ∈ [0, 1], xk(r) → x(r). This is called, not surprisingly, pointwise
convergence in C([0, 1]).

The following is a special case of a result true for all normed spaces — if we use the
unit ball in X† to define a norm on X, we arrive back at the original norm.

Lemma 2.11. For x ∈ C([0, 1]), sup{|〈x, η〉| : ‖η‖ ≤ 1} = maxt∈[0,1] |x(t)|.

11



Consider the norm distance on X†: ‖η‖ = sup{|〈x, η〉 : ‖x‖ ≤ 1}. One of the key
approximation results in measure theory is that for probabilities µ, ν ∈ X†, the norm
or strong distance, ‖µ−ν‖ is equal to 2 ·maxE⊂[0,1] |µ(E)−ν(E)| where the maximum
is over measurable sets.

Reflexivity fails.2

Example 2.E.2. C([0, 1]) ( ca([0, 1])† = C([0, 1])††. To see why, first note that
η 7→

∫
f dη is continuous if f is continuous, but that the functionals η 7→

∫
1E dη are

linear and norm continuous.

Now we go to that simple switch of perspective: we use subsets of X ( X††

to define convergence in X† and in ∆([0, 1]) ⊂ X†.

Example 2.E.3. Let S = {{f} : f ∈ C([0, 1])} so that µk →S µ iff for all con-
tinuous f : [0, 1] → R,

∫
f dµk →

∫
f dµ. If µk is the uniform distribution on

{1/k, 2/k, . . . , (k − 1)/k, 1} ⊂ [0, 1], then µk →S λ but ‖µk − λ‖ ≡ 2.

The following is a version of a more general result called the Banach-Steinhaus
theorem: pointwise convergence of linear functions to a linear function on a compact
set implies uniform convergence. Without linearity, you should know many examples
of sequences of function that are pointwise convergent to a continuous function that
are not uniformly convergent.

Theorem 2.12. A sequence µk in ∆([0, 1]) weak∗ converges to µ iff for all compact,
spanning S, µk →S µ.

Compact subsets of C([0, 1]) are smaller than you might believe. The following
should help dis-abuse you of the notion that “closed and bounded means compact.”
That only works in the finite dimensional case.

Lemma 2.13. If E ⊂ C([0, 1]) is compact then it is bounded, has empty interior,
and is approximately flat, that is, for all ε > 0, there exists a finite dimensional
V ⊂ C([0, 1]) such that E ⊂ V ε.

You should know how to prove that if V ⊂ R` is a dense vector subspace, then
V = R`. The situation is very different in C([0, 1]).

Theorem 2.14 (Weierstrass). The set of polynomials is a dense vector subspace of
C([0, 1]).

More generally, for the span of any compact K ⊂ C([0, 1]) is closed iff the span is
finite dimensional.

Detour 2.1. What is interesting and tremendously useful for econometrics is the exis-
tence of compact sets having a span that is dense in an infinite dimensional space. For
example, consider the span of the closure of the set {kntn : n = 0, 1, . . .} where kn ↓ 0.
The approximately flat result just given shows that any compact set with dense span
must poke arbitrarily small amounts into some dimensions. It is out of such consider-
ations that one finds rates of convergence results for different kinds of approximation
schemes.

2If you would like to know more about the structure of the double dual of C(K), K compact,
Karlin has a series of papers on its structure. There are also characterizations using nonstandard
analysis.
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2.F. Problems.

On norm convergence and S-convergence in R`

NC 1. Complete the proof of Theorem 2.10.
NC 2. Give a complete proof that if S is a spanning set of norm bounded subsets of

R`, then vk →S v∗ if and only if ‖vk − v∗‖ → 0.
NC 3. For {x†n : n ∈ N} a countable, norm dense subset of R`, define ρ(x,y) =∑

n∈N
1

2n
|〈x−y,x†

n〉|
1+|〈x−y,x†

n〉|
. Show that ρ(·, ·) is a metric and that ρ(vk,v

∗) → 0 iff

‖vk − v∗‖ → 0.
NC 4. The utility distance between bundles x,x′ ∈ R`

+ is given by |u(x)−u(x′)|. For
what functions u(·) is this expressible as S-convergence? For what classes of
sets S?

On convergence in C([0, 1]) and ca([0, 1])

Cts 1. Suppose that S = {{f} : f ∈ C([0, 1]) so that µk →S µ in ∆([0, 1]) iff
∫
f dµk →∫

f dµ for all f ∈ C([0, 1]).
a. For r ∈ [0, 1], δr denotes point mass on r, that is, δr(A) = 1A(r). Show that
δrn →S δr iff |rn − r| → 0 in [0, 1].

b. Show that µk →S µ in ∆([0, 1]) iff all of the moments of µk converge to the
moments of µ.

Cts 2. We now turn to ca([0, 1]) keeping the same class S from the previous problem.
a. Let ηn = δ0.5+1/n − δ0.5−1/n. Show that ηn →S 0 but that ‖ηn‖ ≡ 2.
b. Let P = {fn : n = 0, 1, 2, . . .} where fn(t) = tn so that the span of P is

the set of polynomials. Define ρ(η, η′) =
∑

n∈N
1

2n
|〈η−η′,fn〉|

1+|〈x−y,x†
n〉|

. Show that

ρ(µk, µ) →S 0 in ∆([0, 1]) iff ρ(µk, µ) → 0, but that the norm diameter of
the ρ unit ball in ca([0, 1]) is infinite.

3. Convex Cones, Partial Orders, and Pre-Orders

We will return now to X = RS, S = {1, 2, . . . , `}, though the abstract definitions
will be what we work with in the more general cases. We will think of ∆(S) as subset
of X†.

3.A. Cones. The following allows more than things shaped like dunce caps in R3.

Definition 3.A.1. C ⊂ X is a convex cone if (∀x,y ∈ C)(∀α, β > 0)[αx+βy ∈ C].
A convex cone C is pointed if 0 ∈ C, otherwise C is blunt. A convex cone C is flat
if for some non-zero x ∈ X, x ∈ C and −x ∈ C, otherwise C is salient. A convex
cone is proper if it is not contained in any strict vector subspace of X.

In terms of set addition and scalar multiplication, this is αC+βC = C for α, β > 0.
Note that the intersection of any collection of convex cones is another convex cone
and that X is itself a convex cone. Putting these together in the usual fashion, for any
E ⊂ X, there is a smallest convex cone containing E.

Lemma 3.1. Every blunt convex cone is salient, and a cone is salient iff C∩−C ⊂ {0}.

Another way to say that C∩−C ⊂ {0} is “C contains no non-trivial linear subspace.”
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Example 3.A.1. {0} is a closed, pointed, proper, salient cone in R`; a non-trivial
strict vector subspace of R` is closed, pointed, and flat cone which is not proper; the
closed half-spaces, {x : 〈x,y〉 ≥ 0} for some y 6= 0, are flat, pointed, proper cones;
RS

+ is a closed, pointed, proper salient cone; RS
++ is an open, blunt, salient cone;

C = {(x1, x2) ∈ R2 : x1 > 0 ∨ [x1 = 0 ∧ x2 ≥ 0]} is a proper, salient pointed cone that
is neither closed nor open.

3.B. Partial Orders and Pre-orders. Recall that a partial order on X is one
satisfying

(1) x % x,
(2) [ [x % y] ∧ [y % z] ]⇒ [x % y], and
(3) [ [x % y] ∧ [y % y] ]⇒ [x = y],

and that a pre-order satisfies only the first two properties.

Definition 3.B.1. Associated with a convex cone, C, is the pre-order %C defined by
x %C y iff x− y ∈ C.

Lemma 3.2. If C is a pointed, salient, convex cone, then %C is a partial order. If C
is flat, then %C is a pre-order.

More examples:

(1) If C = RS
+, then x %C y iff x ≥ y.

(2) If C is also flat, then the order can be defined, but it fails [ [x % y] ∧ [y %
y] ]⇒ [x = y].

(3) If C = {(x1, x2) ∈ R2 : x1 > 0∨ [x1 = 0∧x2 ≥ 0]}, then x %C y iff x is weakly
larger than y in the lexicographic order.

(4) If M : R` → R` is an invertible linear mapping, then C = M(R`
+) is a closed,

pointed, proper salient cone giving the obvious order.

Example 3.B.1. The set of non-decreasing functions, C = {x ∈ X : x(1) ≤ x(2) ≤
· · · ≤ x(`)}, is a closed, pointed, convex cone that is flat (it contains (r, r, · · · , r) for
any r ∈ R).

3.C. Dual Cones. There is what looks like another way to use cones to give pre-
orders and partial orders. It uses the idea of a dual cone. First an example, then the
definitions and general observations.

Example 3.C.1. Let C ⊂ X be the closed convex cone of non-decreasing functions and
consider the following pre-order on ∆(S) ⊂ X†: µ % ν iff for all x ∈ C, 〈x, µ−ν〉 ≥ 0.
Since 〈x, µ − ν〉 ≥ 0 iff 〈x, µ〉 ≥ 〈x, ν〉, this is the usual first order stochastic
dominance (FOSD) order, µ %FOSD ν.

Define C† = {x† : (∀x ∈ C)[〈x,x†〉 ≥ 0]}. This is a closed convex cone, and we are
writing µ %FOSD ν iff (µ− ν) ∈ C†.

These are the two patterns: one can start with a cone C ⊂ X and define a pre-order
by (x − y) ∈ C; or one can start with a cone C ∈ X†, define C† as in the example,
and define a pre-order by (x† − y†) ∈ C†.

Here is the formal name for what we did, a dual cone.

Definition 3.C.1. If C ⊂ X is a cone, then its dual cone is C† := {x† : (∀x ∈
C)[〈x,x†〉 ≥ 0]}.

14



Detour 3.1. We didn’t really need to start with C being a cone — for any E ⊂ X, E†

is equal to C† where C is the smallest cone containing E. From this kind of thinking we
have the following two results: (C1∪C2)† = C†1 ∩C

†
2; and the smallest cone containing

both C†1 and C†2 is (C1 ∩ C2)†.

Dual cones are the only kind of closed convex cones.

Lemma 3.3. If C is a closed convex cone, then C = (C†)†.

Proof. Exercise in keeping track of things. �
From the definition, the bigger is C, the smaller the dual cone — there are more

constraints, 〈x,x†〉 ≥ 0, to be satisfied by elements of the dual cone.

Example 3.C.2. If C = X, then C† = {0} (we saw this at work in the example of
S-convergence with S being too large). If C = {0}, then C† = X†.

If C = {(x1, x2)′ ∈ R2 : x1 + x2 ≥ 0} then C† = {(r, r)′ ∈ R2 : r ≥ 0}. If
C = {r · x : r ≥ 0}, x 6= 0, then C† = {x† ∈ X† : 〈x,x†〉 ≥ 0} is a closed half space.

If C = R`
+, then C† = R`

+.

It is worth being more explicit about the dual cone of the class of non-decreasing
functions.

Example 3.C.3. If C = {(x1, x2, x3)′ ∈ R3 : x1 ≤ x2 ≤ x3}, then C† is the smallest
cone containing (−1, 1, 0)′ and (0,−1, 1)′, i.e. C† = {α(−1, 1, 0)′ + β(0,−1,+1) :
α, β ≥ 0}.

Detour 3.2. In Mb([0, 1]), the set of measurable, bounded functions on [0, 1], the
class, C = NDcr, of non-decreasing functions is cone that is closed under pointwise
convergence. For µ, ν ∈ ∆([0, 1]), µ %FOSD ν iff for all f ∈ C,

∫
f dµ ≥

∫
f dν.

Again, this is (µ− ν) ∈ C†, but C† is somewhat harder to describe.

3.D. Reminders About Supermodularity. This material is at its easiest when
actions and parameters are linearly ordered, which for us means that we can treat
them as subsets of R. The lattice formulations will come later.

Definition 3.D.1. For linearly ordered A and Θ, a function f : A × Θ → R is
supermodular if for all a′ � a and all θ′ � θ,

f(a′, θ′)− f(a, θ′) ≥ f(a′, θ)− f(a, θ), (16)

equivalently
f(a′, θ′)− f(a′, θ) ≥ f(a, θ′)− f(a, θ). (17)

It is strictly supermodular if the inequalities are strict.

At θ, the benefit of increasing from a to a′ is f(a′, θ)− f(a, θ), at θ′, it is f(a′, θ′)−
f(a, θ′). This assumption asks that benefit of increasing a be increasing in θ. A good
verbal shorthand for this is that f has increasing differences in a and θ. Three
sufficient conditions in the differentiable case are: ∀a, fa(a, ·) is nondecreasing; ∀θ,
fθ(·, θ) is nondecreasing; and ∀a, θ, fa,θ(a, θ) ≥ 0.

Theorem 3.4. If f : A × Θ → R is supermodular and a∗(θ) is the largest (or the
smallest) solution to maxa∈A f(a, θ), then [θ′ � θ] ⇒ [a∗(θ′) % a∗(θ)]. If f is strictly
supermodular, then for any a′ ∈ a∗(θ′) and any a ∈ a∗(θ), a′ ≥ a.
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Proof. Suppose that θ′ � θ but that a′ = a∗(θ′) ≺ a = a∗(θ). Because a∗(θ) and a∗(θ′)
are maximizers, f(a′, θ′) ≥ f(a, θ′) and f(a, θ) ≥ f(a′, θ). Since a′ is the largest of the
maximizers at θ′ and a � a′, we know a bit more, that f(a′, θ′) > f(a, θ′). Adding the
inequalities, we get f(a′, θ′) + f(a, θ) > f(a, θ′) + f(a′, θ), or

f(a, θ)− f(a′, θ) > f(a, θ′)− f(a′, θ′). (18)

But θ′ � θ and a � a′ and supermodularity imply that this inequality must go the
other way. The argument using strict supermodularity is similar. �

Sometimes the set of available choices also shifts with θ.

Theorem 3.5. Suppose that A and Θ are non-empty subsets of R, that Γ(θ) =
[g(θ), h(θ)] ∩ A where g and h are weakly increasing functions with g ≤ h ≤ ∞,
that f : A × Θ → R is supermodular. Then the smallest and the largest solutions to
the problem P (θ) = maxa∈Γ(θ) f(a, θ) are weakly increasing functions. Further, if f is
strictly supermodular, then every selection from Ψ(θ) := argmaxa∈Γ(θ) f(a, θ) is weakly
increasing.

Proof. Fill it in. �

3.E. The Monotone Likelihood Ratio Property (MLRP). We are interested in
U(a, θ) :=

∫
u(i, a) dpθ(i) being supermodular an a and θ. A first step down this road

is the MLRP.

Definition 3.E.1. A family of strictly positive densities {f(s; θ) : θ ∈ Θ}, Θ ⊂ R, on
R or on S = {1, 2, . . . , `} has the monotone likelihood ratio property (MLRP)
if there exists a s 7→ T (s) ∈ R such that for any θ′ > θ, f(s; θ′) and f(s; θ) are the

densities of different distributions, and f(s;θ′)
f(s;θ)

is a non-decreasing function of T (s).

Comment: if s 7→ T (s) is monotonic, as it often/almost always is, we can simplify

the assumption to f(s;θ′)
f(s;θ)

is a nondecreasing function of s.

There is a little bit of an embarassment in trying to extend the previous definition
to all densities/probabilities — we need to be careful about dividing by 0 and about
what 0

0
is going to mean if the densities go to 0 at different places. We will return to

this.
Taking logarithms, the non-decreasing property of s 7→ f(s;θ′)

f(s;θ)
is supermodularity.

Specifically, let h(s; θ) = log(f(s; θ)), for s′ > s,

f(s′;θ′)
f(s′;θ)

≥ f(s;θ′)
f(s;θ)

iff [h(s′; θ′)− h(s′; θ)] ≥ [h(s; θ′)− h(s; θ)] . (19)

To put it another way, what we need for the MLRP is that for all θ′ > θ, h(·; θ′)−h(·; θ)
belongs to the cone of non-decreasing functions. That is, h(·; θ′) %NDcr h(·; θ).

Recall that we are interested in problems of the form

max
a∈A

U(a, θ) :=

∫
u(a, s)f(s; θ) ds. (20)

to have U(·, ·) supermodular, we need, for a′ > a and θ′ > θ, to have∫
[u(a′, s)− u(a, s)] f(s; θ′) ds ≥

∫
[u(a′, s)− u(a, s)] f(s, θ) ds. (21)
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Lemma 3.6. If u : A× S → R is supermodular and {f(s, θ) : θ ∈ Θ} has the MLRP,
then the inequality in (21) holds.

Proof. Fill in. �

3.F. Problems.

Cones and stochastic dominance

Cone 1. If C is a cone of functions, then µ %C† ν iff µ second order stochastically
dominates ν. Give the cone and its dual, proving your results.

Expected utility maximization

Eu 1. Consider the following classes of portfolio choice problems,

max
x∈[0,w]

∫
u(w − x+ xs)f(s; θ) ds (22)

where {f(s; θ) : θ ∈ Θ}, Θ ⊂ R, is a class of distributions on [0,∞) with the
MLRP.
a. If u(r) = log(r), does the supermodularity analysis tell us whether or not
x∗(θ) is an increasing or decreasing function?

b. If u(r) = rγ, 0 < γ < 1, does the supermodularity analysis tell us whether or
not x∗(θ) is an increasing or decreasing function?

c. If u(r) = rγ, γ ≥ 1, does the supermodularity analysis tell us whether or not
x∗(θ) is an increasing or decreasing function?

d. In the previous three problems, characterize, if possible, the set of θ for which
x∗ increases with w.

4. Topological Vector Spaces

At topological vector space (tvs) is a vector space with a topology making addition
and multiplication by constants continuous. We haven’t formally defined a vector
space, or a topology, or continuity yet, so this is but a guideline to where we are
headed.

At different times we will care about the following vector spaces and their duals,
sometimes even their double duals: C(K), the continuous functions on a compact
metric space K, with a leading special case being K = {1, 2, . . . , `} in which case
C(K) = R`; C(Rk), the set of continuous functions on Rk; Cb(M), the continuous
bounded functions on a metric space M ; Lip(M), the set of Lipschitz continuous
functions on a metric space M ; RN, the set of all real-valued sequences; `p ⊂ RN,
p ∈ [1,∞), the set of infinite sequences x = (x1, x2, . . .) such that

∑
t |xt|p < ∞;

`∞ ⊂ ∩p∈[1,∞)`p, the set of infinite sequences with supt |xt| < ∞; Ck(G), the set of
k-times continuously differentiable functions on (a usually open and well-behaved)
G ⊂ R`; the set of multi-nomials on Rk; C∞(U)), the space of infinitely differentiable
functions on on open U ⊂ Rk, and D(U) ⊂ C∞(U), the set of compactly supported
elements of C∞(U); ca(M), the countably additive finite signed measures on a metric
space M , with a specially leading role being played by the subset ∆(M), the set of
countably additive probabilities on M ; Lp(Ω,F , P ), p ∈ [1,∞), the set of measurable,
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R-valued functions, X, such that
∫
|X(ω)|p dP (ω) < ∞; L((Ω,F , P ); ca(A)), the set

of measurable functions from Ω to ca(A), A a compact metric space, with a specially
leading role played by the subset such that

∫
|X(ω)|p dP (ω) <∞; L((Ω,F , P ); ∆(A)).

As we go through the general definitions, seeing what is at work in these different
vector spaces is a useful exercise.

We will give each of these spaces a topology, sometimes many topologies, for which
the mappings (x,y) 7→ (x + y) from X× X to X and (r,x) 7→ r · x from R× X to X
are continuous. At that point, we will have made the vector space into a topological
vector space. Time to define terms.

4.A. Vector Spaces. Eight axioms for a vector space.
Adding sets and multiplying them by scalars.
Spanning, linear independence, Hamel basis for a vector space.
Convex sets, balanced sets, absolutely convex sets, convex hull, absolutely convex

hull, absorbent sets.

4.B. Topological Spaces. Three axioms for a topological space.
A base of neighborhoods (or neighborhood base).
Separate (i.e. Hausdorff) topological spaces.
Metric spaces (most common example for us).
Continuous functions, homeomorphisms.

4.C. Vector Spaces with Compatible Topologies. For a tvs, the neighborhood
base at 0 tells us everything there is to know.

Locally convexity of a tvs (we will have this in all of our applications).
Examples: go through the spaces above giving topologies.

4.D. Seminorms. Repeating what we had above,

Definition 4.D.1. A function p : X → R+ is a semi-norm if (∀λ ∈ R)(∀x ∈
X)[p(λx) = |λ|x and (∀x,y ∈ X)[p(x + y) ≤ p(x) + p(y)]. If a semi-norm also
satisfies p(x) = 0 iff x = 0, then it is a norm.

Minkowski guages.
Topologies from semi-norms. Normed spaces. Metrizability.

5. Duality and the Hahn-Banach Theorem

5.A. Linear Mappings. We often use the word “functional” when we mean “func-
tion” or “mapping.” This is a holdover from the early explorations of properties of
spaces of functions, at that time, the notion that the domain was a set of functions
seemed sort of weird, so one distinguished the domain by using “functional.” And
anyway, “functional analysis” sounds pretty sophisticated.

Definition linearity.
Continuity at the origin is necessary and sufficient for continuity.
Examples: discontinuous linear functionals; ca([0, 1]) as C([0, 1])†, weak∗ neighbor-

hoods of 0 contain elements of arbitrarily large norm.
To work with a given a vector space X, it is often useful to know the form of X†.

Such results are called representation theorems, that is, they are results that tell us
how to represent the elements of X†.
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5.B. The Hahn-Banach Theorem.

5.C. Duality, Weak Topologies, and Weak∗ Topologies.

5.D. Polar Sets.

5.E. Cones and Dual Cones.

5.F. Finite Dimensional Subspaces. They all “look” the same, and they are always
complemented, something that will help give perspective on the econometrics that
we will do.

6. Dualities in Measure Spaces

For p, q ∈ [1,∞] are a dual pair if 1
p

+ 1
q

= 1. For p ∈ [1,∞) and p, q a dual

pair, Lq = Lq(Ω,F , P ) is the dual of Lp with the bilinear funnctional being 〈f, g〉 =∫
f(ω)g(ω) dP (ω). However, the dual of L∞ is larger than L1.
In any case, for p, q a dual pair we have the weak topologies: fn → f weakly in

Lp if for all g ∈ Lq, 〈fn, g〉 → 〈f, g〉 and gn → g weakly in Lq if for all f ∈ Lq,
〈f, gn〉 → 〈f, g〉.

A well-known example of weak convergence that is not norm convergence is fn(ω) =
cos(nω) for ω ∈ [0, 1] with P being the uniform distribution. ‖fn−f‖p is approximately
1 for large n, but fn → 0 weakly.
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