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Abstract

Infinite normal form games that are mathematically simple have been treated [ Harris, C.J., Stinch-
combe, M.B., Zame, W.R., in press. Nearly compact and continuous normal form games: character-
izations and equilibrium existence. Games Econ. Behav.]. Under study in this paper are the other
infinite normal form games, a class that includes the normal forms of most extensive form games
with infinite choice sets.

Finitistic equilibria are the limits of approximate equilibria taken along generalized sequences
of finite subsets of the strategy spaces. Points must be added to the strategy spaces to represent
these limits. There are direct, nonstandard analysis, and indirect, compactification and selection,
representations of these points. The compactification and selection approach was introduced [Simon,
L.K., Zame, W.R., 1990. Discontinuous games and endogenous sharing rules. Econometrica 58,
861-872]. It allows for profitable deviations and introduces spurious correlation between players’
choices. Finitistic equiliba are selection equilibria without ése drawbacks. Smdtion equilibria
have drawbacks, but contain a set-valued theory of integration for non-measurable functions tightly
linked to, and illuminated by, thetegration of correspondences.
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1. Introduction

A normal form game (nfg)” = (S;, u;)ier, is specified by a finite player set, strategy
sets,S;, i € I, and boundedtility functions,u; : S — R, S := x;¢;S;. This paper develops
a theory of Nash equilibrium for nfgs specified at this level of generality. There are no
topological or measure theoretic assumptions.

Compact and continuous nfgs are the starting point for the study of infinite games. An
nfg is compact and continuous if eaghis compact and eaah is jointly continuous. The
companion piece to this paper developedttheory of nfgs that are nearly compact and
continuous (ncc).

1.1. Gamesthat are nearly compact and continuous

A gameTr is ncc if it is possible to densely imbed eaghin a compact spaceﬁ», in
such a fashion that all of the; have jointly continuous extensions to the produg;,?,».
A gamer is integrableif eachu; is integrable with respect to all products of finitely ad-
ditive probabilities. A gam@™ is uniformly finitely approximable (ufa) if eachs; can be
approximated by finite sets using the Foberg and Levine’s (1983Jnost utility differ-
ence it can make to anyone” pseudo-metric,

dyy; (s, 1;) = maxsuplug (s\s;) — ux (s\1;)|. (1)
kel seS

The companion piece to this paper, Harris et al. (in press), showed that the three con-
ditions, integrability, being ufa, and being ncc, are equivalent. This paper studies nfgs that
fail to be integrable, ncc, or ufa, a class that includes the normal forms of most extensive
form games with infinite choice sets.

1.2. Extensive formgames

Suppose tharl” is the normal form representation of an extensive form game in which
player 1 makes a picks in an infinite setS1, s1 is subsequently observed by player 2, who
then picks an action in a setA = {a, b}, and that player 2's choice afor b always makes
at least a utility difference of at least 1 to some player. Most extensive form games involve
at least this much dynamic interaction between players. While it is not at all clear what
set of strategies should be considered for player 2, a minimal requirement is that the class
of functions, S, c A1, constituting player 2’s strategy set, must be dense in the product
topology?

The denseness implies that for all£ 71 € S1, there exists amp € S such thaka(sy) #
s2(t1), implying thatdy, (s1, t1) > 1. Also, if s # 17 iff there exists am, such thako(s1) #
t2(s1) SO thatdyy,(s2, t2) > 1. The normal form of this game is therefore not ufa. By the
cited equivalence resulf; is neither integrable nor ncc.

1 This is equivalent to 2’s strategies allowing irdxy patterns of response at all finite subsetsSpf More
explicitly, if £ is a finite subset ofq, then for every vectox, € AF1, there is a strategy iy that agrees with
xo at the points inFy.
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1.3. Finitistic equilibria

A generalized sequence (net);, of finite subsets of; converges td; if for all finite
Fi, F; C A? for all sufficiently largex. Finitistic equilibria are the limits of approximate
equilibria taken along convergent generalized sequences of finite subsets of the strategy
spaces. Points must be added to the strategy spaces in order to represent the limits of these
seguences.

The exhaustive star-finite sets of nonstandard analysis, compactifications, and finitely
additive strategies are three methods of adding these limit points. For ncc games, the three
methods are equivalent (Harris et al., in press). They are not equivalent for the class of
games considered here.

An exhaustive star-finite version of a sétcontains every in X but behaves logically
as if it were finite. There is a strong similarity between such sets and the generalized se-
quences of finite setg\?, that eventually contain every point . Theorem 3.2 will show
that the exhaustive star-finite sets of nonstandard analysis provide direct representations of
finitistic equilibria.

Any compactification of a space can be mgEnted as a collection of equivalence
classes of any exhaustive star-finite $&tetail is lost in the many-to-one surjection from
exhaustive sets to compactifications. Thissled detail makes the representation issues
considerably more complex, requiring selection.

1.4. Selection equilibria

Compactification delivers a game with compact strategy sets and utilities defined on
dense subsets, the setting of selection equglifSimon and Zame, 1990). Selection equi-
libria are defined as a pair, ) whereuv is a utility function andu a strategy profile. The
utilities, v, are equal tar at continuity points ofi.3

If s is a discontinuity point of:, the utility v(s) must belong to the convex hull of the
set of possible limit tilities in the néghborhood ofs. The choice of the value af(s) must
contain the detail lost in moving from star-finite sets to compactifications.

Selection equilibria can play strictly donated strategies, anday introduce spurious
correlation between players’ choices. Someelation is needed to replace the lost detail.
The spurious correlation may come from the use of the convex hull, and it may come from
the process of selection itself. Theorem 3.3 and its corollaries show that finitistic equilibria
are selection equilibria without these drawbsicRrawbacks aside, selection equilibria
contain a set-valued theory of integration for non-measurable functions.

2 A brief treatment of the compactifications of a spataising equivalence classes bk can be found in
Anderson (1982). Machover and Hirschfeld (1969) andd-and Loeb (1985) contain more detailed treatments.
Replacing* X with an exhaustive star-finite set changes nothing in their constructions.

3 Forncc games, every point is a continuity point.
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1.5. Finitely additive strategies and integration

Finitely additive probabilities are equivaleto countably additie probabilities on com-
pactifications. The games under study fail tategrable. The exgcted utilities achieved
by selection provide a set-valued definitiohtbe integral of non-measurable functions.
Since there are many selections, the integration theory is tightly linked to, and illuminated
by, the integration of correspondences.

1.6. Roadmap

The next section provides an overview through a number of examples. The following
gives and proves the results relating finitistic equilibria and selection equilibria. The two
major interpretational results are Theorem 3.2, which shows that the star-finite sets of non-
standard analysis provide a direct interpretation of finitistic equilibria, and Theorem 3.3,
which shows that finitistic equilibria can be umg®od as selection equilibria in compacti-
fications. Subsidiary results in this section establish that finitistic equilibria do not have the
drawbacks that selection equilibria usually have.

The set-valued theory of integration for non-measurable functions contained in the se-
lection approach is covered in Section 4. This background is used in the study of finitely
additive equilibria, the content of Section 5.

2. Overview of themajor issues and results

Systematic study of the equilibrium existence question for infinite nfgs began with Fan
(1952) and Glicksberg (1952), who provedttitampactness and metrizability of tise
and joint continuity of ther; guarantee the existence of Ng4®50) equilibria. Continuity
can be relaxed in a number of directions, assunsipecial “diagonal” discontinuities (e.g.
Dasgupta and Maskin, 1986; Simon, 1987), pecal monotonicities (e.g. Vives, 1990).
Such approaches lead to deep insights intesthécture of useful classes of games, but do
not lead to a general theory of infinite games. By contrast, selection equilibria (Simon and
Zame, 1990) exist for compact metric spgeenes with arbitrary utility functions.

The first example of this section shows that compactification of individual strategy
spaces is easy, but a jointly continuous exiem®f the utilities is gearally impossible.
This leads to the definition of selection equilibria. The second example demonstrates that
selection equilibria may play a strictly dominated strategy. The definition of finitistic equi-
libria makes it clear that they do not have this drawback. The third example demonstrates
how correlation arises when representing finitistic equilibria by selection. The fourth exam-
ple demonstrates one of the two ways in which selection can introduce spurious correlation.
The final example suggests the centrality of normal form analyses of infinite extensive form
games.
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2.1. Compactness of the strategy spaces

With the addition of some limit points, compactness of strategy spaces can be guaran-
teed, though joint continuity dhe utilities may bempossible.

Example 2.1 (Aninfinite coordination game). I is specified by = {1, 2}, S; = N, and the
symmetric utility functions,

1 if Si =Sj,

0 ifs,-;ﬁsj. (2)

ui(Si,Sj)={

Playeri’s utility sections are the functionsf; = {s; — uy(s\s;): k € I, s € S}. Because
limg, 1 ui(s\s;) exists (and is identically equal to 0 in this simple game) for athe sec-
tions continuously extended to the one-point compactificaﬁpa; NU {oo} with e.g. the
metricd; (si, s;) = |e™* —e™%/| with e := 0. Thes; are dense in the compact sp&:e
which definesS; being a compactification of;.

It is not possible to extend; to a jointly continuousi; on the joint compactification,

S = xier8;. If it were, the continuous mapping — i;(-, s;) from the compac§; to
C(E,») would have a compact randeThis contradicts the observation thit; (-, §j) —
;i (-, s;.) || = 1 for the infinitely many pairs of; # s;

It is always possible to compactify af so that any collection of bounded functions
have unique continuous extensions to the caatification (for sketches of and references
to the constructions, see Section 4.2.1). As seen in Harris et al. (in press) and below in Ex-
ample 2.3, for the study of infinite games, the relevant collection of bounded functions is
the class of utility sections. The points added by compactification guarantee that every util-
ity section achieves its maximum, they represent the limits of approximate optima against
pure strategies.

For ncc games, the compactification cantéleen to be metrizable. In general this is
not possible, and the compactifications aréejlarge. Despite the size of the compact-
ifications, for non-ncc games, the addition otra points is not suffient to guarantee
equilibrium existence because one must replace the detail lost in moving from finitistic
sets down to compactifications.

2.2. Sdection equilibria

For eachi € I, let T; be a dense subset of the compact spsicdet u : T — R/,

T = x;¢;T;, be a bounded function. Havirily = S; is usual for the analysis of compact
games, having; be a proper subset ¢f is crucial for the compact imbedding analysis of
nfgs. The functiork and the sef” C S define apre-game, I'r (S, u).

Let @ = @, be the correspondence froshto R! having as graph the closure (in the
product topology) of the sdir, u(¢)): ¢t € T}. Becausdl is dense inS, @ is non-empty
valued. Sincer is boundedg is single-valued a¢ if and only if u has a unique continuous
extension fron¥" to S ats. (For ncc gamesp is always single-valued.)

4 Fora compack, C(X) is the set of continuous functions shwith the sup-norm.
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At pointss whereu can not be continuously extended frdihto S, @ (s) contains many
points. Let¥ be a closed graph correspondence satisfyng) c ¥ (s) C cod(s) for
eachs € S.

Definition 2.1 (Smon and Zame). A W -selection equilibrium is a pair(v, u) wherewv is
a measurable everywhere selection frémandu = (u;);<; is an equilibrium profile of
countably additive strategies for the game with compact strategy sfaaad measurable
utility functionsv.

When¥ (s) = co®(s) for eachs € S and theS; are metric spaces, Simon and Zame
(1990) show that c@-selection equilibria exist. These are equilibria where the utilities
at discontinuities are chosen as limits of utilities in the convex hulls of nearby utilities.
Selection equilibria may involve play of strictly dominated strategies.

Example 2.2. Two players simultaneously pick in their action spacgss 7; = [0, 1], and
the utility functions are

2 ifsp1=0,
s1 if s1>0,

2—57 ifs1=0,
52 if s7 > 0.

ui(s1, s2) = { uz(s1, §2) = {

Play of (0, 0) is the unique equilibrium of this game, giving utiliti€®, 2). The unique
continuous selection fronp is v(s1, s2) = (s1, s2). Play of (1, 1) is the unique equilib-
rium of (S;, v;);c;. The selectiorv fails to capture the crucial strategic aspeckpt 0,
player 1's ability to guarantee her/himself a payofiaf= 2. Finitistic equilibria capture
s1 = 0 being available to player 1.

2.3. Finitigtic equilibria

A generalized sequence (net} converges td’; if for all finite F; C 7;, for all suffi-
ciently largea, F; C AY.

Definition 2.2. A mixed strategyu = (u;)ics is afinitistic equilibrium of the pre-game
I'r (S, u) if itis the limit of a generalized sequeng€ whereu® is ane®-equilibrium of
the game A}, u;)ier, AY — T;, € — 0.

The only finitistic equilibrium for Example 2.2 i®, 0)—for all sufficiently largex, A}
will contain the point 0, and ak® equilibria put mass at least-1¢* on (0, 0). This is
an instance of Corollary 3.3, which showsttiinitistic equilibria @ not ignore profitable
deviations.

Theorem 3.2 shows that exhaustive star-finite versions of’ththat is, finitistic ver-
sions of theT;, perfectly represent the generalized sequencé$'sf There is a surjective
map from any finitistic version df; to any compactification df; .5 Some of the correlation
in selection equilibria arises to represent the information/details lost in moving down from

5 See fn. 2 for the details.
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finitistic sets to compacts. The amount of ctation is limited, Theorem 3.3 below shows
that every finitistic equilibim is a selection equilibrium from a correspondence strictly
smaller than ce@.

2.4. Correlation, information, and the size of compactifications

The following modified matching penniesma is ncc. Thereforéf it is compactified
so as to make all utility sections continuouree tesulting game is compact and continuous.
If compactified in a smaller fashion, one that does not make the utility sections continu-
ous, selection can replace the lost information. This is analogous to what happens in the
surjection from finitistic sets to compactifications.

Example 2.3. Two players simultaneously pick ifi = N, with utility functions

(+1,-1) — % %) if #;, ¢; are both even or both odd,

uiti, 1j) = 11

3
(-1,+1) — (E’ 5) if ¢;,¢; are of different parity. ®)

The T; are dense in the compact metric spacgsd;), S; := N U {00}, d;(s;,s]) 1=
e — e*55|, e :=0. The (S;,d;) are the one-point compactifications of tfig.
Not even the utility seatins extend continuously td; x S;, liminfg 4 ui(s\s;) <
lim sup, 4 uk(s\si). Further,@(t;, 00) = {(+1—1/t;, 1), (=1 —=1/t;, +1)}, (00, t;) =
{(+1, —=1—1/t)), (=1, 4+1—1/1)}, and® (0o, 00) = {(+1, —1), (-1, +1)}.

Finitistic equilibria involve both players picking infinitely large even and odd integers
with probability infinitely close to 12 each. This gives utilities of0, 0). This selection
equilibrium corresponding tthis finitistic equilibrium is(v, u) wherep is point mass
on (0o, 00), v(t;, 00) = (0 — 1/1;,0), v(co, ;) = (0,0 — 1/t;), andv(oo, 00) = (0, 0). By
putting mass A2 each on the end points of tli, the selection utilities encode the lost
information that the players are putting magg #ach on the evens and odds.

TheT; are dense in the compact metric spa@s p;), R; := N U {coeven ®odd}

|lesi — e‘55| if s;, s; are both even or both odd,

Pi (S,', Sl/) = (4)

14|e% —e™%| if 5, s/ are of different parity.
The utilities hae unique continuousxtensions fronl; x T; to R; x R;. The unique
equilibrium in the resultig compact and continuous gatnas both players playinspeyen
andooggq With probability 1/2 each.

Selection can encode information lost in the passage to the limit, but they can also
encode spurious information. Finitistic equilibria avoid the spurious correlation that can
arise in selection equilibria.

2.5. Spuriouscorrelation

Spurious correlation arises from two distinct aspects of the definition of selection equi-
libria, the use of the full convex hull, and the use of selection itself.
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2.5.1. Correlation arising from the convex hull

The next game is a version of “pick the largest integer” in which one is rewarded more
highly for beating the opponents pick by 2 or more, and punished for tying themT;The
are dense subsets of compégtthe utility sectiondiave unique continuowextensions, but
the game is not ncc. For larget;, the payoffs are essentially constant along lines parallel
to the diagonal.

Example 2.4. Two players simultaneously pick i, = N, and the utility functions are
symmetric,

(10,-10 — (%, 1) ifs>1+2,

i

8.4~ (1) if;=1;+1,
ui(ti, tj) =14 (=2, —2)—(%,%) if ; =1, (5)
4,8 — (%, 1) ift;=1;—1,

4’ tj

(-10,10 - (3, %) if 4 <tj —2.
The T; are dense in the one-point compactifications used above. Continuity gives

@ (t;, 00) = {(—10,10)} and @ (o0, t;) = {(10, —10)}. The only discontinuity point for

happens atoo, o). The convex hull of the limits of the possible at payoff§at, oo) is

V =cod (o0, 00) = co{(10, —10), (8,4), (-2, —2), (4,8), (—10,10)}. (6)

Any selection fromV combined with play of(co, 0o) is a selection equilibrium for
I'r(S,u). In particular, the utility levelsx(8,4) + (1 — «)(4,8), « € (0,1) belong to
cod (00, 00) and can occur as a do-selection equilibrium. However, these payoffs re-
quire thate of the time,i plays one higher thap plays and 1- « of the time s/he plays
one lower. This requires perfect correlatiordastrictly positive randomization. This cannot
arise from independent play.

Finitistic equilibria will have as utilities the limit®f independent redomization by the
players. TheNash hull correspondence studied below satistlgs) C Nh @ (s) C co® (s)
for all s € S and captures this independence. Theorem 3.3 shows that finitistic equilibria
are always Nl -selection equilibria.

2.5.2. Correlation arising from selection

In a two player game, N& (s), the Nash hull at a point= (s1, s2) consists of the set
of limits of payoffs to generalized sequencesrafependent randomizations that converge
to the product of point masses enands,. At continuity points, Nhb is a singleton set.
When there are two discontinuities, a sél@e may pick different randomization at the
different points, effectivel correlating players’ choices.

In more detail, the two Nkb (s1, s2) and Nh® (s1, 1), s2 # 2 are formed by indepen-
dent randomization in the neighborhoodgef, s2) and (s1, £2). If independence is to be
respected, then the play of 1 should be the same in both of these neighborhood (systems),
1's play should not depend on 2’s choices. Selections have no such consistency restrictions.
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It is not the Nash hull that is to blame. Example 5.1 gives avith multiple discon-
tinuities. Selections fron® can introduce correlation between players’ choices. Corol-
lary 5.1.1 shows that it is multiple discontinuities that are to blame.

2.6. The need for normal form analyses

One approach to extensive form games with infinite choice sets at some node(s) is to
specify a set of strategies and to use a finitistic analysis of the resulting infinite nfg. A sec-
ond approach is to replace the infinite choice sets with finitistic versions and analyze the
resulting game. This second approach may change essential informational structures in the
game, suggesting the centrality of normal form analyses.

Example 2.5. At time ¢+ = 0, Nature picksy = (w1, w2) € {—1,+1} x {H, T} according
to a strictly positive distributionP. At r = 1, player 1 picksa; € A1 = [0, 1] without
observing any aspect aof. At t+ = 2, player 2 observes;, but no aspect ob, and picks
az e A> =0, 1].

If w2 = H, then atr = 3, player 1 observas and can change her mind, picking some
othera; € [0, 1], but if wo = T, nothing happens at= 3.

At + = 4, players 3, 4, and 5 observe the continuous signgls ws - |a1 — az|, s4 =
1 - |(a1)? — agl, andss = 1 - |a1 — (a2)?).

After observing their respective signals, 3, 4, and 5 pigkas, andas in non-trivial
sets. Payoffs are arranged so that players 1 and 2 have different interests in which of the
later players are informed abowi.

The extensive form game just given has a clear strategic structure: dependiagibn
one of the first two players chooses either 0 or 1, then the other player can pick whether
all later players or none of them know the valuewgf in a similar fashion, if one of the
first two players chooses in the interv@, 1), then the other player can pick any one of
the later players to be uninformed of the valuewaf or else can choose all of them to be
informed.

(1) Ifthe action sett1 and A2 are replaced by finitistic sets, the game does not have this
strategic structure.

Proof : Let F1 and F> be finitistic versions ofA; and A». If player 1 picksr; #0, 1
andwy = T, then, in order for player 2 to have the choice of which of the three later
players does not know the value ®f, F» must contairny, (11)%, and./71. In exactly
the same way, ifo, = H, then for every, € F» \ {0, 1}, F1 must contaimy, (r2)2, and
J/12. Thus, three incompatible conditions must be simultaneously satisfied, F>,
F?=F, andF;, = F2.

(2) Finitistic replacements of the normal form can replicate the strategic structure.

Proof : In the normal form, player 1's strategy set is the produ¢boi] and a large
subset of 0, 1](%1 while 2's strategy set is a large subsef0f1]/%. Provided the
large subsets contain the ¢muous functions, finitistic versions of the strategy sets
contain the functiong (x) = x, f(x) = x2, andf (x) = /x.
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There are still difficult open gquestions for the development of a general theory of ex-
tensive form games. It is not clear that finitistic replacement of normal forms will always
respect informational structures. If one takes a normal form approach, one must discover
the extensive form implications of Nash hull selection equilibria.

2.7. Notation used throughout

In order to discuss finitely supported mixtures, for eaehl, S; is a field of subsets of
S; containing the singleton set®.g. 2. The set of mixed strategies foe I is A;. Strate-
gies are always assumed to be finitely additiveSpnThere is no assumption that utilities
are integrable. Ifu = (u;)ier € A := X1 A; is a vector of mixed strategies, the product
measure ornx;<;S;, the smallest field containing theeasurable rectangles, is denoted
prodw). If the u; are countably additive and ti& areo-fields, the unique extension of
prod(w) to the product -field, Q),.; Si := o (xie1S;), Is again denoted pragd).

iel

3. Finitistic and selection equilibria for compact games

For this section, each; is a non-empty compact Hausdorff space (cHs) with the Borel
o-field of subsetssS;. By assumption, the mixed strategies are the unique countably addi-
tive extensions of Baire measures$o’

Finitistic equilibria are the standard parts of the equilibria on games in whicl§;the
have been replaced by exhaustiidinite setsA;. By transfer, such equilibria exist. Theo-
rem 3.3 shows that finitistic equilibria are a subset of the Nash hull selection equilibria for
games with arbitrary cHs strategy spaces. Tleisagality enables the interpretation of the
finitistic equilibria of nfgs though compact imbedding and selection. However, selection
equilibria should be regarded as a useful intet@tion of finitistic equilibria rather than as
an independent solution concept.

Recall that®-selection equilibria constitute the smallest possible set of selection equi-
libria that use limit values for utilities. Example 2.2 shows tthaselection equilibria may
ignore profitable deviations, Corollary3shows that finitistic equilibria do not. Exam-
ple 5.1 shows thab-selection equilibria add spurious correlation to the finitistic equilibria.
Endogenous sharing rule equilibria aredzeselection equilibria. Example 2.4 shows that
endogenous sharing rule equilibria add spuriocaigelation to the Nash selection equilib-
ria. In sum, selection equilibria may ignore fitable deviations, any kind of selection can
add spurious correlation, and @eselection adds the most.

6 without the singleton sets, the mixed strategig®ripreted as being pure are the ones satisfying:;)
{0, 1} for all E; € S;. Purely finitely additive{0, 1}-valued measures can be difficult to integrate against general
u.
7 This clears up a potential ambiguity in Definition 2.1. The Bairéeld is the smallest making the continuous
functions measurable. In metric spaces, the Baifeeld is the Borelo-field. Urysohn’s lemma on the approx-
imation of indicators of closed sets by continuous fumrtsi implies that Baire measures have unique countably
additive extensions to the BoreHield for a cHs. There exist cHs with Borel measures that are not the extensions
of Baire measures.



342 M.B. Stinchcombe / Games and Economic Behavior 50 (2005) 332—365

3.1. Definition of selection equilibria

Foreach € I, letT; be adense subset §f. Letu : T — R!, T = x,;¢; T;, be a bounded
function. HavingT; = S; is usual for the analysis of compact games, havinige a proper
subset ofS; is crucial for the compact imbedding analysis of nfgs. The funatiamd the
setT cC S define apre-game, I'7 (S, u).

Let @ be the correspondence frofito R! having as graph the closure (in the product
topology) of the sef(¢, u(r)): t € T}. Becausel is dense inS, @ is hon-empty valued.
Sinceu is boundedg is single-valued if and only if has a unique continuous extension
from T to S. At pointss whereu does not extend continuously frofto S, @ (s) contains
many points.

3.1.1. Correspondences derived from @

Let E = x;<; E; be a non-empty, measurable subsef of he leading class af’s will
have eaclt; open. With clA denoting the closure of the sét thepoint mass values of u
on E are

Pg = cl{/ u(s)ds;(s): §; point mass on somes 7 N E} (7)
the Nash hull of the values of u on E are

Ng = cl{/ u(s)du(s): p afinitely supported, product measure ®m E} (8)
and thecorrelated hull of the values of u on E are

Cg= cl{/ u(s) dn(s): n afinitely supported measure @ghmn E} 9)

Point masses are product measures, and product measures are measuresPsa that
Ng C Cg.

Let O(s) be a neighborhood basis ferconsisting of sets of the forid = x;¢;G;, G;
open inS;. With coA denoting the convex hull of the sdt for all s, the compactness of
the graph ok guarantees

cp(s)=ﬂ{PG: GeO@s)}, and coq)(s)zﬂ{CG: GeO®s)}. (10)

Definition 3.1. TheNash hull of @ is the correspondence Mhdefined by
Nha(s) =(\{No: G € Os)}. (11)

If s is anisolated point or i extends continuously tofrom 7', then® (s) = Nh & (s) =
cod(s) is a singleton set.

3.1.2. Representations of the correspondences derived from @

The Nash hull of® has two useful representations. For the first oneg e the class
of finite open covers of by sets of the fornx;<;G;, G; open inS;. For each finite open
coverC € C and eachs € S, C(s) denotes the open sf}{G € C: s € G}. Let Nh@¢ be
the correspondence having as graph the closure of tHésse): v € N¢(y)}.
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Lemma 3.1. The graph of Nh@ is equal to the intersection over C € C of the graphs of
Nhoc.

Proof. If (s, u) is inthe graph of Ni®, then for allG containings, u € Ng. ForallC € C,
C(s) is an open neighborhood ofvhich implies that(s, ) belongs to the graph of Nb¢.
Since this is true for eacfi, (s, u) belongs to the intersection of the graphs ofdh

If (s, u) does not belong to the graph of ih then there exists an op&h= x;c;G; €
O(s) such thatu ¢ Ng. SinceS is a compact Hausdorff space, for each S\G, there
exists a pair of open sets, and H,, s € H, C G, such thatG, N H, = (. BecauseS
is compact, there exists a finite subcow@r,of the open cove(G, {G;: ¢ € S\G}}. For
thisC, C(s) C G, so that(s, u) does not belongto Nédc. O

The second representation uses nonstandard anélykis.Nash hull of® ats is the
standard part of the integrals ®ffinitely supported, productrpbabilities concentrated on
the infinitesimal neighborhoods ef

The finite subsets df; are denote@®r(T;). A star-finite (or*-finite) subsetA;, of T;
is an element of Pr(T;). Whens; € S;, themonad of s; is the setn; (s;) = ({*G;: si €
G; € O;(s;)} whereQ©; (s;) is the neighborhood basis fgrin S;. For any cHs X, monads
are Loeb measurable subsets®f(Anderson and Rashid, 1978).

Lemma 3.2. For al s € S, Nh®(s) = st{/ *u(a)dprod(n;); € I)(a)} where each
n; is supported by a *-finite subset of 7;, and its associated Loeb measure satisfies
L(n;)(mi(s;)) = 1.

Proof. For any subsef of a Hausdorff topological space, the standard part Bfis

the closure ofE. Since moving an infinitesimal amount of mass cannot affect the in-
tegral of a bounded function, this implies that ea€h is the standard part of the set
{Ju(a)dprod(n); € I)(a)} where eachy; is a *-finitely supported measure satisfying
ni *(T; N G;)) ~ 1. Definition 3.1 and the Loeb measurability of monads complete the
proof. O

3.2. Theexistence of selection equilibria

Let ¥ be a non-empty valued, closed graph, bounded correspondences ftori’ .
Each such¥ defines amultigame I'7(S, ¥). A measurable functiony: § — R/ is an
everywhere selection from if for all s, ¥ (s) € ¥ (s).2

8 We work in ak-saturated, nonstandard enlargement of a superstrubt(¢ where Z contains eacts;
as well asR, and« is a cardinal greater than the cardinality WfZ). The most accessible introductions to
nonstandard analysis that | have found are Lindstrem (1988) and Anderson (1991).

9 Everywhere selections exist becausés a measurable closed-valuedrespondence (Klein and Thompson,
1984, Definition 13.1.1, Theorem 14.2.1).
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Definition 3.2. A strategy profileu* € A, is a selection equilibrium for the multigame
I'r (S, ¥) ifthere exists an everywhere selectign,from ¥ such tha.* is an equilibrium
for the gamgS;, ¥i)ies.

A selection equilibrium for the multigam&r (S, co®) is called arendogenous sharing
rule equilibriumin Simon and Zame (1990), which contains a proof of

Theorem 3.1. If each S; isa compact metric space, then a selection equilibrium exists for
the multigame I'7 (S, co®).

A *-finite A; C *T; is exhaustive if for alt; € T;, t; € A;. By «-saturation, exhaustive
star-finite sets exist.

Definition 3.3. A strategy profileu* is anexhaustive, star-finite equilibriumfor I'r (S, u)
if it is the weak standard part of aa-equilibrium,e =~ 0, for the game&A;, *u;);c; where
eachA; is an exhaustive;-finite subset of;.

The finite subsets df;, Pr(T;), are partially ordered by; >=; A} if A; O A’. Products
xije1A; Of finite subsets ofx;c; S; are partially ordered by;c;A; = x;ef A} if A; >;
A} for eachi e I. From Definition 2.2, finitistic equilibria are the limits of approximate
equilibria on large finite sets.

Theorem 3.2. u* is a finitistic equilibrium for I'7 (S, u) if and only if it is an exhaustive
star-finite equilibriumfor I'r (S, u).

Proof. Let E’ denote the set of finitistic equilibria, and’ the let of limits described in
the Lemma. BotlE’ andE” are easily seen to be equivalent to the Betescribed below.
For eachx;c;A; € x;c1Pr(T;) ande > 0, defineE(x;c1A;, €) as the weak closure of
the set{Eq“((Bi, ui)icr): Xic1Bi = Xic1Ai}. Define E = ({E(X;ec1Ai, €): Xie[A; €
xXielPFr(T;), € >0}. O

Corollary 3.2.1. The set of finitistic equilibriais non-empty and compact.
Proof. The class of compact set& (x;c;A;, €): XicjA; € X;c;Pr(T;), € > 0}, has the
finite intersection property. Its non-empty,pact intersection is the set of finitistic equi-

libria. O

Theorem 3.3. If each S; is a compact Hausdorff space, then every finitistic equilibriumis
a selection equilibriumfor the multigame I'r (S, Nh @).

This generalizes Theorem 3.1 in four directions.
(1) It eliminates spurious correlation:

(a) co® isreplaced with the smaller Nash hull, h This can lead to a much smaller
set of equilibrium outcomes, Example 2.2.
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(b) Selection itself, even fron®, may introduce spurious correlation by violating
the independence of players’ choices, Example 5.1. Finitistic equilibria are inter-
pretable as selection equilibria, but pest the independence of players’ random-
ization, Theorems 5.1 and 5.2.
(2) The replacement of compact metric strategy spaces by general cHs allows treatment
of finitely additive equililsia through compact imbedding.
(3) Robustness with respect 1 deviations can be guaranteed by a limit interpretation
of a*-finite construction in the proof—the strategje® will be the limit of equilibria
along a net of finite approximatioms the game that includes eagle 7;, i € I. From
Corollary 3.3, ifu; (-\¢t;) is proct(u}’f)j#)—integrable and” = S, then

/ vi(s) dprod ™) (s) > / ui (s) d produ™\8, ) (s). (12)
S

S

Example 2.2 gave a gami@& (S, u) in which there is a unique continuous selectipn
from @, and the unique equilibrium faFs (S, ) fails Eq. (12).

(4) The set of finitistic equilibria dependpper hemicontinuouslgn the utility function,
Corollary 3.3.2. Selection equilibria depend on measurable everywhere selections, and
it is difficult to formulate hemicontinuity results for this class of selections.

Proof of Theorem 3.3. For eachi € I, let A; be an exhaustive, star-finite subsetTpf
SinceT; is dense ins;, the standard part mapping; s#; — S;, is onto. By Anderson and
Rashid (1978) and Loeb (1979), the wéaltandard part mapping, also denoted tstkes
probabilities ond; onto A;.

Let n = (n;)ie; be ane-equilibrium, e ~ 0, for the internal gameéA;, *u;);<; played
with the strategy setd; C *7; and the utility functiorfu. Let u* = (st (;))i<s. All that
is left is to show that there is an everywhere selectipnfrom Nhe such thatu™* is an
equilibrium for (S;, ¥;)ier.

Let L = L(prodn)) denote the Loeb measure generated by the internal measure)rod
on A = x;c;A; with the Loebo -field A (the L-completion of the minimad -field con-
taining the internal subsets of). Let F denote the smallest subHield of A making
the mapping(a;)ic; + (st (a;))ie; Measurable (see Anderson and Rashid, 1978). Set
v()=EC*u| F)(). Letr = [j *u(a)dL(a) € R!. By iterated expectations and change
of variable, [ v (s) d prod i *)(s) = r.

Claim A: Measurably modifyingy on a set of progt*)-measure 0 if necessary, for all
seS, y(s)eNh@(s)N{veR: v<r).

The claim implies thap* is an equilibrium for(S;, ¥;);c;—playing u* gives each
the expected payoff;, andy (s) < r for all s € S implies that playing any; againstu*
must givei a payoff less than or equal tp.
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Proof of Claim A:1% Moving an infinitesimal amount of mass if necessary, we can guar-
antee thay is a 2- e-equilibrium such that for eache 7 and eachy; € A;, n;(a;) € *Ry 4,
that is, eachy; is *-full support.

ForaP; € A;, aP;-continuity set is a sef; with boundary E; satisfyingP; (0E;) = 0.
BecauseS; is a cHs, for every open neighborhodq of s;, there exists an opeR;-
continuity setH; such that; € H; c G;.11

Let Ccont be the class of finite open covers ty sets of the formx;<;G;, eachG;

a u;-continuity set. Pick an arbitrar§y € Ccontand note that everg,, € C is a produ™)
continuity set. Enumeraté asCi, ..., Cy. SetE; = clC1. If E, has been defined, set

n n

Ent1= cl (Cn+l\ U Em)\ U Ey. (13)
m=1 m=1

Let F¢ be the field generated by tig,s.

Define an element € *Ccont to have property(t) if for all non-emptyE € F¢, *E N
A#£QD. Let*C;romdenote the internal subclass®@kont With property(t). By construction,
for a standard” € *Ccont, €achE, is either empty or has non-empty interior. Therefore,
because non-empty open sets meet the densg,seid each € T belongs toA, *c;,m
contains all the sindard elements 6C¢ont.

For anyC € *C;ront, and anys € *S, let F¢ (s) be the smallest element &% that con-
tainss. SinceA meets each non-empty element®§, the following internal function
oc : A — *R! is well defined:

pcla)= Y *u(b)prodn)(b) / >~ prodmn) (). (14)

beFc(a) beFc(a)

The functiony¢ = °¢c¢ is a version ofE (°*u | o (F¢)) (see Anderson, 1982). Because
is boundedy/¢ is bounded.

Partially order the elements CS‘C;rom by ¢’ = C if for all s € *S, Fci(s) C Fe(s).
The collection ofyr¢, C standard, is a uniformly bounded martingale closed/hyence
converges inL! norm to v. Further, the union of any finite collection of standard
in C;rom is another standard element@ﬁom. Therefore, by Overspill, there is“afinite

*-open coverC’ e *C:{om of *S with the properties tha€’ > C for all standardC, that
prod(n)(C’(s)) > 0 for eachs € *§, and that*||¢c — *¥ |1 ~ 0. Therefore, the function
°pcr is a version ofyr () = E(°*u | F)(-). For alls € S, C'(s) is a subset of the monad
of s because’ refines all finite open covers ¢f. Lemma 3.2 implies that for all € S,
°pcr(s) € Nhd(s). Finally, because is a 2-e-equilibrium,e ~ 0, foralla € A, **u(a) <r

in R’. By Eq. (14), this implies that for all € S, °p¢/(s) <r. O

10 Two very different proofs are possible. The given proof uses Lemma 3.2 in forming a specific versgion of
from a nonstandard construction. Thisnstruction is crucial in the existence theorem of Section 5. There is a
second proof that appeals to Lemma 3.1 in showing tHi&i € Nh®) =1, thatu*(y < r) =1, and then uses

an everywhere measurable selection theorem to madify the remaining set of measure 0.

11 7o see why, letg be a continuous function frors; to [0, 1] such thatg(s;) = 0 andg(S;\G;) = 1. Such a
function exists by Urysohn’s lemma. The sgtsl(r) are disjoint and measurable,<Or < 1, so that at most
countably many of them have positivg-mass. For any satisfying P; (g~ 1(r)) = 0, H; = g~ 1(—o0, r) is an
openp; continuity set containing; .
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3.3. Properties of finitistic equilibria

Let E7(u) denote the set of Nash selection equilibria that arise as the standard parts of
e-equilibria,e ~ 0, of the internal game played with an exhaustive star-finite strategy set
A; C*T; and the utility functioriu.

Corollary 3.3.1. If T = S, each u; (-\t;) ismeasurable, and (yr, u*) € E7(u), then for all
ielandall s €S;, [svi(s)dprodu®)(s) > [gu;(s)dprodu*\s;)(s).

Proof. Pick arbitrary(y, u*) € Er(u) ands; € S;. Since theA; are exhaustive; € A;.
Letn be ane-equilibrium,e >~ 0, such thag.* = °(). By the definition ofe-equilibria,

f “ui(a) d prodi)(a) > / *ui(a) d prodn\s, ) (a) — e. (15)
A A

With L = L(prod(n)) denoting the Loeb measure dn= x;<; A;, the previous inequality
and the measurability of; (-\#;) implies that

/"*ui(a)dL(a)E/Mi(S)dpfodu*\&,-)(S). (16)
A S

By iterated expectations and change of variaqu;//i(s)dprocm*)(s) is equal to
[4*ui(a)dL(a). O

Metrize the set of utilities o', U7, with the sup-normp. Since A is compact, the
following is an upper hemicontinuity resuibr the finitistic equilibrium correspondence
(the simple proof is omitted).

Corollary 3.3.2. For fixed T', {(u, proj, Er (1))} isa closed subset of Ur x A.

The next section provides a thorough examination of the relations between compact
imbedding and selection for general sets of discontinuities. Since finitistic sets are exhaus-
tive, they avoid the selection problem. As wilbw be seen, they are also an indispensable
tool for examining selections.

4. Set-valued integralsof non-measurable functions

Implicit in the above approach to games with utilities defined on a dense subsets is a
theory of integration for non-measurable functions.

(1) Fix an arbitrary setX, and fieldX of subsets. Imbed it as a dense of a compact space,
X, choosing the spacﬁ so that any finitely additivee on X' has a unique extension,
[, to the Borelr-field on X.
(2) Any bounded@"—valued functionf on X can be identified with its grapli(x, f(x)):
xeXCX},inX xRk, Closing the graph gives a non-empty valued correspondence
@ = @ with compact graph ik x R¥.
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(3) Integrating the correspondengeor a correspondence derived framagainsii gives
a set-valued integral of againstu.

The two basic integral f andE¥ f, are called the convex and the extremal integral
of (a function) f with respect to (a measurg) Though here defined more transparently
through sets of extensions of measures, both have integral-of-correspondence representa-
tions,EL f = [co®@sdia andEY f = [ @/ di.

The next section discusses the Nash and the product integral in game theoretic contexts
where the domain has a product structure. The Nash integral is definetla®  dji.
Since®; C Nh@; C cody, EY f C EN f C EX f. As seen above, the Nash integral
yields a non-empty set of sekgan equilibria, which may be atréct subset of the selection
equilibria when cab is used, i.e. of the endogenous sharing rule equilibria.

Example 5.1 will show that selections, even fram, can involve correlation of the
players’ choices. Because of this, the whole concept of a selection equilibrium is larger
than need be, and the theory of integration of correspondences, being based on selections,
is not the correct tool for infinite normal form games. The product inte@}m‘, satisfies
Eﬁ,ff C E]‘f,f and cannot generally be represented as the integral of a correspondence.
However, it is the correct integral for the analysis of nfgs.

All four of the integrals,El f, EY f, E}, f, andE}, f, have*-finite characterizations,
though the characterization Eijf,f is a bit awkward. Table 1 organizes these observations
and provides a partial map.

Sections 4.1-4.4 treat the two basic integralé,f and EX f: Section 4.1 gives their
measure extension definitions and shows that they exist; Section 4.2 contains the com-
pactification/selection characteations; Section 4.3 contains thdinite characterizations;
using these characterizations, Section 4.4 covers the essential propeffesnd £, .

Section 5.1-5.2 cover the two integrals that require product space domains for their
definition, the Nash and the smaller product integEi},f andEj, f: Section 5.1 defines
the two integrals and gives their basic properties; Section 5.2 shows that all normal form
games with bounded payoffs have equilibria in finitely additive strategies when expected
payoffs are computed using the product integral.

Table 1

Integral Domain Correspondence, *-Finite Equilibrium
(notation)  restrictions  characterization characteriz. existence
Convex None Dy, Theorem 4.4 For some

(EX P Theorem 4.2 compact ganfes
Extremal None Dy, Theorem 4.4 Open

(EX f) Theorem 4.2

Nash Product NI £, Cor.5.1.1 Theorem 3.3,
(El’f,f) space Definition 5.1 et seq. all compact games
Product Product None, Definition 5.2  Theorem 5.2,
(Ef,ff) space Example 5.1 all compact games

@ (Simon and Zame, 1990).
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4.1. Notation, definitions, and existence

B¥(X) denotes the set of uniform limits of simplé-measurableR*-valued functions
on X, X a field of subsets oX. P(X) denotes the set of finitely additive probabilities on
X.Fixan f € B¥(2¥) and au € P(X).

M () denotes the set of extensionsiofrom X to 2X. By the Hahn—Banach extension
theoremM (1) is non-empty. The wedkiopology onP(2¥) is the weakest topology mak-
ing the mappings. — [ gdu continuous for alg € BX(2X). M(w) = {v e P(2¥): (Vg e
BY(X)[[ gdn = [ gdv]} expressesd (u) as the intersection of sets satisfying weak
continuous, linear equalities. SiNB&Y) is weak compactM (1) is compact and convex.
By the Krein—Milman theorem (e.g. Dunford and Schwartz, 1957, Theorem V&.4))
is the closed convex envelope of its necessarily non-empty set of extreme points.

Definition 4.1. Theconvex integral of f with respect to u is

Elf= { [ r@avw: ve M(m}, (17)
X

and theextremal integral of f with respect to  is

Etf= {/f(x) dv(x): ve extrM(u)} (18)
X

where extiM (i) denotes the set of extreme pointsiaf ).

If fe BXX), thenEY f = EY f ={[ fdu}. Theorem 4.5 (below) shows thate
BX(x) iff EX f is a singleton set for ajk € P(X). In general, we have

Theorem 4.1. EY f is a non-empty, compact subset of RF and EX f is its convex
hull.

The proofs for this section are in Appendix A.
4.2. Compactification/selection characterizations

L is a sup-norm continuouR*-valued function onB*(X) if and only if for all
g€ BAX), L(g) = [ gdu for some finitely additive measurg,, on X (e.g. Dunford
and Schwartz, 1957, Theorem IV.4.1). This parallel with integration of continuous func-
tions against countably additive Borel masss on compact spaces suggests that finitely
additive us can be understood as the trace of a countably additive measure on a larger,
compact spac# In this way, the theory of integration of bounded measurable functions is
subsumed by the theory of integration of continuous functions.

12 This identification of integrationfdounded measurable functions withégration of continuous functions

on compact spaces can be used to extend star-finite representation theorems for Radon measure spaces to general
measure spaces (Anderson, 1982). The trace interpretatioingsshe paradoxes that arise from the use of finitely
additive probabilities in stochastic gmess theory (Kingman, 1967), in the theory of choice under uncertainty
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The larger space, denot§d| BX(X), is called the Stone space fox, X). X is imbed-
dedinX | B¥(X) in such a fashion that evegye B*(X) has a unique continuous extension
to X | BX(X). This imbedding carrieg € P(X) to a countably additivg on X | BK(X).
The graph of a non-measuraljlec B¥ is a subset ok x R¥. Imbedding of in X | B¥(X)
carries each pointx, f(x)) to the corresponding point i | B¥(X) x R¥. Define the
correspondence to have as graph the closure of the graply af X | B¥(x) x R¥. The-
orem 4.2 shows that integral of the correspondehcagainst/i is exactlyEX £, and the
integral of co®, the pointwise convex hull o, is exactlyE~ f.

4.2.1. Background

The following constructions and results can be found in many standard sources, e.qg.
Ash (1972), Dudley (1989), or Dunford and Schwartz (1957).

B¥ = B¥(2X) denotes the set of boundékf-valued functions orX . Aside from some
duplication of coordinates3* = (BL)%, that is, anyg € B¥ can equally be regarded as a
k-length vector of points iBL. For any functiorg € B, let K, denote a compact set it
containingg (X). For anyG c B, eachr € X can be |mbedded as the vecfoe x g Ky
satisfying proj(x) = g(x) forall g € G. Let X | G denote the closure ofg = {&: x € X}
in the product topology. Let’ | G denote the trace of the Baire (i.e. the productield
on X | G. Taking G = BL(X) gives the spaceX | BL(X), X | BL(X)), known as the
Stone space faiX, X). Other than some duplication of coordinates, there is no difference
between the spacés| B1(X) andX | B¥(X).

For G C B1, let proj; denote the canonical projection 8f,cp1 K ONO X e K SO
that X | G is the image ofX | B! under proj;.. For G c B, let alg(1, G) denote the
smallest, sup-norm closed algebra containing the constant§ aBdchi € alg(1, G) has
a unique, continuous extensiog to X | G. Further, sup h(x) = max. g hc (%), and

any continuous function oX | G is the extension of some € alg(1, G). Any hg has a
canonical, continuous extensionfo| B! defined byfz(x) = fz@,(proj@(x)).

The linear mapping: <> hg gives an isometric isomorphism betwealy(1, G) and
CX|G) (both with the sup-norm topology). This means that continuous linear functions
onalg(1l, G) and continuous linear functions (6}’(}? | G) can be identified. Ifs = B(X),
the identification of continuous linear functions identifies the finitely addjtivie P(X")
with the countably additie Baire probabilitieg on (}A( | G, X | G). Each such Baire proba-
bility has a unique extension to the Boseffield, and this extension is a Radon measure. No
distinction will be made between Baire probabilities and their Borel extensions. Because
Borel probabilities that are not Radon will not be considered, there is no reason to distin-
guish between Baire and Borelfields. Foru € P(X), A7I(;l) denotes the set of countably
additive extensions gf on X | G to countably additive probabilities ok | BL. The iden-
tification delivers the following two equalities, valid for gl e BX and allu € P(X),

Etf= {/fdv veM(u)} and (29)

X|Bk

with finitely additive subjective probabilities (Stinchobe, 1997), and it clarifies the structure of social choice
possibility theorems in models infinitely many agents (Kirman and Sondermann, 1972; Armstrong, 1980, 1985).
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Ejjf:{ / fdv:ueextrzﬁ(,z)}. (20)

X|Bk

4.2.2. Compactification and selection is equivalent to extension and integration

For a givenu € P(X) there are many extensions td jiving rise to many possible
integrals of f € B¥. For any givenf ¢ BX(X), there are points in X | B*(X) where f
is not continuous. Taklng’ | B¥(X)-measurable selections from the possible limits at dis-
continuity points and then integrating the selection with respect to the unique exténsion
gives rise to many possible integrals of The content of Theorem 4.2 is that these two
approaches are equivalent.

Pick arbitrary f € B¥, and define the correspondente= @ from X | BX(X) to R¥
by its graph,

gr @ = {(projge v, (%), f(3)): %€ X | BY}, (21)

and define the correspondencefcdy defining cap (x) to be the convex hull o® (x).

There are three useful alternate representatiogs®f The firstisgr @ = X | G where

= {B*(X), (f,) 1h |mply|ng thatgr @ andgrco® are compact sets in the product
topology Second for eache X | Bk, cD(x) is the set of accumulation pomts of nets
f(%4) where probk(x) (%) converges t&t in X | BX(x). Third, for eacht € X | BX(X),
D (%) = f(Projyi, v, (®)).

Because the corresponden@sand cod have closed graphs, they are measurable in
the Borelo -field, and have measurable everywhere (m.e.) selections (Klein and Thompson,
1984, Definition 13.1.1 and Theorem 14.4.1)). The integratd ahd co? with respect to
[ are therefore the set of integrals of the m.e. selections,

/(bdﬁ: {/wd;l: Y is an m.e. selection from}, (22)

/coqb di = {/I//d;l: Y is an m.e. selection from c:b}. (23)

Theorem 42. EX' f = [@djiand EX f = [cod dii for all f € B* andall u € P(X).

The value® at a pointinx € )?\X is the set of accumulation points ¢fix®) asx®
converges ta: in X. Examples 2.4 (above) and 4.2 (below) show that theE§et can be
quite large even when is {0, 1}-valued andY separates points.

4.3. Sar-finite characterizations

If X ={@, X} is the trivial field, then for the unique € P(X’) and for any bounded,
E! fis cl f(X), the closure of the range ¢f. In particular,EY f can be any compact set
so thatE" f can be any compact convex set. It follows thagifis finite, thenEY f =
> g cl f(E)u(E) where the sum is ove in the partition ofX generated byt'. For finite
X, this yields:
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(1) E¥ f is asingleton set for ajk if and only if f is X-measurable, and
(2) forw e R¥, supw - EX f = SUPEY (w - f) =Y g SUP.cp(w - f(x)) - u(E) where the
sum is over thet in the partition generated by,

The aim is to extend these and other comparably simple, finite analyses to the general
case using-finite representations ¢t and 2¢.

4.3.1. The nonstandard setting

As noted above, we work in@saturated, nonstandard enlargement of a superstructure
V(Z) whereZ containsX andR, and is a cardinal greater than the cardinality df.2
k-saturation implies that any of the compactificationstofised above can be taken to be
a collection of equivalence ofX (Hurd and Loeb, 1985, Section 111.7, or Machover and
Hirschfeld, 1969, Section 9.4). For nearstandard*R¥, °r € R* denotes the standard
part ofr.

For anyY € V(Z), Py denotes the finite subsets Bf and* Py is the collection of
*-finite (read “star finite”) subsets ¢t. A *-finite Y is exhaustivefor Y if, forall y € Y,
*y € Yr (identifying y and*y). x-saturation implies that there are exhaustiainite
versions of any € V (Z).

4.3.2. The field-based nonstandard characterizations

Let F(X) denote the finite sub-fields &f, and pick an¥”’ €* Ppx) that is exhaustive
for F(X), and letXr be the*-field generated byt’. This guarantees that £ € X, then
*E € Xr. In a similar fashion, pick 8@ r generated by & that is exhaustive foF(2%).
Note thatt’ N )" belongs td* P x) and is exhaustive fdf (X').Therefore, there is no loss
in assuming, as is done here, thgt C Vr.

The internal set of extensions gf from Xz to Vr is

H('w) = {v e PVp): (YE € Xp)[v(E) =" w(E)]}. (24)
For f e B¥, * f varies by at most an infinitesimal over abyin the Yr-partition. There-
fore, for anyv € *P(Yr), for any collections:p, x}, of points inD, D in the Y -partition,
Y p fxp)v(D) =Y ¥ f(xp)v(D). This implies that the following integral is well de-
fined.
Definition 4.2. The M-integral of f € B* againsty € P()r) is defined by

S N WA ENE) (25)

where thef-sum is taken oveb in the Yr-patrtition, and for eaclb, xp € D.

The nonstandard definitions of the esthal and the convex integral are
Dé‘f:{M/fdv: veH(*u)}, and (26)

D\ f = {M/ f dv: vis an*-extreme point oiH(*u)}. (27)
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For any D in the Yg-partition of *X, let §p € *P(Vr) be the probability assigning
mass 1to ald € Yr containingD and mass 0 to all other sets. Transfer of the correspond-
ing statement for finite partitions proves the following.

Lemma 4.1. v is an *extreme point of H(*u) if and only if it is of the form v =
> g dp. n(E), wherethesumisover E inthe Xp-partitionand Dg C E isan element of
the YV -partition.

There are two convenient reformulations of Lemma 4.1:

(1) v is an*-extreme point ofH (*u) if and only if for all E in the Xg-partition and
A€ )Yr,v(AlE)isequal eithertoOorto 1 (aBg ¢, C A).

(2) v is an*-extreme point ofH (*w) if and only if for all A € Yr, *min{v(AAE): E €
Xr}=0. This is a finitistic version ofl(ipecki et al., 1979, Theorem 3).

Integrating selections also works in the nonstandard context.

Theorem 4.3. For f € B* and u € P(X), r € DY f (respectively r € DY f) if and only
if r =° [ gd*u for some Xr-measurable g with the property that for all x € E, E in the
Xp-partition of *X, g(x) belongstothe set * f(E) (respectively *co f (E)).

The next result shows that standard and the nonstandard integrals are equivalent. This
crucial result also shows that the nonstadd#efinitions are not dependent on the choice
of Xr or Yr because the definitions & f and E¥ f make no reference to nonstandard
constructions.

Theorem 4.4. For all f € B*andall u e P(X), EXf =DF fand E{ f = D! f.

4.3.3. Thefinitistic nonstandard characterizations

The finitistic approach replaces standard infinite sets with exhausfinite versions
of the same set. The definition of tiM-integral does the same.

Pick a pointcp €* X N D for eachD in theYr-partition, and lefX r be the set of p. By
replacing thes p with point masses onp, we can replac€* X, Yr) with (X, 7) where
7T is the collection of internal subsets &f-. Becaus€)r is exhaustive for 3, it contains
{x} for everyx € X, implying thatX ¢ is exhaustive foX. Therefore, replacing by an
exhaustive;-finite version of itself and considering tHefinitely supported measures in
H (*p) leads directly toEY f andEY f.

The next lemma shows that there may be mafipitely supported in H (*11), and that
the exhaustiveness &fy is only needed whep has atoms. Recall that a finitely additive
u € P(X) is non-atomic if for all £ € X and alla € [0, 1], there exists arE, € X such
thatu(E,) = au(E).

Lemma4.2. If uisnon-atomicand X  isa *-finite subset of X, thenthere existsa *-finitely
supported v € H (*) such that v(X ) =0.
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4.4. Basic propertiesof EX and EY
There are six basic properties of the convex and extremal integrals:

(1) They agree with usual integral for allif and only if f € BX(X), Theorem 4.5.

(2) For non-measurabl&!-valuedf, EX f is the convex interval between the upper and
lower integrals, Theorem 4.6. (Recall thaff f can be an arbitrary compact set.)

(3) Neither EX f nor EY f satisfy any Riesz-like representation theorem, Example 4.1,
though the integrals define continuous sub-linear mapping#¢A’), Theorem 4.7.

(4) It is sometimes possible to recoverand X from the mappingf — EY f. Theo-
rem 4.8 shows that if is countably additive and’ is a sigma-field, thep and X are
determined, up to null sets, by the valuesE}f f on the setS of those functions in
B¥(X) satisfying # f = 1.

(5) EY f is convex ifu is non-atomic, Theorem 4.9, andAf C 2%, then there is a
P(X) and anf € B! such thatEX f contains exactly 2 points, Theorem 4.10. Finally,

(6) Fubini theorems fail rather completely, Example 4.2.

4.4.1. Comparison with the usual integral
The first result is

Theorem 4.5. A function f € B* belongsto BX(x) if and only if for all 1 € P(X), EX f
isasingleton set.

4.4.2. Comparison with the upper and lower integrals
Non-measurabl®&!-valued functions are often bracketed above and below by an upper
and a lower integral. Specifically, thupper integral of f € B with respect to u is

IT(f, )= inf{/hdu: he BYX), and(Vx € X)[ f(x) < h(x)]}, (28)
while thelower integral of f € B1(2X) with respect to u is

I (f,)= sup{ f gdu: g € BX(X), and(vx € X)[g(x) < f(x)]}. (29)

Theorem 4.6. For f € B, EX f istheinterval [I_(f, u), IT(f, )]

For manyu, there are functiong € B! that are not inB1(X) and yet havd_(f, ) =
IT(f, ), e.g. whent is ac-field, u is countably additive, ang' fails to be in B1(x)
by a nhon-measurable-null set. This does not contradict Theorem 4.5 which concerns all
possibleg.

The following is an immediate consequence of Theorem 4.6.

Corollary 4.6.1. For f € B,

Ef=(V{yeR: (YweR)[I(w- i) <w-y<ITw- f.w)]}. (30)
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4.4.3. The failure of representation theorems

The most basic representation theorem for measures says that sup-norm continuous,
linear functionals orB1(X) and integration against finitely additive measurestocan be
identified. Compare

Example4.1. Let X = {a, b}, X = {#, X} so thatP(X) contains only one pointf (x) =
Ly (x), g(x) =1~ f(x). ThenE{ f = E¢'g = [0, 1] while E¢'(f + g) = {1}.

The extremal (resp. convex) integral is sup-norm continuous, linear along rays from the
origin, sublinear mapping to the classa@mpact (resp. compact convex) sets.

Theorem 4.7. The mappings f — EY f and f — E! f from B* to the class of com-
pact subsets of R* are continuous and satisfy EXAf = AEL f and EFAf = AEX f for
any A € R. The mappings are sublinear in the sense that for any w € R¥, the functional
LY(f):=maxXw -y :y e EY f} satisfies LY (f + g) < LY (f) + L*(g), and the func-
tional L, (f):=min{w-y:ye EY f}satisfiesL, (f +8) > Luw(f) + Lu(g).

4.4.4. Recovering u and X

It is sometimes possible to recovar and X from the mappingf — EX f. Let
Su C B1(2¥) denote the set of such that £~ f = 1. For ac-field X and a countably
additiveu, let XY* denote theu-completion ofX’, here regarded as the domainugfand
let X(S,) denote the minimad -field making all f € S, measurable. The omitted proof
of the following is a routine application of the monotone class theorem.

Theorem 4.8.If X isa o -field and p is countably additive, then X* = X'(S,,), and for all
Ae Xt Efly=EX1s={u(A)}.

In the presence of a countably additiv@®n ac -field, a.e. pointwise limits can be taken,
extending the previous result to measurable functions.

4.4.5. When EX f isand is not convex

A u € P(X) is non-atomic on X if for all € > 0, there is ant-measurable partition
Eq,...,E, of X suchthatu(E;) <¢,i =1,...,n. The following result should be inter-
preted with two observations in mind:

(1) for some fieldsY, e.g. the smallest field containing all finite subsets of an infinite set,
there are no non-atamprobabilities inP(X); and

(2) in general EY f may be an arbitrary compact set.

Theorem 4.9. For non-atomic  and all f € BX(2X), EX f = EV f.

If X =2%, thenE! f is a (convex) singleton set for apy.

Theorem 4.10. If X C 2%, then thereisa u € P(X) and an f € B1(2X) such that EY f
contains exactly two points.
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4.4.6. The failure of Fubini theorems

Whenu is a product measure, iterated integration of non-measurable functions does
not lead to the integral, and performing iterated integration in different orders may lead to
disjoint sets.

Example 4.2. First, the probability space: Lef = 1 x Sp, S1 = S> =N, X1 = X =28,

X the smallest field containing sets of the foffa x E2, E1 € X1, E2 € A2, let u1 and

w2 be purely finitely additive probabilities oA; and X> assigning mass 0 to all finite
sets, finally, letu = u1 x u2 be the product measure oti. Second, the function: let

R ={ro} U{r,: n € N}, ro # 0, be an otherwise arbitrary, bounded countable subset of
Rk, for eachn € N, let 7, be the line of points starting &, 21) with slope 1,7, =

{(n +m,2n+m): m € N}, let Ty be the part of the complement bjn% T, that is above

the diagonal, and sgft(x1, x2) = roly,(x1, x2) + Y, cn Fnlr, (X1, x2). FOr eachxy, f(x1, -)

is measurable, for each, f (-, x2) is measurable,

(Vx1 € S1) [Eé‘f(XL D)= {/f(m, 52) sz(Sz)} = {ro}} and (31)

(Vx2 € Sz)[Eé‘f(’,xz) = {/f(SL x2) dMl(Sl)} = {0}i|. (32)

From (31) and (32), depending on the order of integration one gets the disjoifitgeis
{0}. By contrast, ifu; andu, are both{0, 1}-valued, therE” £ is the closure oR U {0}.

ShrinkingXx; and X, in Example 4.2 gives more detail about iterated integration. Sup-
pose thaf is an arbitrary, bounded function dfy x X, in Example 4.2, but that’; and
X; are replaced by, and.F», the smallest fields containing the finite sets. 4} denote
the accumulation points qf(x1, N), A8 the accumulation points dfAs,: x1 € X1}, BS,
the accumulation points ¢f(N, x2), and B the accumulation points qufz: x2 € X2}.
Integrating selections frona +— A§1 against the uniqud, 1}-valued purely finitely ad-
ditive pn1 € P(F1) gives A8, integrating selections fromy — sz against the unique
{0, 1}-valued purely finitely additiveus € P(F2) gives BS. lterated integration ofg
againstu1 x u2 gives A8 or B8 depending on the order of integration. By contrast, with
w =1 x u2, E¥g is the set of accumulation points ¢ (x1(m), x2(m)): m € N} as
x1(m) — oo andx(m) — oo so thatA¢, B8 C EY g. For the functionf in Example 4.2,
Af # B, and both are one point subsetsAif .

5. Integralson product spacesand finitely additive equilibria

For this section, the spacg is replaced byl := x;<;T; where! is the finite set (of
players). The utilityfunction to be integrated is bounded and takes valué&‘ink = 1.
EachT; comes with a field/; of subsets. The field’ is replaced by the field = x;¢;7;
generated by the measurable rectangles. Because Nash equilibria involve independent ran-
domization, the relevant set of probabilitieisod C P(7),

Pprod= {M eP(T): n= proc((l/«i)iel)’ i € ]P(T:)} (33)
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The 7; are assumed to contain all singleton sets, 84dZ;) is assumed to contain the
utility sections!3

Si denotes‘.’T} | BL(T;), andS denotex;¢; S;. It can be shown thaf = T| BY(T), and
that the extensioni, of any i = prod((u;)icr) in Pprod to S is of the form prod(iii)icr)
where eachj; is the unique, countably additive, Borel extensionugfto S;. As theT;
are dense in thé;, this recovers the setting of selection equilibria for compact games of
Section 3.

If the 7; are not part of the specification of the game, ther= 27i can be used. If
7; = 27i the spaces; are quite large and there is no measure extension of the indivigual
being done to determine payoffs. Rather, it is only extension of(protthat is being done.
If 7; C 277, then measure of extension of both the individualand produ) determines
payoffs.

5.1. Integralsw.r.t. product measures
The two integrals considered here are the Nash and the product integral.

Definition 5.1. The Nash integral of f € B¥(27) with respect to i = prod((ui)ics) is

For anyu; € P(7;), m;(u;) denotes the wedkmonad ofu;, that is, the set of prob-
abilities v; € *P(7;) such that for allg € BX(7;), | [ gdu; — * [ *gdv;| ~ 0. Because the
finitely supported measures are wéalense ifP(7;), m; (u;) contains'-finitely supported
measures.

Definition 5.2. Theproduct integral of f e B¥(27) with respect to . = prod((u;)ie;) is

ELf= st{/ *f@ydprod(n;)i € I): ni € mi(ui), n; *-finitely supportet}. (34)
T

*

Theorem 5.1. For all f € B* and all u € Pprog, El f C EX f, and both integrals are
non-empty and compact.

Proof of Theorem 5.1. Fix arbitrary f € BX andu € Pprod- Becausdiff,f is the integral of

a non-empty valued correspondence with a compact graph, it is non-empty and compact.
By definition, allr € Eﬁf are the standard part gifT *f(@)dprod(n;); € I for some

vector of*-finitely supported); € m;(u;). For each € I, let A; be a finitistic version of;

supportingy; . Picka; € A; such that); (a;) € *R. Modify n; by taking an infinitesimal

proportion ofy; (a7) and dividing it evenly oven; so that for each; € A;, n;(a;) € *R.

After modification, [ * f dn moves by at most an infinitesimal. Using such a vector of

strictly positive(n;); € I, ClaimA (in the middle of the proof of Theorem 3.3) shows that

r = [ ¢ diz for some everywhere selectignfrom Nh@. This implies that € [ Nh® du.

13 These assumptions guarantee that play of peird<T; are integrable and that eack 7 has a finitely additive
best response to every pure strategy profier .
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To show thatE’, f is non-empty and compact, for any functigne BY(T)) ande¢; €
R4+, let Ni(u;: gi, €i) be the internal set df-finitely supported); such that [ g; du; —
[ *gi dn;| < €. The standard part of the internal dgt* fdn;: n; € N;j(ui: gi, €)} is
closed, hence compact. The collection ofssets has the finite intersection property.
E), f is the non-empty, compact intersection of this collection compact sets.

The inclusion in Theorem 5.1 can be stribit a two player game, consider the Nash
hull at two points, Nh® (s1, s2) and Nhd (s1, 12), s2 # t2. By Lemma 3.2, these two sets
are formed by having independent randomizatiofi-binite subsets of the product monads
m1(s1) X ma(s2) andm1(s1) x ma(t2). If independence is to be respected, then the play of
1 should be the same in both of these product monads, it should not depend on 2's choices.
Selections have no such restrictions.

Example5.1. I ={1,2}, T1 = T» = N, 73 is the smallest field containing the singleton
sets, and’z is the smallest field containing the singleton sets and the set of even numbers.
w1 is the unique finitely additive probability assigning mass 0 to all finite getss the
unique finitely additive probability assigning mas&1o the evens and mass 0 to all finite
sets. To be integrated against prod(ii1, (2) is
0,0 if 11 # 12,
11, 12) = . 35

(. 12) { (+1, (=D iftr=10. (35)
For allt’ € T, the mappings — f(¢'\t;) are non-zero at only one point, hence belong to
BY(T).

ClaimB: (+1,0) € EX f, and
Claim C: (+1,0) ¢ E), f.

Proof of Claim B: First, note thatS; = 71 U {oo} is the classical one-point compacti-
fication of Ty, while S2 is T2 U {ocoeven 0odd}, With coeven being the limit of all even
sequences going to infinity amdqqqis the limit of all odd sequences going to infinity. Sec-
ond, Nh@ ¢ (00, ooeven) is the line segment joiningd, 0) to (41, +1) and® ; (oo, 00even
contains the point+1, +1). In a similar fashion, Nkp s (oo, 0oodd) is the line segment
joining (0,0) to (4+1, —1), and @ (o0, coodd) CONtains the point+1, —1). Third, i1

iS 8c0, poiNt mass oo, while fip iS 1/2800een + 1/2000,44- BECause it is equal to
1/2(+1,4+1) + 1/2(+1, —1), the point(+1, 0) belongs tof @ s d prod i1, f12).

Proof of Claim C: First, note that &-finitely supported;; belongs ton(u1) if and only
if n1(A) >~ 0O for all finite A C N, while a*-finitely supported;, belongs tana(u2) if and
only if n2(A) ~ 0 for all finite A € N andnz(* Evens) >~ 1/2 whereEvens is the set of
even numbers. Second, for a point of the farai, ) to belong toEﬁf, it must be the case
that prodn1, n2)(* D) >~ 1 whereD is the diagonal off1 x T>. Third, the only way that
prodni, n2)(*D) ~ 1 can happen is if both; andn, put mass infinitesimally close to 1
on the same point, call it If r belongs tG* Evens, thenf*fd prodni, n2) >~ (+1, +1),
otherwise it is equal to+1, —1).
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Comment: Example 5.1 shows that even selections fgmnvolve spurious correla-
tion. To reach the utilitieg+1, +1), both players must be playing evens, to reach the util-
ities (+1, —1), both players must be playing odds. When player 2 randoniiiz&s 1/2)
over evens and odds, and player 1 is playing independently of player 2, then it is impossi-
ble to come anyplace close to the paitl, 0) = 1/2(+1, +1) + 1/2(4+1, —1). Integrating
@ ; allows choice of any selection. The selection that pick$, +1) and(+1, —1) to in-
tegrate against player eb by 1 is allowing 1's choice of even or odd to depend on 2's
choice.

It is easy to make a game out of Example 5.1 in which the multigine, @) has
equilibria involving too much correlation. Whether or ngt(S, @) always has equilibria
is an open questio:

Becausa s C Nh@; C cody, EY f C Ey f C EX f.Ingeneral £}, f does not it into
this scheme. Wheyi has two (or more) discontinuity points dhthe logic of Example 5.1
shows thatE’ f need not be a subset &f, f. By contrast,

Corollary 5.1.1.1f £ hasonediscontinuity pointin S, thenfor all u € Pprod, E}, f = EN f-

Proof. Fix arbitrary i € Pprog @andr € E]’f,f. By Theorem 5.1, it is sufficient to show
thatr € ng. Let s° denote the discontinuity point gf on S. If fi(s°) =0, then the a.e.
continuity of f delivers equality of all of the four integrals. The remaining case has each
5,‘ = ﬂ,(sf’) > 0.

Pick arbitrary star finitely supportef) € m; (11;) so that the Loeb measurg;) satis-
fiesL(n;)(m;(s?)) = &;. The proof will be complete if there is a star finitely supported mod-
ification, n;, of eachn; such that ~ [* fdprod(n;)ier). Lemma 3.2 expresses; (s°)
as the standard part of the integral*gf against a product measure, p¢og);c;), con-
centrated on the monad of. Let E; be an internal set such thatn;)(E; Am;(s?)) = 0.
Definingn; (-) = (1 —8;)n;(- | E{) + 8;v;(-) gives the requisite modification.0

Combined with Lemma 3.2, Corollary 5.1.1 shows the essential difference between the
product integral and the Nash integral—the Nash integral fails to be a product integral
because it allows the marginalsmfto depend orgs;) j«;.

5.2. Finitely additive equilibria

Fix a gamel” with player setl, with eachi € I picking an action in the sdf;, and with
utility function u : T — R’. Theorem 3.3 shows the existence of a selection equilibrium
(¢, u*) for the multigamel'r (S, Nh@). The functiony is a carefully chosen version of
E(°*u | F) where:

(1) F is the smallest -field of subsets oA = x;<;A; making the product standard part
mapping measurable, where eathis *-finite and exhaustive fdf;,

14 My guess is no, this despite the observation that thistenxce of (so) many selections makes proving non-
existence in any particular example quite difficult.
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(2) expectation is taken with respéotthe Loeb measure generated by grod
(3) nis a*-full supporte-equilibrium,e >~ 0.

By construction of theS;, eachu can be identified with a unique finitely additive
probability v € IP(7;). Hence, if the integral of with respect to a vectar € x;¢; A(7;)
is understood a;és ¥(s)dprod?d)(s), then Theorem 3.3 contains a general equilibrium ex-
istence result for arbitrary games with bounded payoffs and the Nash integral. The payoffs
of the finitistic equilibria in Theorem 3.3 cldgibelong to the product integral. Renormal-
izing the*v 7. convex combinations of delivers the next result, which shows that when
players consider deviations, the payoffs to the deviation will also be product integrals.

Theorem 5.2. For any v € Pprog, [ ¥ (s) d prodd)(s) belongsto Eju.

Whenu € B! (T) so thatE  u is a singleton set for al, the game is nearly compact and
continuous. For such games, Harris et al. (in press) (the companion piece to this paper) and
Marinacci (1997) contain a finitely additive dtjbrium existence proof. Harris et al. (in
press) shows that such games are equivalent to games with compact, metric space strategy
sets and jointly cotinuous utility functions.

6. Summary

This paper develops a theory of equilibrium in normal form games with bounded utili-
ties. The theory makes no topological or measure theoretic assumptions on the structure of
the game. This is appropriate for a theory that is to be applied to the normal forms of in-
finite extensive form gamés.Exhaustive star-finite sets provide a direct interpretation of
the equilibrium strategies. Compactification and selection, or finitely additive probabilities
and the theory of integration for non-measurable functions, provide indirect interpretations.

Exhaustive star-finite versions of a sEétcontain everyx in X, but behave logically
as if they were finite. There is a surjection from any exhaustive version of X get
any compactification ok. For infinite normal form games, the surjection can lose payoff
information. As often happen with lost information, it reappears as correlation between
players’ actions.

While selection of limit utilities can replace the information lost in the surjection, it
has other, less desirable qualities. It can lose strategically important information, such as
the existence of a dominant strategy, and it can encode spurious information. Selection
equilibria provided a huge advance in the gatity of the games covered by theory, and
they provide interpretational tools for finitistic equilibria. However, their drawbacks mean
that they should not, in general, be used as an independent solution concept.

Drawbacks aside, selection contains a set-valued theory of integration for non-
measurable functions intimately tied to the integration of correspondences. Only a limited

15 see Aumann (1964, 1961) for the measurability problems for infinite extensive form games.
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form of correlation appears in finitistic equilibria. The limits on the forms of correlation
reappear in the distinctions between the different integrals.

Finally, examples demonstrate that the study of infinite extensive form games will be a
considerably more subtle undertaking than the present study of infinite normal form games.
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Appendix A. Proofsfor Section 4

Proof of Theorem 4.1. The compactness and non-emptinessf@j.), the Krein—Milman
theorem and the continuity of integration in the weaspology implies tha&X f is non-
empty and compact, and is equal to the convex hull 6% . The compactness @’ 1 will
follow from Theorem 4.2. O

Proof of Theorem 4.2. Pick arbitrary f = (f,»)ﬁ.‘:1 e B¥ andu € P(X). It is sufficient to
prove thatEy' f = [ & djx because the convex hull ¢f® dji is equal tof co® dix and the
convex hull of EY fis EI f.

SetG = B¥(X), G’ =GU({f;: i =1,...,k}. The graph ofp is X|G. M@, the set
of (Radon) extensions qi from X |G to X | G, is the set of probabilities on X|G
having marginal equal ta on X | G. Any measurable functioa from X | G to the Borel
probabilities (with the Boreb -field generated by the we&kopology) onxl: Iy, with
the property thap (x)(® (x)) = 1 for i-almost allx gives rise to a probability € 1\71(;1)
defined by its values on measurable rectangles,

vy (A x B) =/¢(x)(B)dﬁ(x). (A1)
A

Further, anyv € M(ji) gives rise to such a functiop,, e.g. (Dudley, 1989, Corol-
lary 10.2.8). Identifyingps that vary only on sets gI-measure 0, the mapping back and
forth betweervs andys is linear, one-to-one, and onto. This means that the extreme points
of M (1) are the extreme points of the sety.

The extreme points of the set of probabilities @rix) is the set of point masses on
@ (x). This implies that the extreme points of the setysf are the functions that, on a
set of x with fi-probability 1, havep(x) being point mass on a point(x) € @ (x). For
any extreme point of 1\71(;1) and associategh such thatp, (x) is point mass ony (x),
[fdv=[yx)da. O
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Comment: Becausg @ dji is a closed set (Klein and Thompson, 1984, Theo-
rem 18.3.2) EX f is compact, completing the proof of Theorem 4.1.

Comment: There is a more elementary (larder) inductive construction of the func-
tion ¢ in the proof. It uses the characterization of extreme poinfd i) given in (Lipecki
et al., 1979, Theorem 3), which shows thiait an extreme point of the extensions if and
only if for all A € 2¥, inf{u(AAE): E € X} = 0. Taking f to be the indicator of a set
in the Theorem 4.2 and using properties lfpen sets in Stone spaces gives an alternate
proof of this characterization of extreme points.

Proof of Theorem 4.3. The proof for D/ f following directly from the proof forD} f.
Suppose that € D% f. By definition, there exists at-extreme pointv of H(*u) and
a collection of pointsxp € D, D the elements of thé/g-partition, such that- =°
> f(xp)v(D). By Lemma 4.1, for eaclt in the Xr-partition,v(Dg) > O for at most
one elemenDy C E of the Yg-partition. Therefore, changing the value™of on other
D, C E does not changg ", f(xp)v(D). For x € E, E in the Xr-partition, define
g(x) =* f(xp) so thatg(x) €* f(E). Because € H(*n), [ gd*u= 3" f(xp)v(D).

Now pick anXr-measurable such that for allx € E, E in the Xp-partition of * X
g(x) €* f(E). For eachE, pick aDg C E, Dg in the Yp-partition such thatDg con-
tains a pointxg with * f(xg) = g(x). This can be done because the C E partition
E. By Lemma 4.1, the probability =) §p,*u(E) is an extreme point off (*1). By
construction,/ gd*u~M [ fdv. O

Proof of Theorem 4.4. The equality of convex integrals follows directly from the equality
of extremal integrals.

Pick an extreme point of H (*1), and define the probability € P(2¥) as the weak
standard part ob, that is, byy (4) =° v(*A) for A € 2. Restricted toY, y = u so that
y € M(u) (is an extension oft). To show thatD} f C EY f, itis sufficient to show thay
is an extreme point aff ().

Pick an arbitraryA e 2X. By (Lipecki et al., 1979, Theorem 3), it is sufficient to show
that for alle € R4, there exists atk. € X such thaty (AAE¢) < €. Define the internal
function ¢ : *F(X) — *Ry by ¥(X’) = mingcy v(*AAE). Sincey achieves infini-
tesimal values oriF, Overspill implies that it achieves values less than any R+
on the standard elements 8F. Since A € 2%, for any standardt’ in *F, ¢ (X') =
mingecxr ¥ (AAE), completing the first half of the proof.

From Theorem 4.2EY f = [ @ dji where & is the countably additive extension of
p to X | BL(X) and the graph ofp is the closure of the e sefi(x, f(x)): x € X} in
X | BL(X) x RF. Letr = [y dji € [ ®dj wherey is a X-measurable, everywhere
selection frome. By Lusin's theorem, for every € R, there exists a continuous
on the compact Hausdorff spaéie| BY(X) such thati({he = ¥}) > 1 — €. Sinceh.
is continuous, it is of the fornk for someh € B¥(X). Since B¥(X) is the set of uni-
form limits of S|mpIeX measurable functions, for eveeye R, there is a simple,
X-measurable. such thati(|g. — V| > €) < €. BecauseXr is exhaustive, the Extension
Principle implies that for some ~ 0, there is an¥r-measurablet-simple g = g such
that*i(|*g —* ¥| > €) < €. Because) is an everywhere selection frod, for eachx in
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eachE in the Xp-partition,*yr(x) €* f(E). Therefore, except possibly for a set Bfin
the X’z -partition having infinitesimal mass, eaghE) € *R* is infinitesimally close to the
set* f(E). By Theorem 4.3} [ gd*u € DY f. Since [ gd*u~ [*yd*i= [y di=r,

r € DY f, completing the proof. O

Proof of Lemma 4.2. For every standard finit& r and every standard finite collection
E1,..., E,, of elements ofY, there is a standard that is finitely supported, satisfies
v(Xfr) =0, andv agrees withu on E1, ..., E,. By saturation, this is sufficient.

Proof of Theorem 4.5.1f f € BX(X), then for allv e M(w), [ fdv = [ fdpu, so that, by
definition, EX f = E¥ f ={[ fdu}.

Suppose now thaf € BX\ B¥(X). Pick Xr andYr as above. For any finite subfield
S € F(X), define the oscillation of overS by

osc(f, S) =sup{ll f(s) — f@)Il: 5,1 € E, E intheS-partition of X }. (A.2)

Becausef € B¥, *osc(* f, Vr) ~ 0. Becausef ¢ BX(X), there exists am € R, such
that*osc(* f, Xr) > 2¢. Pick anE in the Xg-partition containing points1, xo such that
°II* f(x1) — * f(x2)|| > € and pick disjointD1, D2 C E in the Yp-partition containingc

andx;. Definep € P(X) by u(A) =0,1 asE ¢, C *A. The two*-extreme pointép, and
8p, of H(*1) have integrals againsyf that differ by more thaw, implying thatE” f is

not a singleton set. O

Proof of Theorem 4.6. Becausd_(f, u) = —I7(— f, u), it is enough to show that
IT(fip) = sup{M / fdv: v is an*extreme point oiH(*u)}. (A.3)

For eachx € E, E in the Xr-partition, defineh(x) =* sup.cr f(x). BecauseXr is
exhaustive,/ " (f, u) >~ [hd*u. For eachE, pick Dg in the Yg-partition such that
f(DEg) ~ h(E). The probabilityy =Y 8;EM(E) achieves the supremum on the right-

hand side of (A.3), and [ fdv =~ [hd*u.

Proof of Theorem 4.7. Suppose thaf” — f uniformly. For each € P(2%), define the
weak: continuous functior.” (v) on by [ /" dv. The functionsL” converge pointwise to
the continuous functiod.(v) = [ f dv, so the convergence is uniform over the compact
setP(2X), proving the continuity statement. Directly from the definitioR§\f = LEY f
andEMAf = EN f.

Fix arbitraryw € R¥. Defineh s € *B*(Xr) by hf(E) = *supw - * f(x): x € E} for
E in the X’p-partition, with parallel definitions fof, and i, ,. The standard part of
* [hyd*pis equal toL™ (f), and the same is true fgrand f + g. For eachE, h 4, (E) <
hy(E)+hg(E)sothatl” (f+g) < LY(f)+L"(g).SinceL™ (f)=—L_,(f), thisalso
proves the last statement of the theorerm

Proof of Theorem 4.9. This follows from the*-finite Lyapunov theorem in Loeb (1973), or
from the convexity of/ F dii when is non-atomic (Klein and Thompson, 1984, Propo-
sition 18.1.1).
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Proof of Theorem 4.10. Let A be a subset ok that is notinX’, and letf (x) = 14 (x). For
anyS e I, the partition generated iy and A is strictly finer than the one generated®y
By transfer, there exists anin the Xr-partition such that N"* A £ @ andE N (*X\*A) #

@.ForB € X, definew(B) =0, 1 asE ¢, C *B. Becausé/r is exhaustive, it contairnsA,

because it contain®r, it containsk. Therefore, thé)r-partition containdg C E N* A

andDy, C EN (*X\*A). Since*(E) = 1, the extreme points off (*1) are of the form
8p for someD C E in the Yr-partition. The integral off against any suchy, is either O
or 1, the integral againsp, is 1, the integral against,, is 0.

References

Anderson, R.M., 1982. Star-finite representatiohmeasure spaces. Trans. Amer. Math. Soc. 271, 667-687.

Anderson, R.M., 1991. Nonstandard analysis with aapions to economics. In: Hildenbrand, W., Sonnenschein,
H. (Eds.), Handbook of Mathematical Econias) vol. 4. North-Holland, New York, NY.

Anderson, R.M., Rashid, S., 1978. A non-standard chariaetion of weak convergence. Proc. Amer. Math.
Soc. 296, 327-332.

Ash, R.B., 1972. Real Analysis and Probability. Academic Press, New York, NY.

Aumann, R., 1961. Borel structures for function spaces. lllinois J. Math. 5, 614—-630.

Aumann, R., 1964. Mixed and behavior strategiemfimite extensive games. Ann. Math. Stud. 52, 627-650.

Armstrong, T.E., 1980. Arrow’s Theorem with rested coalition algebras. J. Math. Econ. 7, 55-75.

Armstrong, T.E., 1985. Precisely dictatorialcgal welfare functions. J. Math. Econ. 14, 57-59.

Dasgupta, P., Maskin, E., 1986. The existence of eqilib in discontinuous economic games, I: Theory. Rev.
Econ. Stud. LII, 1-26.

Dudley, R., 1989. Real Analysis and Probability. Brooks/Cole Publishing, Pacific Grove, CA.

Dunford, N., Schwartz, J.T., 1957. Linear Operat Part I: General Theory. Wiley, New York, NY.

Fan, K., 1952. Fixed point and minimax theorems ically convex topological linear spaces. Proc. Nat. Acad.
Sci. USA 38, 121-126.

Fudenberg, D., Levine, D., 1983. Limit games and limit equilibria. J. Econ. Theory 38, 261-279.

Glicksberg, I.L., 1952. A further generalization of thekgi#ani fixed point theorem, with application to Nash
equilibrium points. Proc. Amer. Math. Soc. 3, 170-174.

Harris C. J., Stinchcombe, M. B., Zame, W. R., inggeNearly compact and continuous normal form games:
characterizations and equilibrium existence. Games Econ. Behav.

Hurd, A.E., Loeb, P.A., 1985. An Introduction to Nonstandard Real Analysis. Academic Press, Orlando.

Kingman, J.F.C., 1967. Additive set functions and the theory of probability. Proc. Cambridge Philos. Soc. 63,
767-775.

Kirman, A.P., Sondermann, D., 1972. Arrow’s theorem, ynagents, and invisible dictators. J. Econ. Theory 5,
267-277.

Klein, E., Thompson, A.C., 1984. Theory of Correspondences. Wiley, New York, NY.

Lindstrem, T., 1988. An invitation to nonstandard analyBis Cutland, N. (Ed.), Nonstandard Analysis and its
Applications. Cambridg&niv. Press, Cambridge.

Lipecki, Z., Plachky, D., Thomsen, W., 1979. Extens of positive operators andteeme points, I. Colloquium
Mathematicum XLII, 279-284.

Loeb, P.A., 1973. A combinatorial analog of Lyapunoy®gdrem for infinitesimally generated atomic vector
measures. Proc. Amer. Math. Soc. 39 (3), 585-586.

Loeb, P.A., 1979. Weak limits of measures and the standard part map. Proc. Amer. Math. Soc. 77, 128-135.

Machover, M., Hirschfeld, J., 1969. Lectures on nonstandaaldysis. In: Lecture Notes in Mathematics, vol. 94.
Springer-Verlag, Berlin.

Marinacci, M., 1997. Finitely additive and epsilon Nash equilibria. Int. J. Game Theory 26 (3), 315-333.

Nash, J.F., 1950. Equilibrium points inperson games. Proc. Nat. Acad. Sci. USA 36, 48—49.

Simon, L.K., 1987. Games with discontious payoffs. Rev. Econ. Stud. LIV, 569-597.

Simon, L.K., Zame, W.R., 1990. Discontinuous gamed endogenous sharing rules. Econometrica 58, 861-872.



M.B. Stinchcombe / Games and Economic Behavior 50 (2005) 332—365 365

Stinchcombe, M., 1997. Countably additive subjective probabilities. Rev. Econ. Stud. 64, 125-146.
Vives, X., 1990. Nash equilibrium with strafie complementarities. J. Math. Econ. 19, 305-321.



