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Abstract

Infinite normal form games that are mathematically simple have been treated [ Harris, C.J.,
combe, M.B., Zame, W.R., in press. Nearly compact and continuous normal form games: cha
izations and equilibrium existence. Games Econ. Behav.]. Under study in this paper are th
infinite normal form games, a class that includes the normal forms of most extensive form
with infinite choice sets.

Finitistic equilibria are the limits of approximate equilibria taken along generalized sequ
of finite subsets of the strategy spaces. Points must be added to the strategy spaces to
these limits. There are direct, nonstandard analysis, and indirect, compactification and se
representations of these points. The compactification and selection approach was introduced
L.K., Zame, W.R., 1990. Discontinuous games and endogenous sharing rules. Economet
861–872]. It allows for profitable deviations and introduces spurious correlation between p
choices. Finitistic equilibria are selection equilibria without these drawbacks. Selection equilibria
have drawbacks, but contain a set-valued theory of integration for non-measurable functions
linked to, and illuminated by, the integration of correspondences.
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1. Introduction

A normal form game (nfg),Γ = (Si , ui)i∈I , is specified by a finite player set,I , strategy
sets,Si , i ∈ I , and bounded utility functions,ui : S → R, S := ×i∈I Si . This paper develop
a theory of Nash equilibrium for nfgs specified at this level of generality. There a
topological or measure theoretic assumptions.

Compact and continuous nfgs are the starting point for the study of infinite game
nfg is compact and continuous if eachSi is compact and eachui is jointly continuous. The
companion piece to this paper developed thetheory of nfgs that are nearly compact a
continuous (ncc).

1.1. Games that are nearly compact and continuous

A gameΓ is ncc if it is possible to densely imbed eachSi in a compact space,̂Si , in
such a fashion that all of theuj have jointly continuous extensions to the product×i∈I Ŝi .
A gameΓ is integrable if eachui is integrable with respect to all products of finitely a
ditive probabilities. A gameΓ is uniformly finitely approximable (ufa) if eachSi can be
approximated by finite sets using the Fudenberg and Levine’s (1983)“most utility differ-
ence it can make to anyone” pseudo-metric,

dUi
(si , ti) = max

k∈I
sup
s∈S

∣∣uk(s\si ) − uk(s\ti )
∣∣. (1)

The companion piece to this paper, Harris et al. (in press), showed that the thre
ditions, integrability, being ufa, and being ncc, are equivalent. This paper studies nfg
fail to be integrable, ncc, or ufa, a class that includes the normal forms of most ext
form games with infinite choice sets.

1.2. Extensive form games

Suppose thatΓ is the normal form representation of an extensive form game in w
player 1 makes a picks1 in an infinite setS1, s1 is subsequently observed by player 2, w
then picks an actiona in a setA = {a, b}, and that player 2’s choice ofa or b always makes
at least a utility difference of at least 1 to some player. Most extensive form games in
at least this much dynamic interaction between players. While it is not at all clear
set of strategies should be considered for player 2, a minimal requirement is that th
of functions,S2 ⊂ AS1, constituting player 2’s strategy set, must be dense in the pro
topology.1

The denseness implies that for alls1 �= t1 ∈ S1, there exists ans2 ∈ S2 such thats2(s1) �=
s2(t1), implying thatdU1(s1, t1) � 1. Also, if s2 �= t2 iff there exists ans1 such thats2(s1) �=
t2(s1) so thatdU2(s2, t2) � 1. The normal form of this game is therefore not ufa. By
cited equivalence result,Γ is neither integrable nor ncc.

1 This is equivalent to 2’s strategies allowing arbitrary patterns of response at all finite subsets ofS1. More
explicitly, if F1 is a finite subset ofS1, then for every vectorx2 ∈ AF1 , there is a strategy inS2 that agrees with
x2 at the points inF1.
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1.3. Finitistic equilibria

A generalized sequence (net),Aα
i , of finite subsets ofSi converges toSi if for all finite

Fi , Fi ⊂ Aα
i for all sufficiently largeα. Finitistic equilibria are the limits of approxima

equilibria taken along convergent generalized sequences of finite subsets of the s
spaces. Points must be added to the strategy spaces in order to represent the limits
sequences.

The exhaustive star-finite sets of nonstandard analysis, compactifications, and
additive strategies are three methods of adding these limit points. For ncc games, th
methods are equivalent (Harris et al., in press). They are not equivalent for the c
games considered here.

An exhaustive star-finite version of a setX contains everyx in X but behaves logically
as if it were finite. There is a strong similarity between such sets and the generaliz
quences of finite sets,Aα

i , that eventually contain every point inSi . Theorem 3.2 will show
that the exhaustive star-finite sets of nonstandard analysis provide direct representa
finitistic equilibria.

Any compactification of a space can be represented as a collection of equivalen
classes of any exhaustive star-finite set.2 Detail is lost in the many-to-one surjection fro
exhaustive sets to compactifications. This loss of detail makes the representation iss
considerably more complex, requiring selection.

1.4. Selection equilibria

Compactification delivers a game with compact strategy sets and utilities defin
dense subsets, the setting of selection equilibria (Simon and Zame, 1990). Selection eq
libria are defined as a pair(v,µ) wherev is a utility function andµ a strategy profile. The
utilities, v, are equal tou at continuity points ofu.3

If s is a discontinuity point ofu, the utility v(s) must belong to the convex hull of th
set of possible limit utilities in the neighborhood ofs. The choice of the value ofv(s) must
contain the detail lost in moving from star-finite sets to compactifications.

Selection equilibria can play strictly dominated strategies, andmay introduce spuriou
correlation between players’ choices. Some correlation is needed to replace the lost det
The spurious correlation may come from the use of the convex hull, and it may come
the process of selection itself. Theorem 3.3 and its corollaries show that finitistic equ
are selection equilibria without these drawbacks. Drawbacks aside, selection equilib
contain a set-valued theory of integration for non-measurable functions.

2 A brief treatment of the compactifications of a spaceX using equivalence classes of∗X can be found in
Anderson (1982). Machover and Hirschfeld (1969) and Hurd and Loeb (1985) contain more detailed treatme
Replacing∗X with an exhaustive star-finite set changes nothing in their constructions.

3 For ncc games, every point is a continuity point.
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1.5. Finitely additive strategies and integration

Finitely additive probabilities are equivalent to countably additive probabilities on com-
pactifications. The games under study fail to beintegrable. The expected utilities achieve
by selection provide a set-valued definition of the integral of non-measurable function
Since there are many selections, the integration theory is tightly linked to, and illumi
by, the integration of correspondences.

1.6. Roadmap

The next section provides an overview through a number of examples. The follo
gives and proves the results relating finitistic equilibria and selection equilibria. Th
major interpretational results are Theorem 3.2, which shows that the star-finite sets o
standard analysis provide a direct interpretation of finitistic equilibria, and Theorem
which shows that finitistic equilibria can be understood as selection equilibria in compac
fications. Subsidiary results in this section establish that finitistic equilibria do not hav
drawbacks that selection equilibria usually have.

The set-valued theory of integration for non-measurable functions contained in t
lection approach is covered in Section 4. This background is used in the study of fi
additive equilibria, the content of Section 5.

2. Overview of the major issues and results

Systematic study of the equilibrium existence question for infinite nfgs began with
(1952) and Glicksberg (1952), who proved that compactness and metrizability of theSi

and joint continuity of theui guarantee the existence of Nash(1950) equilibria. Continuity
can be relaxed in a number of directions, assuming special “diagonal” discontinuities (e.
Dasgupta and Maskin, 1986; Simon, 1987), or special monotonicities (e.g. Vives, 1990
Such approaches lead to deep insights into thestructure of useful classes of games, but
not lead to a general theory of infinite games. By contrast, selection equilibria (Simo
Zame, 1990) exist for compact metric spacegames with arbitrary utility functions.

The first example of this section shows that compactification of individual stra
spaces is easy, but a jointly continuous extension of the utilities is generally impossible.
This leads to the definition of selection equilibria. The second example demonstrat
selection equilibria may play a strictly dominated strategy. The definition of finitistic e
libria makes it clear that they do not have this drawback. The third example demon
how correlation arises when representing finitistic equilibria by selection. The fourth e
ple demonstrates one of the two ways in which selection can introduce spurious corre
The final example suggests the centrality of normal form analyses of infinite extensive
games.
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2.1. Compactness of the strategy spaces

With the addition of some limit points, compactness of strategy spaces can be g
teed, though joint continuity ofthe utilities may beimpossible.

Example 2.1 (An infinite coordination game). Γ is specified byI = {1,2}, Si = N, and the
symmetric utility functions,

ui(si , sj ) =
{

1 if si = sj ,

0 if si �= sj .
(2)

Playeri ’s utility sections are the functionsUi = {si �→ uk(s\si ): k ∈ I, s ∈ S}. Because
limsi↑ uk(s\si ) exists (and is identically equal to 0 in this simple game) for alls, the sec-
tions continuously extended to the one-point compactification,Ŝi = N ∪ {∞} with e.g. the
metricdi(si , sj ) = |e−si − e−sj | with e−∞ := 0. TheSi are dense in the compact spaceŜi ,
which defineŝSi being a compactification ofSi .

It is not possible to extendui to a jointly continuouŝui on the joint compactification
Ŝ = ×i∈I Ŝi . If it were, the continuous mappingsj → ûi(·, sj ) from the compact̂Sj to
C(Ŝi) would have a compact range.4 This contradicts the observation that‖ûi (·, sj ) −
ûi(·, s′

j )‖ = 1 for the infinitely many pairs ofsj �= s′
j .

It is always possible to compactify anSi so that any collection of bounded functio
have unique continuous extensions to the compactification (for sketches of and referenc
to the constructions, see Section 4.2.1). As seen in Harris et al. (in press) and below
ample 2.3, for the study of infinite games, the relevant collection of bounded functio
the class of utility sections. The points added by compactification guarantee that eve
ity section achieves its maximum, they represent the limits of approximate optima a
pure strategies.

For ncc games, the compactification can betaken to be metrizable. In general this
not possible, and the compactifications are quite large. Despite the size of the compa
ifications, for non-ncc games, the addition of extra points is not sufficient to guarante
equilibrium existence because one must replace the detail lost in moving from fin
sets down to compactifications.

2.2. Selection equilibria

For eachi ∈ I , let Ti be a dense subset of the compact spaceSi . Let u : T → RI ,
T = ×i∈I Ti , be a bounded function. HavingTi = Si is usual for the analysis of compa
games, havingTi be a proper subset ofSi is crucial for the compact imbedding analysis
nfgs. The functionu and the setT ⊂ S define apre-game, ΓT (S,u).

Let Φ = Φu be the correspondence fromS to RI having as graph the closure (in th
product topology) of the set{(t, u(t)): t ∈ T }. BecauseT is dense inS, Φ is non-empty
valued. Sinceu is bounded,Φ is single-valued ats if and only if u has a unique continuou
extension fromT to S at s. (For ncc games,Φ is always single-valued.)

4 For a compactX, C(X) is the set of continuous functions onX with the sup-norm.



M.B. Stinchcombe / Games and Economic Behavior 50 (2005) 332–365 337

e

me
ties
ities.

n
from
At pointss whereu can not be continuously extended fromT to S, Φ(s) contains many
points. LetΨ be a closed graph correspondence satisfyingΦ(s) ⊂ Ψ (s) ⊂ coΦ(s) for
eachs ∈ S.

Definition 2.1 (Simon and Zame). A Ψ -selection equilibrium is a pair(v,µ) wherev is
a measurable everywhere selection fromΨ , andµ = (µi)i∈I is an equilibrium profile of
countably additive strategies for the game with compact strategy spacesSi and measurabl
utility functionsv.

WhenΨ (s) = coΦ(s) for eachs ∈ S and theSi are metric spaces, Simon and Za
(1990) show that coΦ-selection equilibria exist. These are equilibria where the utili
at discontinuities are chosen as limits of utilities in the convex hulls of nearby util
Selection equilibria may involve play of strictly dominated strategies.

Example 2.2. Two players simultaneously pick in their action spaces,Si = Ti = [0,1], and
the utility functions are

u1(s1, s2) =
{

2 if s1 = 0,

s1 if s1 > 0,
u2(s1, s2) =

{
2− s2 if s1 = 0,

s2 if s1 > 0.

Play of(0,0) is the unique equilibrium of this game, giving utilities(2,2). The unique
continuous selection fromΦ is v(s1, s2) = (s1, s2). Play of (1,1) is the unique equilib-
rium of (Si , vi)i∈I . The selectionv fails to capture the crucial strategic aspect ofs1 = 0,
player 1’s ability to guarantee her/himself a payoff ofu1 = 2. Finitistic equilibria capture
s1 = 0 being available to player 1.

2.3. Finitistic equilibria

A generalized sequence (net)Aα
i converges toTi if for all finite Fi ⊂ Ti , for all suffi-

ciently largeα, Fi ⊂ Aα
i .

Definition 2.2. A mixed strategyµ = (µi)i∈I is a finitistic equilibrium of the pre-game
ΓT (S,u) if it is the limit of a generalized sequenceµα whereµα is anεα-equilibrium of
the game(Aα

i , ui)i∈I , Aα
i → Ti , εα → 0.

The only finitistic equilibrium for Example 2.2 is(0,0)—for all sufficiently largeα, Aα
1

will contain the point 0, and allεα equilibria put mass at least 1− εα on (0,0). This is
an instance of Corollary 3.3, which shows that finitistic equilibria do not ignore profitable
deviations.

Theorem 3.2 shows that exhaustive star-finite versions of theTi , that is, finitistic ver-
sions of theTi , perfectly represent the generalized sequences ofAα

i ’s. There is a surjective
map from any finitistic version ofTi to any compactification ofTi .5 Some of the correlatio
in selection equilibria arises to represent the information/details lost in moving down

5 See fn. 2 for the details.
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finitistic sets to compacts. The amount of correlation is limited, Theorem 3.3 below show
that every finitistic equilibrium is a selection equilibrium from a correspondence stri
smaller than coΦ.

2.4. Correlation, information, and the size of compactifications

The following modified matching pennies game is ncc. Therefore,if it is compactified
so as to make all utility sections continuous, the resulting game is compact and continuo
If compactified in a smaller fashion, one that does not make the utility sections co
ous, selection can replace the lost information. This is analogous to what happens
surjection from finitistic sets to compactifications.

Example 2.3. Two players simultaneously pick inTi = N, with utility functions

ui(ti , tj ) =
 (+1,−1) − ( 1

ti
, 1

tj
) if ti , tj are both even or both odd,

(−1,+1) − ( 1
ti
, 1

tj
) if ti , tj are of different parity.

(3)

The Ti are dense in the compact metric spaces(Si , di), Si := N ∪ {∞}, di(si, s
′
i ) :=

|e−si − e−s ′
i |, e−∞ := 0. The (Si, di) are the one-point compactifications of theTi .

Not even the utility sections extend continuously toSi × Sj , lim infsi↑ uk(s\si ) <

lim supsi↑ uk(s\si ). Further,Φ(ti,∞) = {(+1− 1/ti,−1), (−1− 1/ti,+1)}, Φ(∞, tj ) =
{(+1,−1− 1/tj ), (−1,+1− 1/ti)}, andΦ(∞,∞) = {(+1,−1), (−1,+1)}.

Finitistic equilibria involve both players picking infinitely large even and odd inte
with probability infinitely close to 1/2 each. This gives utilities of(0,0). This selection
equilibrium corresponding tothis finitistic equilibrium is(v,µ) whereµ is point mass
on (∞,∞), v(ti ,∞) = (0− 1/ti,0), v(∞, tj ) = (0,0− 1/tj ), andv(∞,∞) = (0,0). By
putting mass 1/2 each on the end points of theΦ, the selection utilities encode the lo
information that the players are putting mass 1/2 each on the evens and odds.

TheTi are dense in the compact metric spaces(Ri, ρi), Ri := N ∪ {∞even,∞odd},

ρi(si, s
′
i ) :=

{ |e−si − e−s ′
i | if si , s

′
i are both even or both odd,

1+ |e−si − e−s ′
i | if si , s

′
i are of different parity.

(4)

The utilities have unique continuousextensions fromTi × Tj to Ri × Rj . The unique
equilibrium in the resulting compact and continuous gamehas both players playing∞even
and∞odd with probability 1/2 each.

Selection can encode information lost in the passage to the limit, but they ca
encode spurious information. Finitistic equilibria avoid the spurious correlation tha
arise in selection equilibria.

2.5. Spurious correlation

Spurious correlation arises from two distinct aspects of the definition of selection
libria, the use of the full convex hull, and the use of selection itself.
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2.5.1. Correlation arising from the convex hull
The next game is a version of “pick the largest integer” in which one is rewarded

highly for beating the opponents pick by 2 or more, and punished for tying them. TTi

are dense subsets of compactSi , the utility sectionshave unique continuousextensions, bu
the game is not ncc. For largeti , tj , the payoffs are essentially constant along lines par
to the diagonal.

Example 2.4. Two players simultaneously pick inTi = N, and the utility functions are
symmetric,

ui(ti , tj ) =



(10,−10) − ( 1
ti
, 1

tj
) if ti � tj + 2,

(8,4) − ( 1
ti
, 1

tj
) if ti = tj + 1,

(−2,−2) − ( 1
ti
, 1

tj
) if ti = tj ,

(4,8) − ( 1
ti
, 1

tj
) if ti = tj − 1,

(−10,10) − ( 1
ti
, 1

tj
) if ti � tj − 2.

(5)

The Ti are dense in the one-point compactifications used above. Continuity
Φ(ti ,∞) = {(−10,10)} andΦ(∞, tj ) = {(10,−10)}. The only discontinuity point foru
happens at(∞,∞). The convex hull of the limits of the possible at payoffs at(∞,∞) is

V = coΦ(∞,∞) = co
{
(10,−10), (8,4), (−2,−2), (4,8), (−10,10)

}
. (6)

Any selection fromV combined with play of(∞,∞) is a selection equilibrium fo
ΓT (S,u). In particular, the utility levelsα(8,4) + (1 − α)(4,8), α ∈ (0,1) belong to
coΦ(∞,∞) and can occur as a coΦ-selection equilibrium. However, these payoffs
quire thatα of the time,i plays one higher thanj plays and 1− α of the time s/he plays
one lower. This requires perfect correlation and strictly positive randomization. This cann
arise from independent play.

Finitistic equilibria will have as utilities the limitsof independent randomization by the
players. TheNash hull correspondence studied below satisfiesΦ(s) ⊂ NhΦ(s) ⊂ coΦ(s)

for all s ∈ S and captures this independence. Theorem 3.3 shows that finitistic equ
are always NhΦ-selection equilibria.

2.5.2. Correlation arising from selection
In a two player game, NhΦ(s), the Nash hull at a points = (s1, s2) consists of the se

of limits of payoffs to generalized sequences ofindependent randomizations that conve
to the product of point masses ons1 ands2. At continuity points, NhΦ is a singleton set
When there are two discontinuities, a selection may pick different randomization at th
different points, effectively correlating players’ choices.

In more detail, the two NhΦ(s1, s2) and NhΦ(s1, t2), s2 �= t2 are formed by indepen
dent randomization in the neighborhoods of(s1, s2) and(s1, t2). If independence is to b
respected, then the play of 1 should be the same in both of these neighborhood (sy
1’s play should not depend on 2’s choices. Selections have no such consistency rest
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It is not the Nash hull that is to blame. Example 5.1 gives aΦ with multiple discon-
tinuities. Selections fromΦ can introduce correlation between players’ choices. Co
lary 5.1.1 shows that it is multiple discontinuities that are to blame.

2.6. The need for normal form analyses

One approach to extensive form games with infinite choice sets at some node(
specify a set of strategies and to use a finitistic analysis of the resulting infinite nfg. A
ond approach is to replace the infinite choice sets with finitistic versions and analy
resulting game. This second approach may change essential informational structure
game, suggesting the centrality of normal form analyses.

Example 2.5. At time t = 0, Nature picksω = (ω1,ω2) ∈ {−1,+1} × {H,T } according
to a strictly positive distributionP . At t = 1, player 1 picksa1 ∈ A1 = [0,1] without
observing any aspect ofω. At t = 2, player 2 observesa1, but no aspect ofω, and picks
a2 ∈ A2 = [0,1].

If ω2 = H , then att = 3, player 1 observesa2 and can change her mind, picking som
othera1 ∈ [0,1], but if ω2 = T , nothing happens att = 3.

At t = 4, players 3, 4, and 5 observe the continuous signalss3 = ω1 · |a1 − a2|, s4 =
ω1 · |(a1)

2 − a2|, ands5 = ω1 · |a1 − (a2)
2|.

After observing their respective signals, 3, 4, and 5 picka3, a4, anda5 in non-trivial
sets. Payoffs are arranged so that players 1 and 2 have different interests in which
later players are informed aboutω1.

The extensive form game just given has a clear strategic structure: depending onω2, if
one of the first two players chooses either 0 or 1, then the other player can pick w
all later players or none of them know the value ofω1; in a similar fashion, if one of the
first two players chooses in the interval(0,1), then the other player can pick any one
the later players to be uninformed of the value ofω1, or else can choose all of them to
informed.

(1) If the action setsA1 andA2 are replaced by finitistic sets, the game does not have
strategic structure.

Proof : Let F1 andF2 be finitistic versions ofA1 andA2. If player 1 pickst1 �= 0,1
andω2 = T , then, in order for player 2 to have the choice of which of the three
players does not know the value ofω1, F2 must containt1, (t1)

2, and
√

t1. In exactly
the same way, ifω2 = H , then for everyt2 ∈ F2 \ {0,1}, F1 must containt2, (t2)

2, and√
t2. Thus, three incompatible conditions must be simultaneously satisfied,F1 = F2,

F 2
1 = F2 andF1 = F 2

2 .
(2) Finitistic replacements of the normal form can replicate the strategic structure.

Proof : In the normal form, player 1’s strategy set is the product of[0,1] and a large
subset of[0,1][0,1] while 2’s strategy set is a large subset of[0,1][0,1]. Provided the
large subsets contain the continuous functions, finitistic versions of the strategy s
contain the functionsf (x) = x, f (x) = x2, andf (x) = √

x.
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There are still difficult open questions for the development of a general theory o
tensive form games. It is not clear that finitistic replacement of normal forms will alw
respect informational structures. If one takes a normal form approach, one must di
the extensive form implications of Nash hull selection equilibria.

2.7. Notation used throughout

In order to discuss finitely supported mixtures, for eachi ∈ I , Si is a field of subsets o
Si containing the singleton sets,6 e.g. 2Si . The set of mixed strategies fori ∈ I is ∆i . Strate-
gies are always assumed to be finitely additive onSi . There is no assumption that utilitie
are integrable. Ifµ = (µi)i∈I ∈ ∆ := ×i∈I∆i is a vector of mixed strategies, the produ
measure on×i∈ISi , the smallest field containing the measurable rectangles, is deno
prod(µ). If the µi are countably additive and theSi areσ -fields, the unique extension o
prod(µ) to the productσ -field,

⊗
i∈I Si := σ(×i∈ISi ), is again denoted prod(µ).

3. Finitistic and selection equilibria for compact games

For this section, eachSi is a non-empty compact Hausdorff space (cHs) with the B
σ -field of subsets,Si . By assumption, the mixed strategies are the unique countably
tive extensions of Baire measures toSi .7

Finitistic equilibria are the standard parts of the equilibria on games in which thSi

have been replaced by exhaustive,∗-finite setsAi . By transfer, such equilibria exist. The
rem 3.3 shows that finitistic equilibria are a subset of the Nash hull selection equilibr
games with arbitrary cHs strategy spaces. This generality enables the interpretation of t
finitistic equilibria of nfgs through compact imbedding and selection. However, selec
equilibria should be regarded as a useful interpretation of finitistic equilibria rather than a
an independent solution concept.

Recall thatΦ-selection equilibria constitute the smallest possible set of selection
libria that use limit values for utilities. Example 2.2 shows thatΦ-selection equilibria may
ignore profitable deviations, Corollary 3.3 shows that finitistic equilibria do not. Exam
ple 5.1 shows thatΦ-selection equilibria add spurious correlation to the finitistic equilib
Endogenous sharing rule equilibria are coΦ-selection equilibria. Example 2.4 shows th
endogenous sharing rule equilibria add spuriouscorrelation to the Nash selection equili
ria. In sum, selection equilibria may ignore profitable deviations, any kind of selection c
add spurious correlation, and coΦ-selection adds the most.

6 Without the singleton sets, the mixed strategies interpreted as being pure are the ones satisfyingµi(Ei) ∈
{0,1} for all Ei ∈ Si . Purely finitely additive{0,1}-valued measures can be difficult to integrate against gen
u.

7 This clears up a potential ambiguity in Definition 2.1. The Baireσ -field is the smallest making the continuo
functions measurable. In metric spaces, the Baireσ -field is the Borelσ -field. Urysohn’s lemma on the approx
imation of indicators of closed sets by continuous functions implies that Baire measures have unique count
additive extensions to the Borelσ -field for a cHs. There exist cHs with Borel measures that are not the exten
of Baire measures.
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3.1. Definition of selection equilibria

For eachi ∈ I , letTi be a dense subset ofSi . Letu : T → RI , T = ×i∈I Ti , be a bounded
function. HavingTi = Si is usual for the analysis of compact games, havingTi be a proper
subset ofSi is crucial for the compact imbedding analysis of nfgs. The functionu and the
setT ⊂ S define apre-game, ΓT (S,u).

Let Φ be the correspondence fromS to RI having as graph the closure (in the prod
topology) of the set{(t, u(t)): t ∈ T }. BecauseT is dense inS, Φ is non-empty valued
Sinceu is bounded,Φ is single-valued if and only ifu has a unique continuous extensi
from T to S. At pointss whereu does not extend continuously fromT to S, Φ(s) contains
many points.

3.1.1. Correspondences derived from Φ

Let E = ×i∈IEi be a non-empty, measurable subset ofS. The leading class ofE’s will
have eachEi open. With clA denoting the closure of the setA, thepoint mass values of u

on E are

PE = cl

{∫
u(s)dδt (s): δt point mass on somet ∈ T ∩ E

}
, (7)

theNash hull of the values of u on E are

NE = cl

{∫
u(s)dµ(s): µ a finitely supported, product measure onT ∩ E

}
, (8)

and thecorrelated hull of the values of u on E are

CE = cl

{∫
u(s)dη(s): η a finitely supported measure onT ∩ E

}
. (9)

Point masses are product measures, and product measures are measures, so thPE ⊂
NE ⊂ CE .

Let O(s) be a neighborhood basis fors consisting of sets of the formG = ×i∈IGi , Gi

open inSi . With coA denoting the convex hull of the setA, for all s, the compactness o
the graph ofΦ guarantees

Φ(s) =
⋂{

PG: G ∈ O(s)
}
, and coΦ(s) =

⋂{
CG: G ∈ O(s)

}
. (10)

Definition 3.1. TheNash hull of Φ is the correspondence NhΦ defined by

NhΦ(s) =
⋂{

NG: G ∈ O(s)
}
. (11)

If s is an isolated point or ifu extends continuously tos fromT , thenΦ(s) = NhΦ(s) =
coΦ(s) is a singleton set.

3.1.2. Representations of the correspondences derived from Φ

The Nash hull ofΦ has two useful representations. For the first one, letC be the class
of finite open covers ofS by sets of the form×i∈IGi , Gi open inSi . For each finite open
coverC ∈ C and eachs ∈ S, C(s) denotes the open set

⋂{G ∈ C: s ∈ G}. Let NhΦC be
the correspondence having as graph the closure of the set{(s, v): v ∈ NC(s)}.
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Lemma 3.1. The graph of NhΦ is equal to the intersection over C ∈ C of the graphs of
NhΦC .

Proof. If (s, u) is in the graph of NhΦ, then for allG containings, u ∈ NG. For allC ∈ C,
C(s) is an open neighborhood ofs which implies that(s, u) belongs to the graph of NhΦC .
Since this is true for eachC, (s, u) belongs to the intersection of the graphs of NhΦC .

If (s, u) does not belong to the graph of NhΦ, then there exists an openG = ×i∈IGi ∈
O(s) such thatu /∈ NG. SinceS is a compact Hausdorff space, for eacht ∈ S\G, there
exists a pair of open setsGt and Ht , s ∈ Ht ⊂ G, such thatGt ∩ Ht = ∅. BecauseS
is compact, there exists a finite subcover,C, of the open cover{G, {Gt : t ∈ S\G}}. For
thisC, C(s) ⊂ G, so that(s, u) does not belong to NhΦC . �

The second representation uses nonstandard analysis.8 The Nash hull ofΦ at s is the
standard part of the integrals of∗-finitely supported, product probabilities concentrated o
the infinitesimal neighborhoods ofs.

The finite subsets ofTi are denotedPF (Ti). A star-finite (or∗-finite) subset,Ai , of Ti

is an element of∗PF (Ti). Whensi ∈ Si , themonad of si is the setmi(si) = ⋂{∗Gi : si ∈
Gi ∈Oi (si)} whereOi (si ) is the neighborhood basis forsi in Si . For any cHs,X, monads
are Loeb measurable subsets of∗X (Anderson and Rashid, 1978).

Lemma 3.2. For all s ∈ S, NhΦ(s) = st{∫ ∗u(a)d prod((ηi)i ∈ I)(a)} where each
ηi is supported by a ∗-finite subset of Ti , and its associated Loeb measure satisfies
L(ηi)(mi(si)) = 1.

Proof. For any subsetE of a Hausdorff topological space, the standard part of∗E is
the closure ofE. Since moving an infinitesimal amount of mass cannot affect the
tegral of a bounded function, this implies that eachNG is the standard part of the s
{∫ u(a)d prod((η)i ∈ I)(a)} where eachηi is a ∗-finitely supported measure satisfyin
ηi(

∗(Ti ∩ Gi)) � 1. Definition 3.1 and the Loeb measurability of monads complete
proof. �
3.2. The existence of selection equilibria

Let Ψ be a non-empty valued, closed graph, bounded correspondence fromS to RI .
Each suchΨ defines amultigame ΓT (S,Ψ ). A measurable functionψ :S → RI is an
everywhere selection fromΨ if for all s, ψ(s) ∈ Ψ (s).9

8 We work in aκ-saturated, nonstandard enlargement of a superstructureV (Z) whereZ contains eachSi

as well asR, and κ is a cardinal greater than the cardinality ofV (Z). The most accessible introductions
nonstandard analysis that I have found are Lindstrøm (1988) and Anderson (1991).

9 Everywhere selections exist becauseΨ is a measurable closed-valued correspondence (Klein and Thompso
1984, Definition 13.1.1, Theorem 14.2.1).
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Definition 3.2. A strategy profileµ∗ ∈ ∆, is a selection equilibrium for the multigame
ΓT (S,Ψ ) if there exists an everywhere selection,ψ , fromΨ such thatµ∗ is an equilibrium
for the game(Si ,ψi)i∈I .

A selection equilibrium for the multigameΓT (S,coΦ) is called anendogenous sharing
rule equilibrium in Simon and Zame (1990), which contains a proof of

Theorem 3.1. If each Si is a compact metric space, then a selection equilibrium exists for
the multigame ΓT (S,coΦ).

A ∗-finite Ai ⊂ ∗Ti is exhaustive if for allti ∈ Ti , ti ∈ Ai . By κ-saturation, exhaustiv
star-finite sets exist.

Definition 3.3. A strategy profileµ∗ is anexhaustive, star-finite equilibrium for ΓT (S,u)

if it is the weak∗ standard part of anε-equilibrium,ε � 0, for the game(Ai,
∗ui)i∈I where

eachAi is an exhaustive,∗-finite subset ofTi .

The finite subsets ofTi , PF (Ti), are partially ordered byAi �i A′
i if Ai ⊃ A′

i . Products
×i∈IAi of finite subsets of×i∈I Si are partially ordered by×i∈IAi � ×i∈IA

′
i if Ai �i

A′
i for eachi ∈ I . From Definition 2.2, finitistic equilibria are the limits of approxima

equilibria on large finite sets.

Theorem 3.2. µ∗ is a finitistic equilibrium for ΓT (S,u) if and only if it is an exhaustive
star-finite equilibrium for ΓT (S,u).

Proof. Let E′ denote the set of finitistic equilibria, andE′′ the let of limits described in
the Lemma. BothE′ andE′′ are easily seen to be equivalent to the setE described below
For each×i∈IAi ∈ ×i∈IPF (Ti) andε > 0, defineE(×i∈IAi, ε) as the weak∗ closure of
the set{Eqε((Bi, ui)i∈I ): ×i∈IBi � ×i∈IAi}. DefineE = ⋂{E(×i∈IAi, ε): ×i∈IAi ∈
×i∈IPF (Ti), ε > 0}. �
Corollary 3.2.1. The set of finitistic equilibria is non-empty and compact.

Proof. The class of compact sets{E(×i∈IAi, ε): ×i∈IAi ∈ ×i∈IPF (Ti), ε > 0}, has the
finite intersection property. Its non-empty, compact intersection is the set of finitistic equ
libria. �
Theorem 3.3. If each Si is a compact Hausdorff space, then every finitistic equilibrium is
a selection equilibrium for the multigame ΓT (S,NhΦ).

This generalizes Theorem 3.1 in four directions.

(1) It eliminates spurious correlation:
(a) coΦ is replaced with the smaller Nash hull, NhΦ. This can lead to a much small

set of equilibrium outcomes, Example 2.2.
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(b) Selection itself, even fromΦ, may introduce spurious correlation by violati
the independence of players’ choices, Example 5.1. Finitistic equilibria are
pretable as selection equilibria, but respect the independence of players’ rando
ization, Theorems 5.1 and 5.2.

(2) The replacement of compact metric strategy spaces by general cHs allows tre
of finitely additive equilibria through compact imbedding.

(3) Robustness with respect toTi deviations can be guaranteed by a limit interpreta
of a ∗-finite construction in the proof—the strategiesµ∗ will be the limit of equilibria
along a net of finite approximationsto the game that includes eachti ∈ Ti , i ∈ I . From
Corollary 3.3, ifui(·\ti ) is prod((µ∗

j )j �=i )-integrable andT = S, then

∫
S

ψi(s)d prod(µ∗)(s) �
∫
S

ui(s)d prod(µ∗\δti )(s). (12)

Example 2.2 gave a gameΓS(S,u) in which there is a unique continuous selectionψ

from Φ, and the unique equilibrium forΓS(S,ψ) fails Eq. (12).
(4) The set of finitistic equilibria dependsupper hemicontinuouslyon the utility function,

Corollary 3.3.2. Selection equilibria depend on measurable everywhere selection
it is difficult to formulate hemicontinuity results for this class of selections.

Proof of Theorem 3.3. For eachi ∈ I , let Ai be an exhaustive, star-finite subset ofTi .
SinceTi is dense inSi , the standard part mapping, sti : Ai → Si , is onto. By Anderson an
Rashid (1978) and Loeb (1979), the weak∗-standard part mapping, also denoted sti , takes
probabilities onAi onto∆i .

Let η = (ηi)i∈I be anε-equilibrium,ε � 0, for the internal game(Ai,
∗ui)i∈I played

with the strategy setsAi ⊂ ∗Ti and the utility function∗u. Let µ∗ = (sti (ηi))i∈I . All that
is left is to show that there is an everywhere selection,ψ , from NhΦ such thatµ∗ is an
equilibrium for(Si,ψi)i∈I .

LetL = L(prod(η)) denote the Loeb measure generated by the internal measure p(η)

on A = ×i∈IAi with the Loebσ -field A (the L-completion of the minimalσ -field con-
taining the internal subsets ofA). Let F denote the smallest sub-σ -field of A making
the mapping(ai)i∈I �→ (sti (ai))i∈I measurable (see Anderson and Rashid, 1978).
ψ(·) = E(◦∗u | F)(·). Let r = ∫ ◦

A
∗u(a)dL(a) ∈ RI . By iterated expectations and chan

of variable,
∫

ψ(s)d prod(µ∗)(s) = r.

Claim A: Measurably modifyingψ on a set of prod(µ∗)-measure 0 if necessary, for a
s ∈ S, ψ(s) ∈ NhΦ(s) ∩ {v ∈ RI : v � r}.

The claim implies thatµ∗ is an equilibrium for(Si ,ψi)i∈I —playingµ∗ gives eachi
the expected payoffri , andψ(s) � r for all s ∈ S implies that playing anysi againstµ∗
must givei a payoff less than or equal tori .
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Proof of Claim A:10 Moving an infinitesimal amount of mass if necessary, we can g
antee thatη is a 2· ε-equilibrium such that for eachi ∈ I and eachai ∈ Ai , ηi(ai) ∈ ∗R++,
that is, eachηi is ∗-full support.

For aPi ∈ ∆i , aPi -continuity set is a setEi with boundary∂Ei satisfyingPi(∂Ei) = 0.
BecauseSi is a cHs, for every open neighborhoodGi of si , there exists an openPi -
continuity setHi such thatsi ∈ Hi ⊂ Gi .11

Let Ccont be the class of finite open covers ofS by sets of the form×i∈IGi , eachGi

a µ∗
i -continuity set. Pick an arbitraryC ∈ Ccont and note that everyCm ∈ C is a prod(µ∗)

continuity set. EnumerateC asC1, . . . ,CM . SetE1 = clC1. If En has been defined, set

En+1 = cl

(
Cn+1\

n⋃
m=1

Em

)∖ n⋃
m=1

Em. (13)

Let FC be the field generated by theEns.
Define an elementC ∈ ∗Ccont to have property(†) if for all non-emptyE ∈ FC , ∗E ∩

A �= ∅. Let ∗C†
cont denote the internal subclass of∗Ccont with property(†). By construction,

for a standardC ∈ ∗Ccont, eachEn is either empty or has non-empty interior. Therefo
because non-empty open sets meet the dense setT , and eacht ∈ T belongs toA, ∗C†

cont
contains all the standard elements of∗Ccont.

For anyC ∈ ∗C†
cont, and anys ∈ ∗S, let FC(s) be the smallest element ofFC that con-

tains s. SinceA meets each non-empty element ofFC , the following internal function
ϕC : A → ∗RI is well defined:

ϕC(a) =
∑

b∈FC(a)

∗u(b)prod(η)(b)

/ ∑
b∈FC(a)

prod(η)(b). (14)

The functionψC = ◦ϕC is a version ofE(◦∗u | σ(FC)) (see Anderson, 1982). Becauseu

is bounded,ψC is bounded.
Partially order the elements of∗C†

cont by C′ � C if for all s ∈ ∗S, FC ′(s) ⊂ FC(s).
The collection ofψC , C standard, is a uniformly bounded martingale closed byψ , hence
converges inL1 norm to ψ . Further, the union of any finite collection of standardC

in C†
cont is another standard element ofC†

cont. Therefore, by Overspill, there is a∗-finite
∗-open coverC′ ∈ ∗C†

cont of ∗S with the properties thatC′ � C for all standardC, that
prod(η)(C′(s)) > 0 for eachs ∈ ∗S, and that∗‖ϕC ′ − ∗ψ‖1 � 0. Therefore, the functio
◦ϕC ′ is a version ofψ(·) = E(◦∗u | F)(·). For all s ∈ S, C′(s) is a subset of the mona
of s becauseC′ refines all finite open covers ofS. Lemma 3.2 implies that for alls ∈ S,
◦ϕC ′(s) ∈ NhΦ(s). Finally, becauseη is a 2·ε-equilibrium,ε � 0, for alla ∈ A, ◦∗u(a) � r

in RI . By Eq. (14), this implies that for alls ∈ S, ◦ϕC ′(s) � r. �
10 Two very different proofs are possible. The given proof uses Lemma 3.2 in forming a specific versioψ

from a nonstandard construction. This construction is crucial in the existence theorem of Section 5. There
second proof that appeals to Lemma 3.1 in showing thatµ∗(ψ ∈ NhΦ) = 1, thatµ∗(ψ � r) = 1, and then use
an everywhere measurable selection theorem to modifyψ on the remaining set of measure 0.
11 To see why, letg be a continuous function fromSi to [0,1] such thatg(si) = 0 andg(Si\Gi) = 1. Such a
function exists by Urysohn’s lemma. The setsg−1(r) are disjoint and measurable, 0< r < 1, so that at mos
countably many of them have positivePi -mass. For anyr satisfyingPi(g

−1(r)) = 0, Hi = g−1(−∞, r) is an
openPi continuity set containingsi .



M.B. Stinchcombe / Games and Economic Behavior 50 (2005) 332–365 347

arts of
y set

e

mpact
xhaus-
ble

ts is a

ace,
n,

ence
3.3. Properties of finitistic equilibria

Let ET (u) denote the set of Nash selection equilibria that arise as the standard p
ε-equilibria,ε � 0, of the internal game played with an exhaustive star-finite strateg
Ai ⊂ ∗Ti and the utility function∗u.

Corollary 3.3.1. If T = S, each ui(·\ti ) is measurable, and (ψ,µ∗) ∈ ET (u), then for all
i ∈ I and all ti ∈ Si ,

∫
S
ψi(s)d prod(µ∗)(s) �

∫
S
ui(s)d prod(µ∗\δti )(s).

Proof. Pick arbitrary(ψ,µ∗) ∈ ET (u) and ti ∈ Si . Since theAi are exhaustive,ti ∈ Ai .
Let η be anε-equilibrium,ε � 0, such thatµ∗ = ◦(η). By the definition ofε-equilibria,∫

A

∗ui(a)d prod(η)(a) �
∫
A

∗ui(a)d prod(η\δti )(a) − ε. (15)

With L = L(prod(η)) denoting the Loeb measure onA = ×i∈IAi , the previous inequality
and the measurability ofui(·\ti) implies that∫

A

◦∗ui(a)dL(a) �
∫
S

ui(s)d prod(µ∗\δti )(s). (16)

By iterated expectations and change of variable,
∫
S ψi(s)d prod(µ∗)(s) is equal to∫

A
◦∗ui(a)dL(a). �
Metrize the set of utilities onT , UT , with the sup-norm,ρ. Since∆ is compact, the

following is an upper hemicontinuity resultfor the finitistic equilibrium correspondenc
(the simple proof is omitted).

Corollary 3.3.2. For fixed T , {(u,proj∆ET (u))} is a closed subset of UT × ∆.

The next section provides a thorough examination of the relations between co
imbedding and selection for general sets of discontinuities. Since finitistic sets are e
tive, they avoid the selection problem. As willnow be seen, they are also an indispensa
tool for examining selections.

4. Set-valued integrals of non-measurable functions

Implicit in the above approach to games with utilities defined on a dense subse
theory of integration for non-measurable functions.

(1) Fix an arbitrary set,X, and fieldX of subsets. Imbed it as a dense of a compact sp
X̂, choosing the spacêX so that any finitely additiveµ onX has a unique extensio
µ̂, to the Borelσ -field onX̂.

(2) Any boundedRk-valued functionf onX can be identified with its graph,{(x, f (x)):
x ∈ X ⊂ X̂}, in X̂ × Rk . Closing the graph gives a non-empty valued correspond
Φ = Φf with compact graph in̂X × Rk.
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(3) Integrating the correspondenceΦ, or a correspondence derived fromΦ againstµ̂ gives
a set-valued integral off againstµ.

The two basic integrals,Eµ
c f andE

µ
x f , are called the convex and the extremal integ

of (a function)f with respect to (a measure)µ. Though here defined more transparen
through sets of extensions of measures, both have integral-of-correspondence rep
tions,Eµ

c f = ∫
coΦf dµ̂ andE

µ
x f = ∫

Φf dµ̂.
The next section discusses the Nash and the product integral in game theoretic c

where the domain has a product structure. The Nash integral is defined as
∫

NhΦf dµ̂.
SinceΦf ⊂ NhΦf ⊂ coΦf , E

µ
x f ⊂ E

µ
Nf ⊂ E

µ
c f . As seen above, the Nash integ

yields a non-empty set of selection equilibria, which may be a strict subset of the selectio
equilibria when coΦ is used, i.e. of the endogenous sharing rule equilibria.

Example 5.1 will show that selections, even fromΦf , can involve correlation of th
players’ choices. Because of this, the whole concept of a selection equilibrium is
than need be, and the theory of integration of correspondences, being based on se
is not the correct tool for infinite normal form games. The product integral,E

µ
p f , satisfies

E
µ
pf ⊂ E

µ
Nf and cannot generally be represented as the integral of a correspon

However, it is the correct integral for the analysis of nfgs.
All four of the integrals,Eµ

c f , E
µ
x f , E

µ
Nf , andE

µ
p f , have∗-finite characterizations

though the characterization ofE
µ
Nf is a bit awkward. Table 1 organizes these observat

and provides a partial map.
Sections 4.1–4.4 treat the two basic integrals,E

µ
x f andE

µ
c f : Section 4.1 gives thei

measure extension definitions and shows that they exist; Section 4.2 contains th
pactification/selection characterizations; Section 4.3 contains the∗-finite characterizations
using these characterizations, Section 4.4 covers the essential properties ofE

µ
c andE

µ
x .

Section 5.1–5.2 cover the two integrals that require product space domains fo
definition, the Nash and the smaller product integral,E

µ
Nf andE

µ
p f : Section 5.1 define

the two integrals and gives their basic properties; Section 5.2 shows that all norma
games with bounded payoffs have equilibria in finitely additive strategies when exp
payoffs are computed using the product integral.

Table 1

Integral Domain Correspondence, ∗-Finite Equilibrium
(notation) restrictions characterization characteriz. existence

Convex None coΦf , Theorem 4.4 For some
(E

µ
c f ) Theorem 4.2 compact gamesa

Extremal None Φf , Theorem 4.4 Open
(E

µ
x f ) Theorem 4.2

Nash Product NhΦf , Cor. 5.1.1 Theorem 3.3,
(E

µ
Nf ) space Definition 5.1 et seq. all compact games

Product Product None, Definition 5.2 Theorem 5.2,
(E

µ
p f ) space Example 5.1 all compact games

a (Simon and Zame, 1990).
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4.1. Notation, definitions, and existence

Bk(X ) denotes the set of uniform limits of simpleX -measurable,Rk-valued functions
on X, X a field of subsets ofX. P(X ) denotes the set of finitely additive probabilities
X . Fix anf ∈ Bk(2X) and aµ ∈ P(X ).

M(µ) denotes the set of extensions ofµ fromX to 2X . By the Hahn–Banach extensio
theorem,M(µ) is non-empty. The weak∗ topology onP(2X) is the weakest topology mak
ing the mappingsµ �→ ∫

g dµ continuous for allg ∈ Bk(2X). M(µ) = {ν ∈ P(2X): (∀g ∈
B1(X ))[∫ g dµ = ∫

g dν]} expressesM(µ) as the intersection of sets satisfying wea∗-
continuous, linear equalities. SinceP(2X) is weak∗ compact,M(µ) is compact and convex
By the Krein–Milman theorem (e.g. Dunford and Schwartz, 1957, Theorem V.8.4),M(µ)

is the closed convex envelope of its necessarily non-empty set of extreme points.

Definition 4.1. Theconvex integral of f with respect to µ is

Eµ
c f =

{∫
X

f (x)dν(x): ν ∈ M(µ)

}
, (17)

and theextremal integral of f with respect to µ is

Eµ
x f =

{∫
X

f (x)dν(x): ν ∈ extrM(µ)

}
(18)

where extrM(µ) denotes the set of extreme points ofM(µ).

If f ∈ Bk(X ), thenE
µ
c f = E

µ
x f = {∫ f dµ}. Theorem 4.5 (below) shows thatf ∈

Bk(X ) iff E
µ
c f is a singleton set for allµ ∈ P(X ). In general, we have

Theorem 4.1. E
µ
x f is a non-empty, compact subset of Rk and E

µ
c f is its convex

hull.

The proofs for this section are in Appendix A.

4.2. Compactification/selection characterizations

L is a sup-norm continuousRk-valued function onBk(X ) if and only if for all
g ∈ Bk(X ), L(g) = ∫

g dµ for some finitely additive measure,µ, on X (e.g. Dunford
and Schwartz, 1957, Theorem IV.4.1). This parallel with integration of continuous
tions against countably additive Borel measures on compact spaces suggests that fin
additiveµs can be understood as the trace of a countably additive measure on a
compact space.12 In this way, the theory of integration of bounded measurable functio
subsumed by the theory of integration of continuous functions.

12 This identification of integration of bounded measurable functions with integration of continuous function
on compact spaces can be used to extend star-finite representation theorems for Radon measure space
measure spaces (Anderson, 1982). The trace interpretation resolves the paradoxes that arise from the use of fini
additive probabilities in stochastic process theory (Kingman, 1967), in the theory of choice under uncerta
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1985).
The larger space, denoted̂X | Bk(X ), is called the Stone space for(X,X ). X is imbed-
ded inX̂ | Bk(X ) in such a fashion that everyg ∈ Bk(X ) has a unique continuous extensi
to X̂ | Bk(X ). This imbedding carriesµ ∈ P(X ) to a countably additivêµ on X̂ | Bk(X ).
The graph of a non-measurablef ∈ Bk is a subset ofX×Rk . Imbedding ofX in X̂ | Bk(X )

carries each point(x, f (x)) to the corresponding point in̂X | Bk(X ) × Rk . Define the
correspondenceΦ to have as graph the closure of the graph off in X̂ | Bk(X ) × Rk . The-
orem 4.2 shows that integral of the correspondenceΦ againstµ̂ is exactlyE

µ
x f , and the

integral of coΦ, the pointwise convex hull ofΦ, is exactlyEµ
c f .

4.2.1. Background
The following constructions and results can be found in many standard source

Ash (1972), Dudley (1989), or Dunford and Schwartz (1957).
Bk = Bk(2X) denotes the set of bounded,Rk-valued functions onX. Aside from some

duplication of coordinates,Bk = (B1)k , that is, anyg ∈ Bk can equally be regarded as
k-length vector of points inB1. For any functiong ∈ B1, letKg denote a compact set inR1

containingg(X). For anyG ⊂ B1, eachx ∈ X can be imbedded as the vectorx̃ ∈ ×g∈GKg

satisfying projg(x̃) = g(x) for all g ∈ G. Let X̂ | G denote the closure of̃XG = {x̃: x ∈ X}
in the product topology. Let̂X | G denote the trace of the Baire (i.e. the product)σ -field
on X̂ | G. Taking G = B1(X ) gives the space(X̂ | B1(X ), X̂ | B1(X )), known as the
Stone space for(X,X ). Other than some duplication of coordinates, there is no differ
between the spaceŝX | B1(X ) andX̂ | Bk(X ).

For G ⊂ B1, let projG denote the canonical projection of×g∈B1Kg onto×g∈GKg so

that X̂ | G is the image ofX̂ | B1 under projG. For G ⊂ B1, let alg(1,G) denote the
smallest, sup-norm closed algebra containing the constants andG. Eachh ∈ alg(1,G) has
a unique, continuous extensionĥG to X̂ | G. Further, supx∈X h(x) = maxx̂∈X̂|G ĥG(x̂), and

any continuous function on̂X | G is the extension of someh ∈ alg(1,G). Any ĥG has a
canonical, continuous extension tôX | B1 defined byĥ(x) = ĥG(projG(x)).

The linear mappingh ↔ ĥG gives an isometric isomorphism betweenalg(1,G) and
C(X̂ | G) (both with the sup-norm topology). This means that continuous linear func
on alg(1,G) and continuous linear functions onC(X̂ | G) can be identified. IfG = B(X ),
the identification of continuous linear functions identifies the finitely additiveµ in P(X )

with the countably additive Baire probabilitieŝµ on(X̂ | G, X̂ | G). Each such Baire proba
bility has a unique extension to the Borelσ -field, and this extension is a Radon measure.
distinction will be made between Baire probabilities and their Borel extensions. Be
Borel probabilities that are not Radon will not be considered, there is no reason to
guish between Baire and Borelσ -fields. Forµ ∈ P(X ), M̂(µ̂) denotes the set of countab
additive extensions of̂µ on X̂ | G to countably additive probabilities on̂X | B1. The iden-
tification delivers the following two equalities, valid for allf ∈ Bk and allµ ∈ P(X ),

Eµ
c f =

{ ∫
X̂|Bk

f̂ dν: ν ∈ M̂(µ̂)

}
, and (19)

with finitely additive subjective probabilities (Stinchcombe, 1997), and it clarifies the structure of social cho
possibility theorems in models infinitely many agents (Kirman and Sondermann, 1972; Armstrong, 1980,
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x f =

{ ∫
X̂|Bk

f̂ dν: ν ∈ extrM̂(µ̂)

}
. (20)

4.2.2. Compactification and selection is equivalent to extension and integration
For a givenµ ∈ P(X ) there are many extensions to 2X giving rise to many possibl

integrals off ∈ Bk . For any givenf /∈ Bk(X ), there are pointsx in X̂ | Bk(X ) wheref̂

is not continuous. TakinĝX | Bk(X )-measurable selections from the possible limits at
continuity points and then integrating the selection with respect to the unique extenµ̂
gives rise to many possible integrals off . The content of Theorem 4.2 is that these t
approaches are equivalent.

Pick arbitraryf ∈ Bk , and define the correspondenceΦ = Φf from X̂ | Bk(X ) to Rk

by its graph,

gr Φ = {(
projBk(X )(x̂), f̂ (x̂)

)
: x̂ ∈ X̂ | Bk

}
, (21)

and define the correspondence coΦ by defining coΦ(x̂) to be the convex hull ofΦ(x̂).
There are three useful alternate representations ofgr Φ. The first isgr Φ = X̂ | G where

G = {Bk(X ), (fi)
k
i=1}, implying thatgr Φ and gr coΦ are compact sets in the produ

topology. Second, for eacĥx ∈ X̂ | Bk(X ), Φ(x̂) is the set of accumulation points of ne
f̂ (x̂α) where projBk(X )(x̂α) converges tôx in X̂ | Bk(X ). Third, for eachx̂ ∈ X̂ | Bk(X ),

Φ(x̂) = f̂ (proj−1
Bk(X )

(x̂)).
Because the correspondencesΦ and coΦ have closed graphs, they are measurabl

the Borelσ -field, and have measurable everywhere (m.e.) selections (Klein and Thom
1984, Definition 13.1.1 and Theorem 14.4.1)). The integrals ofΦ and coΦ with respect to
µ̂ are therefore the set of integrals of the m.e. selections,∫

Φ dµ̂ =
{∫

ψ dµ̂: ψ is an m.e. selection fromΦ

}
, (22)∫

coΦ dµ̂ =
{∫

ψ dµ̂: ψ is an m.e. selection from coΦ

}
. (23)

Theorem 4.2. E
µ
x f = ∫

Φdµ̂ and E
µ
c f = ∫

coΦ dµ̂ for all f ∈ Bk and all µ ∈ P(X ).

The valueΦ at a point inx ∈ X̂\X is the set of accumulation points off (xα) asxα

converges tox in X. Examples 2.4 (above) and 4.2 (below) show that the setE
µ
x f can be

quite large even whenµ is {0,1}-valued andX separates points.

4.3. Star-finite characterizations

If X = {∅,X} is the trivial field, then for the uniqueµ ∈ P(X ) and for any boundedf ,
E

µ
x f is clf (X), the closure of the range off . In particular,Eµ

x f can be any compact s
so thatEµ

c f can be any compact convex set. It follows that ifX is finite, thenE
µ
x f =∑

E clf (E)µ(E) where the sum is overE in the partition ofX generated byX . For finite
X , this yields:



352 M.B. Stinchcombe / Games and Economic Behavior 50 (2005) 332–365

eneral

cture

be
nd
d

s

-

(1) E
µ
c f is a singleton set for allµ if and only if f is X -measurable, and

(2) for w ∈ Rk , supw · Eµ
x f = supEµ

x (w · f ) = ∑
E supx∈E(w · f (x)) · µ(E) where the

sum is over theE in the partition generated byX ,

The aim is to extend these and other comparably simple, finite analyses to the g
case using∗-finite representations ofX and 2X.

4.3.1. The nonstandard setting
As noted above, we work in aκ-saturated, nonstandard enlargement of a superstru

V (Z) whereZ containsX andR, andκ is a cardinal greater than the cardinality of 2Z .
κ-saturation implies that any of the compactifications ofX used above can be taken to
a collection of equivalence of∗X (Hurd and Loeb, 1985, Section III.7, or Machover a
Hirschfeld, 1969, Section 9.4). For nearstandardr ∈ ∗Rk , ◦r ∈ Rk denotes the standar
part ofr.

For anyY ∈ V (Z), PY denotes the finite subsets ofY , and∗PY is the collection of
∗-finite (read “star finite”) subsets of∗Y . A ∗-finite YF is exhaustive for Y if, for all y ∈ Y ,
∗y ∈ YF (identifying y and ∗y). κ-saturation implies that there are exhaustive,∗-finite
versions of anyY ∈ V (Z).

4.3.2. The field-based nonstandard characterizations
Let F(X ) denote the finite sub-fields ofX , and pick anX ′ ∈∗ PF(X ) that is exhaustive

for F(X ), and letXF be the∗-field generated byX ′. This guarantees that ifE ∈ X , then
∗E ∈ XF . In a similar fashion, pick aYF generated by aY ′ that is exhaustive forF(2X).
Note thatX ′ ∩Y ′ belongs to∗PF(X ) and is exhaustive forF(X ).Therefore, there is no los
in assuming, as is done here, thatXF ⊂ YF .

The internal set of extensions of∗µ fromXF to YF is

H(∗µ) = {
ν ∈ ∗P(YF ): (∀E ∈XF )

[
ν(E) =∗ µ(E)

]}
. (24)

For f ∈ Bk , ∗f varies by at most an infinitesimal over anyD in theYF -partition. There-
fore, for anyν ∈ ∗P(YF ), for any collectionsxD,x ′

D of points inD, D in theYF -partition,∑
D

∗
f (xD)ν(D) � ∑

D
∗
f (x ′

D)ν(D). This implies that the following integral is well de
fined.

Definition 4.2. TheM-integral of f ∈ Bk againstν ∈ P(YF ) is defined by

M

∫
f dν = ◦∑

D
∗
f (xD)ν(D) (25)

where the∗-sum is taken overD in theYF -partition, and for eachD, xD ∈ D.

The nonstandard definitions of the extremal and the convex integral are

Dµ
c f =

{
M

∫
f dν: ν ∈ H(∗µ)

}
, and (26)

Dµ
x f =

{
M

∫
f dν: ν is an∗-extreme point ofH(∗µ)

}
. (27)
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For anyD in the YF -partition of ∗X, let δD ∈ ∗P(YF ) be the probability assignin
mass 1 to allA ∈ YF containingD and mass 0 to all other sets. Transfer of the corresp
ing statement for finite partitions proves the following.

Lemma 4.1. ν is an ∗extreme point of H(∗µ) if and only if it is of the form ν =∑
E δDE

∗µ(E), where the sum is over E in the XF -partition and DE ⊂ E is an element of
the YF -partition.

There are two convenient reformulations of Lemma 4.1:

(1) ν is an ∗-extreme point ofH(∗µ) if and only if for all E in the XF -partition and
A ∈ YF , ν(A|E) is equal either to 0 or to 1 (asDE �⊂,⊂ A).

(2) ν is an∗-extreme point ofH(∗µ) if and only if for all A ∈ YF , ∗ min{ν(A�E): E ∈
XF } = 0. This is a finitistic version of (Lipecki et al., 1979, Theorem 3).

Integrating selections also works in the nonstandard context.

Theorem 4.3. For f ∈ Bk and µ ∈ P(X ), r ∈ D
µ
x f (respectively r ∈ D

µ
c f ) if and only

if r =◦ ∫
g d∗µ for some XF -measurable g with the property that for all x ∈ E, E in the

XF -partition of ∗X, g(x) belongs to the set ∗f (E) (respectively ∗cof (E)).

The next result shows that standard and the nonstandard integrals are equivale
crucial result also shows that the nonstandard definitions are not dependent on the cho
of XF or YF because the definitions ofE

µ
c f andE

µ
x f make no reference to nonstanda

constructions.

Theorem 4.4. For all f ∈ Bk and all µ ∈ P(X ), E
µ
c f = D

µ
c f and E

µ
x f = D

µ
x f .

4.3.3. The finitistic nonstandard characterizations
The finitistic approach replaces standard infinite sets with exhaustive∗-finite versions

of the same set. The definition of theM-integral does the same.
Pick a pointxD ∈∗ X∩D for eachD in theYF -partition, and letXF be the set ofxD . By

replacing theδD with point masses onxD , we can replace(∗X,YF ) with (XF ,T ) where
T is the collection of internal subsets ofXF . BecauseYF is exhaustive for 2X, it contains
{x} for everyx ∈ X, implying thatXF is exhaustive forX. Therefore, replacingX by an
exhaustive,∗-finite version of itself and considering the∗-finitely supported measures
H(∗µ) leads directly toEµ

c f andE
µ
x f .

The next lemma shows that there may be many∗-finitely supportedν in H(∗µ), and that
the exhaustiveness ofXF is only needed whenµ has atoms. Recall that a finitely additi
µ ∈ P(X ) is non-atomic if for all E ∈ X and alla ∈ [0,1], there exists anEa ∈ X such
thatµ(Ea) = aµ(E).

Lemma 4.2. If µ is non-atomic and XF is a ∗-finite subset of X, then there exists a ∗-finitely
supported ν ∈ H(∗µ) such that ν(XF ) = 0.
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4.4. Basic properties of E
µ
c and E

µ
x

There are six basic properties of the convex and extremal integrals:

(1) They agree with usual integral for allµ if and only if f ∈ Bk(X ), Theorem 4.5.
(2) For non-measurable,R1-valuedf , E

µ
c f is the convex interval between the upper a

lower integrals, Theorem 4.6. (Recall thatE
µ
x f can be an arbitrary compact set.)

(3) NeitherEµ
c f nor E

µ
x f satisfy any Riesz-like representation theorem, Example

though the integrals define continuous sub-linear mappings onBk(X ), Theorem 4.7.
(4) It is sometimes possible to recoverµ andX from the mappingf �→ E

µ
c f . Theo-

rem 4.8 shows that ifµ is countably additive andX is a sigma-field, thenµ andX are
determined, up to null sets, by the values ofE

µ
c f on the setS of those functions in

Bk(X ) satisfying #Eµ
c f = 1.

(5) E
µ
x f is convex ifµ is non-atomic, Theorem 4.9, and ifX � 2X , then there is aµ ∈

P(X ) and anf ∈ B1 such thatEµ
x f contains exactly 2 points, Theorem 4.10. Fina

(6) Fubini theorems fail rather completely, Example 4.2.

4.4.1. Comparison with the usual integral
The first result is

Theorem 4.5. A function f ∈ Bk belongs to Bk(X ) if and only if for all µ ∈ P(X ), E
µ
c f

is a singleton set.

4.4.2. Comparison with the upper and lower integrals
Non-measurableR1-valued functions are often bracketed above and below by an u

and a lower integral. Specifically, theupper integral of f ∈ B1 with respect to µ is

I+(f,µ) = inf

{∫
hdµ: h ∈ B1(X ), and(∀x ∈ X)

[
f (x) � h(x)

]}
, (28)

while thelower integral of f ∈ B1(2X) with respect to µ is

I−(f,µ) = sup

{∫
g dµ: g ∈ B1(X ), and(∀x ∈ X)

[
g(x) � f (x)

]}
. (29)

Theorem 4.6. For f ∈ B1, E
µ
c f is the interval [I−(f,µ), I+(f,µ)].

For manyµ, there are functionsf ∈ B1 that are not inB1(X ) and yet haveI−(f,µ) =
I+(f,µ), e.g. whenX is a σ -field, µ is countably additive, andf fails to be inB1(X )

by a non-measurableµ-null set. This does not contradict Theorem 4.5 which concern
possibleµ.

The following is an immediate consequence of Theorem 4.6.

Corollary 4.6.1. For f ∈ Bk ,

Eµ
c f =

⋂{
y ∈ Rk:

(∀w ∈ Rk
)[

I−(w · f,µ) � w · y � I+(w · f,µ)
]}

. (30)
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4.4.3. The failure of representation theorems
The most basic representation theorem for measures says that sup-norm con

linear functionals onB1(X ) and integration against finitely additive measures onX can be
identified. Compare

Example 4.1. Let X = {a, b}, X = {∅,X} so thatP(X ) contains only one point,f (x) =
1{a}(x), g(x) = 1− f (x). ThenE

µ
c f = E

µ
c g = [0,1] while E

µ
c (f + g) = {1}.

The extremal (resp. convex) integral is sup-norm continuous, linear along rays fro
origin, sublinear mapping to the class ofcompact (resp. compact convex) sets.

Theorem 4.7. The mappings f �→ E
µ
x f and f �→ E

µ
c f from Bk to the class of com-

pact subsets of Rk are continuous and satisfy E
µ
x λf = λE

µ
x f and E

µ
c λf = λE

µ
c f for

any λ ∈ R. The mappings are sublinear in the sense that for any w ∈ Rk , the functional
Lw(f ) := max{w · y : y ∈ E

µ
x f } satisfies Lw(f + g) � Lw(f ) + Lw(g), and the func-

tional Lw(f ) := min{w · y : y ∈ E
µ
x f } satisfies Lw(f + g) � Lw(f ) + Lw(g).

4.4.4. Recovering µ and X
It is sometimes possible to recoverµ and X from the mappingf �→ E

µ
c f . Let

Sµ ⊂ B1(2X) denote the set off such that #Eµ
c f = 1. For aσ -field X and a countably

additiveµ, let Xµ denote theµ-completion ofX , here regarded as the domain ofµ, and
let X (Sµ) denote the minimalσ -field making allf ∈ Sµ measurable. The omitted pro
of the following is a routine application of the monotone class theorem.

Theorem 4.8. If X is a σ -field and µ is countably additive, then Xµ =X (Sµ), and for all
A ∈Xµ, E

µ
c 1A = E

µ
x 1A = {µ(A)}.

In the presence of a countably additiveµ on aσ -field, a.e. pointwise limits can be take
extending the previous result to measurable functions.

4.4.5. When E
µ
x f is and is not convex

A µ ∈ P(X ) is non-atomic on X if for all ε > 0, there is anX -measurable partition
E1, . . . ,En of X such thatµ(Ei) < ε, i = 1, . . . , n. The following result should be inte
preted with two observations in mind:

(1) for some fieldsX , e.g. the smallest field containing all finite subsets of an infinite
there are no non-atomic probabilities inP(X ); and

(2) in general,Eµ
x f may be an arbitrary compact set.

Theorem 4.9. For non-atomic µ and all f ∈ Bk(2X), E
µ
x f = E

µ
c f .

If X = 2X, thenE
µ
x f is a (convex) singleton set for anyµ.

Theorem 4.10. If X � 2X, then there is a µ ∈ P(X ) and an f ∈ B1(2X) such that E
µ
x f

contains exactly two points.
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4.4.6. The failure of Fubini theorems
Whenµ is a product measure, iterated integration of non-measurable functions

not lead to the integral, and performing iterated integration in different orders may le
disjoint sets.

Example 4.2. First, the probability space: LetX = S1 × S2, S1 = S2 = N, X1 =X2 = 2N,
X the smallest field containing sets of the formE1 × E2, E1 ∈ X1, E2 ∈ X2, let µ1 and
µ2 be purely finitely additive probabilities onX1 andX2 assigning mass 0 to all finit
sets, finally, letµ = µ1 × µ2 be the product measure onX . Second, the function: le
R = {r0} ∪ {rn: n ∈ N}, r0 �= 0, be an otherwise arbitrary, bounded countable subs
Rk , for eachn ∈ N, let Tn be the line of points starting at(n,2n) with slope 1,Tn =
{(n + m,2n + m): m ∈ N}, let T0 be the part of the complement of

⋃
n�1 Tn that is above

the diagonal, and setf (x1, x2) = r01T0(x1, x2)+∑
n∈N

rn1Tn(x1, x2). For eachx1, f (x1, ·)
is measurable, for eachx2, f (·, x2) is measurable,

(∀x1 ∈ S1)

[
Eµ

c f (x1, ·) =
{∫

f (x1, s2)dµ2(s2)

}
= {r0}

]
, and (31)

(∀x2 ∈ S2)

[
Eµ

c f (·, x2) =
{∫

f (s1, x2)dµ1(s1)

}
= {0}

]
. (32)

From (31) and (32), depending on the order of integration one gets the disjoint sets{r0} or
{0}. By contrast, ifµ1 andµ2 are both{0,1}-valued, thenEµ

x f is the closure ofR ∪ {0}.

ShrinkingX1 andX2 in Example 4.2 gives more detail about iterated integration. S
pose thatg is an arbitrary, bounded function onX1 × X2 in Example 4.2, but thatX1 and
X2 are replaced byF1 andF2, the smallest fields containing the finite sets. LetA

g
x1 denote

the accumulation points ofg(x1,N), Ag the accumulation points of{Ag
x1: x1 ∈ X1}, B

g
x2

the accumulation points ofg(N, x2), andBg the accumulation points of{Bg
x2: x2 ∈ X2}.

Integrating selections fromx1 �→ A
g
x1 against the unique{0,1}-valued purely finitely ad-

ditive µ1 ∈ P(F1) gives Ag , integrating selections fromx2 �→ B
g
x2 against the uniqu

{0,1}-valued purely finitely additiveµ2 ∈ P(F2) gives Bg . Iterated integration ofg
againstµ1 × µ2 givesAg or Bg depending on the order of integration. By contrast, w
µ = µ1 × µ2, E

µ
x g is the set of accumulation points of{g(x1(m), x2(m)): m ∈ N} as

x1(m) → ∞ andx2(m) → ∞ so thatAg,Bg ⊂ E
µ
x g. For the functionf in Example 4.2,

Af �= Bf , and both are one point subsets ofE
µ
x f .

5. Integrals on product spaces and finitely additive equilibria

For this section, the spaceX is replaced byT := ×i∈I Ti whereI is the finite set (of
players). The utilityfunction to be integrated is bounded and takes values inRk , k = I .
EachTi comes with a fieldTi of subsets. The fieldX is replaced by the fieldT = ×i∈ITi

generated by the measurable rectangles. Because Nash equilibria involve independ
domization, the relevant set of probabilities isPprod⊂ P(T ),

Pprod= {
µ ∈ P(T ): µ = prod

(
(µi)i∈I

)
, µi ∈ P(Ti )

}
. (33)
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The Ti are assumed to contain all singleton sets, andB1(Ti ) is assumed to contain th
utility sections.13

Si denoteŝTi | B1(Ti ), andS denote×i∈I Si . It can be shown thatS = T̂ | B1(T ), and
that the extension,̂µ, of anyµ = prod((µi)i∈I ) in Pprod to S is of the form prod((µ̂i)i∈I )

where eachµ̂i is the unique, countably additive, Borel extension ofµi to Si . As theTi

are dense in theSi , this recovers the setting of selection equilibria for compact game
Section 3.

If the Ti are not part of the specification of the game, thenTi = 2Ti can be used. I
Ti = 2Ti , the spacesSi are quite large and there is no measure extension of the individuµi

being done to determine payoffs. Rather, it is only extension of prod(µ) that is being done
If Ti � 2Ti , then measure of extension of both the individualµi and prod(µ) determines
payoffs.

5.1. Integrals w.r.t. product measures

The two integrals considered here are the Nash and the product integral.

Definition 5.1. The Nash integral of f ∈ Bk(2T ) with respect to µ = prod((µi)i∈I ) is
E

µ
Nf = ∫

S NhΦf dµ̂.

For anyµi ∈ P(Ti ), mi(µi) denotes the weak∗ monad ofµi , that is, the set of prob
abilitiesνi ∈ ∗P(Ti ) such that for allg ∈ Bk(Ti ), | ∫ g dµi − ∗ ∫ ∗g dνi | � 0. Because the
finitely supported measures are weak∗-dense inP(Ti ), mi(µi) contains∗-finitely supported
measures.

Definition 5.2. Theproduct integral of f ∈ Bk(2T ) with respect to µ = prod((µi)i∈I ) is

Eµ
p f = st

{∫
∗T

∗f (t)d prod((ηi)i ∈ I): ηi ∈ mi(µi), ηi
∗-finitely supported

}
. (34)

Theorem 5.1. For all f ∈ Bk and all µ ∈ Pprod, E
µ
pf ⊂ E

µ
Nf , and both integrals are

non-empty and compact.

Proof of Theorem 5.1. Fix arbitraryf ∈ Bk andµ ∈ Pprod. BecauseEµ
Nf is the integral of

a non-empty valued correspondence with a compact graph, it is non-empty and com
By definition, allr ∈ E

µ
pf are the standard part of

∫
∗T

∗f (t)d prod((ηi)i ∈ I) for some
vector of∗-finitely supportedηi ∈ mi(µi). For eachi ∈ I , letAi be a finitistic version ofTi

supportingηi . Picka◦
i ∈ Ai such thatηi(ai) ∈ ∗R++. Modify ηi by taking an infinitesima

proportion ofηi(a
◦
i ) and dividing it evenly overAi so that for eachai ∈ Ai , ηi(ai) ∈ ∗R++.

After modification,
∫ ∗f dη moves by at most an infinitesimal. Using such a vecto

strictly positive(ηi)i ∈ I , ClaimA (in the middle of the proof of Theorem 3.3) shows th
r = ∫

ψ dµ̂ for some everywhere selectionψ from NhΦ. This implies thatr ∈ ∫
NhΦ dµ.

13 These assumptions guarantee that play of pointsti ∈ Ti are integrable and that eachi ∈ I has a finitely additive
best response to every pure strategy profilet ∈ T .
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To show thatEµ
p f is non-empty and compact, for any functiongi ∈ B1(Ti ) andεi ∈

R++, let Ni(µi : gi, εi ) be the internal set of∗-finitely supportedηi such that| ∫ gi dµi −∫ ∗gi dηi | < εi . The standard part of the internal set{∫ ∗f dηi : ηi ∈ Ni(µi : gi, εi )} is
closed, hence compact. The collection of such sets has the finite intersection prope
E

µ
pf is the non-empty, compact intersection of this collection compact sets.�
The inclusion in Theorem 5.1 can be strict. In a two player game, consider the Na

hull at two points, NhΦ(s1, s2) and NhΦ(s1, t2), s2 �= t2. By Lemma 3.2, these two se
are formed by having independent randomization on∗-finite subsets of the product mona
m1(s1) × m2(s2) andm1(s1) × m2(t2). If independence is to be respected, then the pla
1 should be the same in both of these product monads, it should not depend on 2’s c
Selections have no such restrictions.

Example 5.1. I = {1,2}, T1 = T2 = N, T1 is the smallest field containing the singlet
sets, andT2 is the smallest field containing the singleton sets and the set of even num
µ1 is the unique finitely additive probability assigning mass 0 to all finite sets,µ2 is the
unique finitely additive probability assigning mass 1/2 to the evens and mass 0 to all fin
sets. To be integrated againstµ = prod(µ1,µ2) is

f (t1, t2) =
{

(0,0) if t1 �= t2,

(+1, (−1)t1) if t1 = t2.
(35)

For all t ′ ∈ T , the mappingsti �→ f (t ′\ti) are non-zero at only one point, hence belong
B1(Ti ).

Claim B: (+1,0) ∈ E
µ
x f , and

Claim C: (+1,0) /∈ E
µ
pf .

Proof of Claim B: First, note thatS1 = T1 ∪ {∞} is the classical one-point compac
fication of T1, while S2 is T2 ∪ {∞even,∞odd}, with ∞even being the limit of all even
sequences going to infinity and∞odd is the limit of all odd sequences going to infinity. Se
ond, NhΦf (∞,∞even) is the line segment joining(0,0) to (+1,+1) andΦf (∞,∞even)

contains the point(+1,+1). In a similar fashion, NhΦf (∞,∞odd) is the line segmen
joining (0,0) to (+1,−1), and Φf (∞,∞odd) contains the point(+1,−1). Third, µ̂1
is δ∞, point mass on∞, while µ̂2 is 1/2δ∞even + 1/2δ∞odd. Because it is equal t
1/2(+1,+1) + 1/2(+1,−1), the point(+1,0) belongs to

∫
S Φf d prod(µ̂1, µ̂2).

Proof of Claim C: First, note that a∗-finitely supportedη1 belongs tom1(µ1) if and only
if η1(A) � 0 for all finite A ⊂ N, while a∗-finitely supportedη2 belongs tom2(µ2) if and
only if η2(A) � 0 for all finite A ⊂ N andη2(

∗Evens) � 1/2 whereEvens is the set of
even numbers. Second, for a point of the form(+1, r) to belong toEµ

pf , it must be the cas
that prod(η1, η2)(

∗D) � 1 whereD is the diagonal ofT1 × T2. Third, the only way tha
prod(η1, η2)(

∗D) � 1 can happen is if bothη1 andη2 put mass infinitesimally close to
on the same point, call itt . If t belongs to∗Evens, then

∫ ∗f d prod(η1, η2) � (+1,+1),
otherwise it is equal to(+1,−1).
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Comment: Example 5.1 shows that even selections fromΦf involve spurious correla
tion. To reach the utilities(+1,+1), both players must be playing evens, to reach the
ities (+1,−1), both players must be playing odds. When player 2 randomizes(1/2;1/2)

over evens and odds, and player 1 is playing independently of player 2, then it is im
ble to come anyplace close to the point(+1,0) = 1/2(+1,+1)+1/2(+1,−1). Integrating
Φf allows choice of any selection. The selection that picks(+1,+1) and(+1,−1) to in-
tegrate against player of∞ by 1 is allowing 1’s choice of even or odd to depend on
choice.

It is easy to make a game out of Example 5.1 in which the multigameΓT (S,Φ) has
equilibria involving too much correlation. Whether or notΓT (S,Φ) always has equilibria
is an open question.14

BecauseΦf ⊂ NhΦf ⊂ coΦf , Eµ
x f ⊂ E

µ
Nf ⊂ E

µ
c f . In general,Eµ

pf does not fit into
this scheme. Whenf has two (or more) discontinuity points onS, the logic of Example 5.1
shows thatEµ

x f need not be a subset ofE
µ
pf . By contrast,

Corollary 5.1.1. If f has one discontinuity point in S, then for all µ ∈ Pprod, E
µ
pf = E

µ
Nf .

Proof. Fix arbitrary µ ∈ Pprod and r ∈ E
µ
Nf . By Theorem 5.1, it is sufficient to sho

that r ∈ E
µ
p f . Let s◦ denote the discontinuity point off on S. If µ̂(s◦) = 0, then the a.e

continuity off delivers equality of all of the four integrals. The remaining case has
δi := µ̂i(s

◦
i ) > 0.

Pick arbitrary star finitely supportedη′
i ∈ mi(µi) so that the Loeb measureL(η′

i ) satis-
fiesL(η′

i )(mi(s
◦
i )) = δi . The proof will be complete if there is a star finitely supported m

ification,ηi , of eachη′
i such thatr � ∫ ∗f d prod((ηi)i∈I ). Lemma 3.2 expressesΦf (s◦)

as the standard part of the integral of∗f against a product measure, prod((νi)i∈I ), con-
centrated on the monad ofs◦. Let Ei be an internal set such thatL(η′

i )(Ei�mi(s
◦
i )) = 0.

Definingηi(·) = (1− δi)η
′
i (· | Ec

i ) + δiνi(·) gives the requisite modification.�
Combined with Lemma 3.2, Corollary 5.1.1 shows the essential difference betwe

product integral and the Nash integral—the Nash integral fails to be a product in
because it allows the marginals ofηi to depend on(sj )j �=i .

5.2. Finitely additive equilibria

Fix a gameΓ with player setI , with eachi ∈ I picking an action in the setTi , and with
utility function u : T → RI . Theorem 3.3 shows the existence of a selection equilib
(ψ,µ∗) for the multigameΓT (S,NhΦ). The functionψ is a carefully chosen version o
E(◦∗u |F) where:

(1) F is the smallestσ -field of subsets ofA = ×i∈IAi making the product standard pa
mapping measurable, where eachAi is ∗-finite and exhaustive forTi ,

14 My guess is no, this despite the observation that the existence of (so) many selections makes proving n
existence in any particular example quite difficult.
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(2) expectation is taken with respectto the Loeb measure generated by prod(η),
(3) η is a∗-full supportε-equilibrium,ε � 0.

By construction of theSi , eachµ∗
i can be identified with a unique finitely additiv

probabilityν∗
i ∈ P(Ti ). Hence, if the integral ofu with respect to a vectorν ∈ ×i∈I�(Ti )

is understood as
∫
S
ψ(s)d prod(ν̂)(s), then Theorem 3.3 contains a general equilibrium

istence result for arbitrary games with bounded payoffs and the Nash integral. The p
of the finitistic equilibria in Theorem 3.3 clearly belong to the product integral. Renorma
izing the∗ν|FC

convex combinations ofη delivers the next result, which shows that wh
players consider deviations, the payoffs to the deviation will also be product integral

Theorem 5.2. For any ν ∈ Pprod,
∫
S
ψ(s)d prod(ν̂)(s) belongs to Eν

pu.

Whenu ∈ BI (T ) so thatEµ
c u is a singleton set for allµ, the game is nearly compact a

continuous. For such games, Harris et al. (in press) (the companion piece to this pap
Marinacci (1997) contain a finitely additive equilibrium existence proof. Harris et al. (i
press) shows that such games are equivalent to games with compact, metric space
sets and jointly continuous utility functions.

6. Summary

This paper develops a theory of equilibrium in normal form games with bounded
ties. The theory makes no topological or measure theoretic assumptions on the stru
the game. This is appropriate for a theory that is to be applied to the normal forms
finite extensive form games.15 Exhaustive star-finite sets provide a direct interpretatio
the equilibrium strategies. Compactification and selection, or finitely additive probab
and the theory of integration for non-measurable functions, provide indirect interpreta

Exhaustive star-finite versions of a setX contain everyx in X, but behave logically
as if they were finite. There is a surjection from any exhaustive version of a setX to
any compactification ofX. For infinite normal form games, the surjection can lose pa
information. As often happen with lost information, it reappears as correlation bet
players’ actions.

While selection of limit utilities can replace the information lost in the surjectio
has other, less desirable qualities. It can lose strategically important information, s
the existence of a dominant strategy, and it can encode spurious information. Se
equilibria provided a huge advance in the generality of the games covered by theory, a
they provide interpretational tools for finitistic equilibria. However, their drawbacks m
that they should not, in general, be used as an independent solution concept.

Drawbacks aside, selection contains a set-valued theory of integration for
measurable functions intimately tied to the integration of correspondences. Only a l

15 See Aumann (1964, 1961) for the measurability problems for infinite extensive form games.
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form of correlation appears in finitistic equilibria. The limits on the forms of correla
reappear in the distinctions between the different integrals.

Finally, examples demonstrate that the study of infinite extensive form games wi
considerably more subtle undertaking than the present study of infinite normal form g
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Appendix A. Proofs for Section 4

Proof of Theorem 4.1. The compactness and non-emptiness ofM(µ), the Krein–Milman
theorem and the continuity of integration in the weak∗ topology implies thatEµ

c f is non-
empty and compact, and is equal to the convex hull ofE

µ
x f . The compactness ofEµ

x f will
follow from Theorem 4.2. �
Proof of Theorem 4.2. Pick arbitraryf = (fi)

k
i=1 ∈ Bk andµ ∈ P(X ). It is sufficient to

prove thatEµ
x f = ∫

Φ dµ̂ because the convex hull of
∫

Φ dµ̂ is equal to
∫

coΦ dµ̂ and the
convex hull ofEµ

x f is E
µ
c f .

SetG = Bk(X ), G′ = G ∪ {fi : i = 1, . . . , k}. The graph ofΦ is X̂ | G′. M̂(µ̂), the set
of (Radon) extensions of̂µ from X̂ | G to X̂ | G′, is the set of probabilitiesν on X̂ | G′
having marginal equal tôµ on X̂ | G. Any measurable functionϕ from X̂ | G to the Borel
probabilities (with the Borelσ -field generated by the weak∗ topology) on×k

i=1Ifi with
the property thatϕ(x)(Φ(x)) = 1 for µ̂-almost allx gives rise to a probabilityν ∈ M̂(µ̂)

defined by its values on measurable rectangles,

νϕ(A × B) =
∫
A

ϕ(x)(B)dµ̂(x). (A.1)

Further, anyν ∈ M̂(µ̂) gives rise to such a functionϕν , e.g. (Dudley, 1989, Corol
lary 10.2.8). Identifyingϕs that vary only on sets of̂µ-measure 0, the mapping back a
forth betweenνs andϕs is linear, one-to-one, and onto. This means that the extreme p
of M̂(µ̂) are the extreme points of the set ofϕs.

The extreme points of the set of probabilities onΦ(x) is the set of point masses o
Φ(x). This implies that the extreme points of the set ofϕs are the functions that, on
set ofx with µ̂-probability 1, haveϕ(x) being point mass on a pointψ(x) ∈ Φ(x). For
any extreme pointν of M̂(µ̂) and associatedψ such thatϕν(x) is point mass onψ(x),∫

f̂ dν = ∫
ψ(x)dµ̂. �
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Comment: Because
∫

Φ dµ̂ is a closed set (Klein and Thompson, 1984, Th
rem 18.3.2),Eµ

x f is compact, completing the proof of Theorem 4.1.

Comment: There is a more elementary (but longer) inductive construction of the fun
tion ϕ in the proof. It uses the characterization of extreme points ofM̂(µ̂) given in (Lipecki
et al., 1979, Theorem 3), which shows thatν is an extreme point of the extensions if a
only if for all A ∈ 2X, inf{ν(A�E): E ∈ X } = 0. Takingf to be the indicator of a setA
in the Theorem 4.2 and using properties of clopen sets in Stone spaces gives an alter
proof of this characterization of extreme points.

Proof of Theorem 4.3. The proof forDµ
c f following directly from the proof forDµ

x f .
Suppose thatr ∈ D

µ
x f . By definition, there exists an∗-extreme pointν of H(∗µ) and

a collection of pointsxD ∈ D, D the elements of theYF -partition, such thatr =◦∑∗
D f (xD)ν(D). By Lemma 4.1, for eachE in theXF -partition,ν(DE) > 0 for at most

one elementDE ⊂ E of theYF -partition. Therefore, changing the value of∗f on other
D′

E ⊂ E does not change
∑

D f (xD)ν(D). For x ∈ E, E in the XF -partition, define
g(x) =∗ f (xD) so thatg(x) ∈∗ f (E). Becauseν ∈ H(∗µ),

∫
g d∗µ = ∑∗

D f (xD)ν(D).
Now pick anXF -measurableg such that for allx ∈ E, E in theXF -partition of ∗X,

g(x) ∈∗ f (E). For eachE, pick a DE ⊂ E, DE in theYF -partition such thatDE con-
tains a pointxE with ∗f (xE) = g(x). This can be done because theDE ⊂ E partition
E. By Lemma 4.1, the probabilityν = ∑

E δDE
∗µ(E) is an extreme point ofH(∗µ). By

construction,
∫

g d∗µ � M
∫

f dν. �
Proof of Theorem 4.4. The equality of convex integrals follows directly from the equa
of extremal integrals.

Pick an extreme pointν of H(∗µ), and define the probabilityγ ∈ P(2X) as the weak∗
standard part ofν, that is, byγ (A) =◦ ν(∗A) for A ∈ 2X. Restricted toX , γ = µ so that
γ ∈ M(µ) (is an extension ofµ). To show thatDµ

x f ⊂ E
µ
x f , it is sufficient to show thatγ

is an extreme point ofM(µ).
Pick an arbitraryA ∈ 2X. By (Lipecki et al., 1979, Theorem 3), it is sufficient to sho

that for allε ∈ R++, there exists anEε ∈ X such thatγ (A�Eε) < ε. Define the interna
function ψ : ∗F(X ) → ∗R+ by ψ(X ′) = minE∈X ′ ν(∗A�E). Sinceψ achieves infini-
tesimal values on∗F, Overspill implies that it achieves values less than anyε ∈ R++
on the standard elements of∗F. SinceA ∈ 2X, for any standardX ′ in ∗F, ψ(X ′) =
minE∈X ′ γ (A�E), completing the first half of the proof.

From Theorem 4.2,Eµ
x f = ∫

Φ dµ̂ where µ̂ is the countably additive extension
µ to X̂ | B1(X ) and the graph ofΦ is the closure of the set{(x, f (x)): x ∈ X} in
X̂ | B1(X ) × Rk . Let r = ∫

ψ dµ̂ ∈ ∫
Φ dµ̂ where ψ is a X̂ -measurable, everywhe

selection fromΦ. By Lusin’s theorem, for everyε ∈ R++, there exists a continuoushε

on the compact Hausdorff spacêX | B1(X ) such thatµ̂({hε = ψ}) > 1 − ε. Sincehε

is continuous, it is of the form̂h for someh ∈ Bk(X ). SinceBk(X ) is the set of uni-
form limits of simple X̂-measurable functions, for everyε ∈ R++, there is a simple
X̂-measurablegε such thatµ̂(|ĝε − ψ| > ε) < ε. BecauseXF is exhaustive, the Extensio
Principle implies that for someε � 0, there is anXF -measurable,∗-simpleg = gε such
that∗µ̂(|∗ĝ −∗ ψ| > ε) < ε. Becauseψ is an everywhere selection fromΦ, for eachx in
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eachE in theXF -partition,∗ψ(x) ∈∗ f (E). Therefore, except possibly for a set ofE in
theXF -partition having infinitesimal mass, eachg(E) ∈ ∗Rk is infinitesimally close to the
set∗f (E). By Theorem 4.3,◦

∫
g d∗µ ∈ D

µ
x f . Since

∫
g d∗µ � ∫ ∗

ψ d∗µ̂ = ∫
ψ dµ̂ = r,

r ∈ D
µ
x f , completing the proof. �

Proof of Lemma 4.2. For every standard finiteXF and every standard finite collectio
E1, . . . ,En, of elements ofX , there is a standardν that is finitely supported, satisfie
ν(XF ) = 0, andν agrees withµ onE1, . . . ,En. By saturation, this is sufficient.

Proof of Theorem 4.5. If f ∈ Bk(X ), then for allν ∈ M(µ),
∫

f dν = ∫
f dµ, so that, by

definition,Eµ
c f = E

µ
x f = {∫ f dµ}.

Suppose now thatf ∈ Bk\Bk(X ). Pick XF andYF as above. For any finite subfie
S ∈ F(X ), define the oscillation off overS by

osc(f,S) = sup
{‖f (s) − f (t)‖: s, t ∈ E, E in theS-partition ofX

}
. (A.2)

Becausef ∈ Bk , ∗osc(∗f ,YF ) � 0. Becausef /∈ Bk(X ), there exists anε ∈ R++ such
that ∗osc(∗f ,XF ) � 2ε. Pick anE in theXF -partition containing pointsx1, x2 such that
◦‖∗f (x1) − ∗f (x2)‖ > ε and pick disjointD1,D2 ⊂ E in theYF -partition containingx1
andx2. Defineµ ∈ P(X ) by µ(A) = 0,1 asE �⊂,⊂ ∗A. The two∗-extreme pointsδD1 and
δD2 of H(∗µ) have integrals against∗f that differ by more thanε, implying thatEµ

c f is
not a singleton set. �
Proof of Theorem 4.6. BecauseI−(f,µ) = −I+(−f,µ), it is enough to show that

I+(f,µ) = sup

{
M

∫
f dν: ν is an∗extreme point ofH(∗µ)

}
. (A.3)

For eachx ∈ E, E in the XF -partition, defineh(x) =∗ supx∈E f (x). BecauseXF is
exhaustive,I+(f,µ) � ∫

hd∗µ. For eachE, pick DE in the YF -partition such tha
f (DE) � h(E). The probabilityν = ∑

E δ∗
DE

µ(E) achieves the supremum on the rig

hand side of (A.3), andM
∫

f dν � ∫
hd∗µ.

Proof of Theorem 4.7. Suppose thatf n → f uniformly. For eachν ∈ P(2X), define the
weak∗ continuous functionLn(ν) on by

∫
f n dν. The functionsLn converge pointwise to

the continuous functionL(ν) = ∫
f dν, so the convergence is uniform over the comp

setP(2X), proving the continuity statement. Directly from the definitions,E
µ
x λf = λE

µ
x f

andE
µ
c λf = λE

µ
c f .

Fix arbitraryw ∈ Rk . Definehf ∈ ∗Bk(XF ) by hf (E) = ∗ sup{w · ∗f (x): x ∈ E} for
E in the XF -partition, with parallel definitions forhg and hf+g . The standard part o
∗ ∫

hf d∗µ is equal toLw(f ), and the same is true forg andf +g. For eachE, hf +g(E) �
hf (E)+hg(E) so thatLw(f +g) � Lw(f )+Lw(g). SinceLw(f ) = −L−w(f ), this also
proves the last statement of the theorem.�
Proof of Theorem 4.9. This follows from the∗-finite Lyapunov theorem in Loeb (1973),
from the convexity of

∫
F dµ̂ whenµ̂ is non-atomic (Klein and Thompson, 1984, Prop

sition 18.1.1).
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Proof of Theorem 4.10. Let A be a subset ofX that is not inX , and letf (x) = 1A(x). For
anyS ∈ F, the partition generated byS andA is strictly finer than the one generated byS.
By transfer, there exists anE in theXF -partition such thatE ∩∗ A �= ∅ andE ∩ (∗X\∗A) �=
∅. ForB ∈ X , defineµ(B) = 0,1 asE �⊂,⊂ ∗B. BecauseYF is exhaustive, it contains∗A,
because it containsXF , it containsE. Therefore, theYF -partition containsDE ⊂ E ∩∗ A

andD′
E ⊂ E ∩ (∗X\∗A). Since∗µ(E) = 1, the extreme points ofH(∗µ) are of the form

δD for someD ⊂ E in theYF -partition. The integral off against any suchδD is either 0
or 1, the integral againstδDE is 1, the integral againstδD′

E
is 0.
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