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a b s t r a c t

The property that the conditional mean is the unrestricted optimal forecast characterizes
the Bregman class of loss functions, while the property that the α-quantile is the unre-
stricted optimal forecast characterizes the generalized α-piecewise linear (α-GPL) class.
However, in settings where the forecaster’s choice of forecasts is limited to the support
of the predictive distribution, different Bregman losses lead to different forecasts. This is
not true for the α-GPL class: the failure of identification is more fundamental. Motivated
by these examples, we state simple conditions that can be used to ascertain whether loss
functions that are consistent for the same statistical functional become identifiable when
off-support forecasts are disallowed. We also study the identifying power of unrestricted
forecasts within the class of smooth, convex loss functions. For any such loss ℓ, the set
of losses that are consistent for the same statistical functional as ℓ is a tiny subset of this
class in a precise mathematical sense. Finally, we illustrate the identification problem that
is posed by the non-uniqueness of consistent losses for the moment-based loss function
estimation methods proposed in the literature.
© 2019 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

1.1. Overview

Under the assumption that point forecasts are con-
structed so as to minimize expected loss, the mean of
the conditional distribution of the target variable is the
unrestricted optimal forecast for any Bregman loss. (In
statistical parlance, Bregman losses are consistent for the
mean.) The converse of this statement is also true: if the
conditional mean is the optimal forecast under a given loss
function for a sufficiently rich set of distributions, then that
loss function must belong to the Bregman class. These loss
functions go back to Bregman (1967) and Savage (1971);
more recently, Banerjee, Guo, and Wang (2005), Gneiting
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(2011a) and Patton (2011, 2016) have used Bregman losses
to make various points about the construction and evalua-
tion of point forecasts.

There are also other loss functions for which the op-
timal point forecast is given by a well-known statistical
functional other than the mean. In the case of asymmetric
absolute loss, the optimal forecast is a fixed quantile of the
predictive distribution, and the quantile is determined by
the marginal losses for positive vs. negative forecast er-
rors. Each asymmetric absolute loss function for which the
α-quantile is the optimal forecast belongs to a larger class
of generalized α-piecewise linear (α-GPL) loss functions, a
class that is characterized by the property that each mem-
ber of the class induces the same α-quantile as the optimal
forecast (see Saerens, 2000, for the characterization result;
andGneiting, 2011b; Komunjer, 2005; Lieli & Stinchcombe,
2013, for identification issues).

The Bregman class and the α-GPL classes pose a chal-
lenge for the literature that is concerned, either directly
or indirectly, with recovering loss functions from forecasts,
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realizations, and relevant covariates (e.g. Capistran, 2008;
Elliott, Komunjer, & Timmermann, 2005, 2008; Patton &
Timmermann, 2007). Problems arise because, even if the
researcher were to know the predictive conditional distri-
bution used by the forecaster, members of the Bregmann
class and/or members of one of the α-GPL classes seem
observationally equivalent. Furthermore, the statistical lit-
erature on the elicitability of functionals (e.g. Fissler, 2017;
Fissler & Ziegel, 2016; Gneiting, 2011b; Steinwart, Pasin,
Williamson, & Zhang, 2014) indicates that this sort of iden-
tification problem is rather widespread, and is not limited
to the mean or the quantiles of a distribution.

This paper shows that it may be optimal for forecasters
who are characterized by different Bregman loss functions
tomake different forecastswhen they are required tomake
a choice from a limited set of options; e.g., they must pro-
vide a buy, hold, or sell recommendation for a stock, rather
than a continuous price forecast. However, the same is not
true for α-GPL forecasters. We know from Lieli and Stinch-
combe (2013; henceforth LS) that the latter case is excep-
tional: the class of loss functions for which identification
(up to scale) is not possible even under forecast restrictions
is tiny in a precise mathematical sense. However, what
about the identifying power of unrestricted forecasts? We
show here that, within the class of smooth, convex loss
functions defined over a compact domain, unrestricted
forecasts identify each such loss up to a tiny (but non-
trivial) equivalence class. Thus, while from a theoretical
standpoint unrestricted forecasts have considerable power
to distinguish between (convex) losses, in practice these
equivalence classes still present an identification problem.
In theory, observing forecasts made subject to restrictions
can resolve some of this ambiguity.

1.2. Technical contributions

This paper employs and extends the identification the-
ory in LS in order to distinguish among various degrees of
observational equivalence, and to point out that complete
observational equivalence is quite rare. Throughout, we
work with continuous loss functions ℓ(ŷ, y) defined on a
compact domain with the property that the loss is zero if
the forecast ŷ coincideswith the realization y, and is strictly
positive otherwise. Thus, we assume that the forecaster’s
unique best prediction in the face of certainty that a specific
ywill happen is to predict that particular y.

Our contributions are as follows:

(i) We show that different Bregman losses are distin-
guishable if off-support forecasts are excluded from
consideration. This is because themean of a distribu-
tion need not be in the support of a distribution, and
different Bregman losses will prescribe different on-
support forecasts as replacements. Thus, Bregman
loss functions are at least potentially distinguish-
able, say, in controlled, experimental settings, where
one can vary the predictive distribution, including its
support, to an arbitrary extent.

(ii) In contrast, we prove that the α-GPL losses remain
observationally equivalent even if off-support fore-
casts are excluded. This happens because the
α-quantiles are always (at least partly) on-support,
rendering this extra constraint ineffective.

(iii) We show that the ‘‘observational-equivalence-even-
under-restrictions’’ property of the α-GPL class is
highly exceptional. Based on LS, we reiterate the
point that the set of loss functions can be partitioned
into a ‘‘large’’ generic class of losses that are distin-
guishable when off-support forecasts are ruled out,
and a ‘‘tiny’’ non-generic class of losses that are not.1
We then make the theory of LS more accessible by
stating simple conditions, which do not appear in
ibid., that can be used to ascertain whether a loss
function belongs to the generic potentially identified
class.

(iv) Finally, we also formally describe the identifying
power of unrestricted forecasts within the class of
convex, twice continuously differentiable loss func-
tions. For any such loss function ℓ, the set of losses
that are consistent for the same statistical functional
as ℓ makes up at most a tiny subset of this class.
This result is non-trivial, because Osband’s princi-
ple (Gneiting, 2011a; Steinwart et al., 2014) implies
that the tiny equivalence class of loss functions that
are consistent for the same functional as ℓ contains
materially different loss functions (rather than just
scalar multiples of ℓ).

1.3. Related literature

Our paper has many points of contact with recent re-
search on the elicitability of statistical functionals (Ehm,
Gneiting, Jordan, & Krueger, 2016; Fissler, 2017; Fissler
& Ziegel, 2016; Gneiting, 2011a; Steinwart et al., 2014).
A central question in that literature is: given a statistical
functional that represents some numerical property of a
distribution, does there exist a loss function that is con-
sistent for that functional, i.e., for which that functional
is the optimal forecast? Then, the recoverability of loss
functions from unrestricted forecasts is related to the fur-
ther question of whether the consistent loss function is
unique. As was established by Steinwart et al. (2014), for
example, the answer in very general settings is no: given a
loss function ℓ0 that satisfies some (mild) restrictions, one
can useOsband’s principle (Fissler & Ziegel, 2016; Gneiting,
2011a; Steinwart et al., 2014) to generate all other loss
functions that are consistent for the same functional as ℓ0
(see Corollary 9 of Steinwart et al., 2014).

The contributions explained in points (i) to (iv) above
fit into the context of this literature as follows. Items (i)
and (ii) make the novel point that loss functions that are
consistent for the same functional (such as Bregman losses)
may still be distinguishable in controlled or restricted fore-
casting environments where off-support forecasts are dis-
allowed. However, this restriction still does not identify
different α-GPL losses. As was noted under item (iii), we
provide general — and practically convenient — conditions
for checking whether the on-support restriction can dis-
tinguish between losses that are consistent for the same

1 The adjectives ‘‘large’’ and ‘‘tiny’’ have precise technical meanings.
In particular, the latter combines a topological and a measure theoretic
notion of what it means for a subset of an infinite-dimensional space to be
small. In a finite-dimensional setting, ‘‘tiny’’ implies ‘‘Lebesgue measure
zero’’. See Section 4.2 for details.
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functional. Finally, item (iv) examines the scope of the non-
invertibility of the mapping from loss functions to statis-
tical functionals. While the inverse image of a statistical
functional that represents an optimal forecasting rule is not
a single point in the class of smooth, convex loss functions,
it is still a tiny set in this class. If f is a continuous function
from reals to reals but is not invertible, then this result is
similar to saying that the non-invertibility cannot be due
to f being constant over some interval.

1.4. Practical relevance and further contributions

There are at least two reasons for caring about distinc-
tions between loss functions that yield the same unre-
stricted optimal forecasts. The first concerns behaviors in
settings that differ from the idealized forecasting problem.
The second concerns the interpretation of the estimated
loss function parameters reported in the literature.

Even when multiple loss functions yield the same un-
restricted optimal forecasts, there are settings in which
such loss functions lead to different optimal forecaster
behaviors. This point is illustrated well by Patton (2016),
who shows that different Bregman (α-GPL) loss functions
only rank competing forecasts the sameway if the forecasts
come from correctly specified models for the conditional
mean (the conditionalα-quantile), the information sets are
nested, and the estimation error is negligible. As he puts it,
‘‘the presence of misspecified models, parameter estima-
tion error, or nonnested information sets, leads generally
to sensitivity [of the ranking] to the choice of (consistent)
loss function’’.

In a couple of influential papers, Elliott et al. (2005,
2008) propose amethod for estimating loss functions based
on moment conditions that are derived from the first-
order condition of the forecaster’s problem. They assume
that the loss function belongs to a specific parametric
family such as the absolute (lin-lin) loss with asymmetry
parameter α. The final contribution of this paper, which is
less technical but of considerable practical importance, is
to demonstrate the problem posed by the non-uniqueness
of consistent losses for interpreting estimated loss function
parameters. In addition to theoretical arguments based
on Osband’s principle, we also revisit the original budget
forecasting application of Elliott et al. (2005) and show
that it is impossible to draw inferences from the estimated
α about the shape of the loss function unless one puts
complete trust in the lin-lin specification over other GPL
losses. Nevertheless, our technical results show that α-GPL
losses are observationally equivalent even in controlled
environments, so onemust rely on economic theory tomo-
tivate any additional identifying assumptions. One possible
way of justifying the lin-lin specificationwould be to argue
that the loss is a function of the forecast error only, but such
arguments are typically missing from applications.

1.5. Organization

The paper proceeds as follows. Section 2 defines the
Bregman and α-GPL loss functions and reviews the LS
identification theory. Section 3 proves the results, making
it easier to apply LS, and treats the two classes under

consideration. Section 4 studies the identifying power of
unrestricted forecasts for smooth, convex losses, and shows
that they are identified up to a tiny equivalence class.
Section5demonstrates that,while such equivalence classes
may be small theoretically, they can still cause ambigui-
ties for moment-based loss function estimation methods.
Section 6 concludes and states some open questions. Short,
simple proofs that provide insights into our results are
given in the main text, while the proof of the identification
result for smooth convex loss functions is in Appendix A.

2. Formal setup and the LS identification theory

The question studied by LS is: given the point forecasts
published by an expected loss minimizing forecaster, and
the distributions used in their construction, is it possible to
identify the forecaster’s loss function nonparametrically?
This setup is a best-case scenario, in that the econometri-
cian is assumed to know the predictive distributions.

More specifically, let D = [a, b] ⊂ R be a compact in-
terval. The forecaster is endowed with a jointly continuous
loss function ℓ(ŷ, y) defined over D × D, where the first
argument is the forecast and the second is the realization.
At time t , the forecaster wants to forecast the value of a
randomvariableYt+1, taking values fromD. The conditional
distribution of Yt+1 given the information available to a
forecaster at time t is denoted pt . The forecaster issues a
point forecast ft ∈ Ft of Yt+1 by minimizing the expected
loss,

ft ∈ Br (pt | Ft , ℓ) := argmin
ŷ∈Ft

∫
ℓ(ŷ, y)pt (dy). (1)

The compact set Ft ⊆ D is the set of allowable forecasts and
Br is, mnemonically, the ‘‘best response’’. If Ft = D, then
the forecast is unrestricted; more generally, Ft might be a
smaller set, but it is assumed throughout that pt (Ft ) = 1.
In general, allowing Ft ̸= D greatly enhances the amount
of information that is revealed about ℓ.

In addition to joint continuity of the loss functions, we
make the normalization ℓ(y, y) = 0, and, more substan-
tively, assume the following property.

Definition 1. A loss function ℓ exhibits ‘‘no bias in case of
certainty’’ (abbreviated as nbcc) if ℓ(ŷ, y) > 0 for ŷ ̸= y.
The set of (jointly) continuous loss functions with the nbcc
property is denoted Cnbcc .

The terminology is justified by the fact that if Yt+1 is
known to take on a given value y, then the unique unre-
stricted optimal forecast for any nbcc loss function is y. This
restriction is satisfied by most commonly-used losses, and
can also bemotivated by deriving loss functions as the best
forecast input into an underlying decision problem, as per
Granger and Machina (2006).

We make a particular study of two subclasses of Cnbcc ,
the Bregman loss functions, denoted LBreg , and the α-GPL
loss functions, denoted LαGPL. The loss functions in LBreg are
those of the form

ℓ(ŷ, y) = [φ(y) − φ(ŷ)] − φ′(ŷ)(y − ŷ), (2)
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where φ(·) is strictly convex and twice continuously differ-
entiable. For each α ∈ (0, 1), the loss functions in LαGPL are
those of the form

ℓ(ŷ, y) = [1(y < ŷ) − α][ψ(ŷ) − ψ(y)], (3)

whereψ(·) is any continuous, strictly increasing function.2
The derivative condition for ŷ being a minimum for the
Bregman class is

d
dŷ

[∫ (
(φ(y) − φ(ŷ)) − φ′(ŷ)(y − ŷ)

)
dp(y)

]
(4)

= −φ′(ŷ) − φ′′(ŷ)(E Y − ŷ) + φ′(ŷ) = 0. (5)

Since φ′′(ŷ) > 0, this is solved uniquely by ŷ = E Y , and
this is independent of φ. From similar considerations, any
element of the α-quantile for Y minimizes the α-GPL loss
functions, and this is independent of ψ .

Definition 2. Let∆(D) denote the set of distributions over
D. Two loss functions ℓ and ℓ′

• are unrestrictedly forecast equivalent if for all p ∈

∆(D), Br (p | D, ℓ) = Br
(
p | D, ℓ′

)
, and

• are completely forecast equivalent if for all p ∈

∆(D) and all compact F ⊂ D satisfying p(F ) = 1,
Br (p | F , ℓ) = Br

(
p | F , ℓ′

)
.

Forecasters with unrestrictedly equivalent loss func-
tions always deliver the same forecasts when there are no
controls on the set of allowable forecasts.3 For example,
any two Bregman losses are unrestrictedly forecast equiva-
lent, but a Bregman loss and a 1/2-GPL loss are not, because
they give different (unrestricted) forecasts for skewed dis-
tributions. In contrast, forecasters with completely equiv-
alent loss functions deliver the same forecasts even when
they are restricted to choose forecasts from the support of
the distribution of Yt+1. Trivially, loss functions in Cnbcc that
are scalar multiples of each other are completely forecast
equivalent. A central aim of this paper is to provide criteria
that allow us to distinguish between loss functions that
are and are not completely forecast equivalent. We will
see that, although both the Bregman losses and the α-GPL
losses are unrestrictedly equivalent, the Bregman losses
are not completely equivalent, while the α-GPL losses are.

The definition of complete forecast equivalence entails
a rather strong andnon-standard condition. Ultimately, the
theoretical justification for this concept is provided ‘‘ex-
post’’ by the results proven by LS. As Bregman losses, GPL
losses, and various other examples in LS show, constructing
loss functions that are unrestrictedly forecast equivalent
is not a particularly difficult task (we will return to this
problem in Section 4.1). Then, the question that naturally
arises is whether there are additional conditions on the
forecaster’s environment that could make forecasters with

2 Gneiting (2011a) only assumes the φ(·) function for the Bregman
class to be convex, and φ′(ŷ) is any element of the subgradient of φ(·) at ŷ.
Gneiting (2011b) only assumes the ψ(·) function in the α-GPL classes to
be non-decreasing.
3 The statistical terminology for two loss functions being unrestrict-

edly forecast equivalent is that they are consistent for the same statistical
functional.

such losses distinguishable. As we will explain below, the
restriction involved in the definition of complete forecast
equivalence almost always does the job, in a precise tech-
nical sense.4

Furthermore, the concept of complete forecast equiv-
alence is not entirely devoid of practical relevance, even
in observational settings. For example, consider a variable
Y ∈ {−1, 0, 1} that indicates whether a given stock will
underperform,match, or outperform themarket over some
period. A financial analyst could choose to report a continu-
ous forecast from the [−1, 1] interval or to construct prob-
ability forecasts of the events, but it is more customary to
issue a direct buy/hold/sell recommendation, which could
be interpreted as a point forecast restricted to the support
of Y . Alternatively, the financial analyst could report to
customers a forecast of the stock’s excess return (perhaps
with risk-adjustment), but again, it is more common to see
‘‘discrete’’ recommendations instead of such continuous
forecasts.

The following definition relates complete forecast
equivalence to identifiability.

Definition 3. A set of loss functions L ⊂ Cnbcc is potentially
identified if no two members of L are completely forecast
equivalent unless they are scalar multiples.

If a forecaster’s loss function is known to belong to a
potentially identified class, then eventually it can be dis-
tinguished from every other element of the class (i.e., com-
pletely recovered) by observing forecasts that are produced
in a sufficiently diverse set of environments. Of necessity,
this diversity of environments includes sufficient varia-
tion in both the conditional distribution of the target vari-
able and the set of allowable forecasts. We will show (in
Section 3) that the class of Bregman loss functions is poten-
tially identified, but α-GPL classes are not. Any two α-GPL
losses are completely forecast equivalent.

The α-GPL classes demonstrate that Cnbcc itself is not
potentially identified. However, this problem is not at all
widespread — LS show that Cnbcc can be decomposed into
a ‘tiny’ non-generic set of ‘bad’ loss functions, B, and a
‘large’ generic set of ‘good’ loss functions, G = Cnbcc \ B,
with the property that the class G is potentially identified.5
The definitions of G and B are based on the ‘‘three point
boundary problem’’.

Definition 4. A loss function ℓ ∈ Cnbcc has a three-point
boundary problem at the three-point set F = {y1, y2, y3} ⊂

D if Br (p | F , ℓ) = F for some distribution p that satisfies
p(F ) = 1 and p({yi}) = 0 for some yi ∈ F .

4 As was pointed out by a referee, one could go beyond the complete
forecast equivalence concept used here and require forecasters to issue
the same forecasts even when some on-support forecasts are ruled out.
This restriction would give more identifying power, but it would be more
difficult to motivate than the concept used here.
5 The adjective ‘‘tiny’’ refers to a class that is not only small in the

topological sense of the Baire category, but also ‘‘shy’’, which is an infinite-
dimensional version of being a Lebesgue null set. For interpretations
of shyness, see Stinchcombe (2001). We provide formal definitions and
further discussion in Section 4.2.
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In other words, given three distinct points y1, y2 and
y3 in D, if some predictive distribution p puts mass 1 on
two of these points, say y1 and y3, but the forecaster is
indifferent between reporting any of the points y1, y2 or
y3 as the forecast, then the underlying loss function has a
three point boundary problem. LS then define the set G as
follows.

Definition 5. Let G denote the collection of loss functions
ℓ ∈ Cnbcc for which there exists some dense D′

⊂ D with
the property that ℓ has no three point boundary problem
at any three point subset of D′ (the set D′ may depend on
ℓ).

Thus, loss functions in G can be ‘‘freed’’ from any three
point boundary problems by restricting them to a suit-
able dense subset of D. Theorem 1 of LS shows that G is
potentially identified and that B := Cnbcc \ G is ‘‘tiny’’.
Example 3.3 and the subsequent discussion in the same
paper explain how this condition is related to the failure of
identification. Definitions 4 and 5 are both rather abstract;
Section 3provides amore practical formulation of the three
point boundary problem and an easy-to-check sufficient
condition for a given loss function to belong to G.

3. Controlled identification results

Our first goal is to show that the class of Bregman loss
functions is potentially identified, LBreg ⊂ G, while no α-
GPL class is, LαGPL ⊂ B. To this end, we begin by showing
that this is plausible byway of restricted forecast examples.
We then provide two propositions that make it easier to
decide whether or not a given loss function ℓ ∈ Cnbcc
belongs to the set G. These results do not appear explicitly
in LS.We end this sectionwith our result that characterizes
the identifying power of unrestricted forecasts for smooth,
strictly convex loss functions.

3.1. Plausibility

Patton (2016) considers the parametric family of Breg-
man losses

ℓ(ŷ, y; a) =
2
a2

(eay − eaŷ) −
2
a
eaŷ(y − ŷ), a ̸= 0. (6)

Suppose that these losses are used in forecasting a bi-
nary variable Y with supp(Y ) = {0, 1}. If we set D = F =

[0, 1], then the unrestricted optimal forecast is p(1) = E Y
for all values of a ̸= 0, where p(1) is the (conditional)
probability that Y = 1. As this holds for all a ̸= 0, it is
not possible to identify the forecaster’s loss function using
their unrestricted forecast.

In contrast, if the forecaster is restricted to forecast in
F = {0, 1}, then the optimal forecast is ŷ = 1 if

p(1) > ca =
ℓ(1, 0; a)

ℓ(1, 0; a) + ℓ(0, 1; a)
=

1
1 − e−a −

1
a
; (7)

it is either 0 or 1 if equality holds, and it is ŷ = 0 if the
inequality is reversed. It can be shown that the cutoff ca is
strictly between 0 and 1 and is an increasing function of
a. Thus, for any a < a′, the losses ℓ(ŷ, y; a) and ℓ(ŷ, y; a′)
induce different forecasts if ca < p(1) < ca′ . This means

that the different members of this class can be identified
in this controlled environment, given sufficient variation in
p(1).

Suppose now that the loss function ℓ belongs to LαGPL;
that is, ℓ(ŷ, y) = (1(y < ŷ) − α)(ψ(ŷ) − ψ(y)) for a strictly
increasing ψ(·). If we set D = F = [0, 1], the unrestricted
optimal forecast is ŷ = 0 if p(1) < 1 − α, any number in F
if p(1) = 1−α, and ŷ = 1 if p(1) > 1−α, an answer which
does not depend on ψ .6 In stark contrast to the previous
case, the optimal forecast remains independent of ψ if F is
restricted to {0, 1}; the one minor difference is that only 0
or 1 can be reported when p(1) = 1−α. Thus, the losses in
LαGPL are observationally equivalent in this setting as well.

Indeed, for anydistributionp and compact F withp(F ) =

1, the set

argmin
ŷ∈F

∫
(1(y < ŷ) − α)(ψ(ŷ) − ψ(y))p(dy)

consists of the on-support α-quantile(s) of p, and possi-
bly the off-support α-quantiles as in the example above.
Restricting F to the support of p (or a somewhat larger
set) either has no effect or eliminates the same off-support
quantiles for any ψ . Hence, no information about ψ is
revealed.

3.2. General results

We begin with preliminaries, then provide and prove
results that make it easier to apply the controlled identi-
fication theory in LS. Next, we apply the results to the two
classes under consideration.

If F = {y1, y2, y3} is a three point subset of D = [a, b],
then testing for a boundary problem at F involves setting
one of p(y1) = 0, p(y2) = 0, and p(y3) = 0 (what
can potentially matter is whether the largest, the smallest
or the middle point gets zero weight). It is these three
possibilities that give rise to the conditions in Eqs. (8), (9),
and (10) in the following proposition.

Proposition 1. A loss function ℓ ∈ Cnbcc has a three point
boundary problem at F = {y1, y2, y3} ⊂ D if and only if one
of the following conditions is satisfied:

g1(y1, y2, y3) := ℓ(y2, y3)ℓ(y3, y2) − ℓ(y2, y3)ℓ(y1, y2)
−ℓ(y1, y3)ℓ(y3, y2) = 0 (8)

g2(y1, y2, y3) := ℓ(y1, y3)ℓ(y3, y1) − ℓ(y1, y3)ℓ(y2, y1)
−ℓ(y2, y3)ℓ(y3, y1) = 0 (9)

g3(y1, y2, y3) := ℓ(y1, y2)ℓ(y2, y1) − ℓ(y1, y2)ℓ(y3, y1)
−ℓ(y3, y2)ℓ(y2, y1) = 0. (10)

Proof. Let Y be a random variable with distribution p and
suppose that p(Y ∈ F ) = 1 for some F = {y1, y2, y3}. By
definition, ℓ has a three point boundary problem at F if and
only if one of the following three conditions hold:

• p(y1) := p(Y = y1) = 0 and y1, y2, y3 ∈ Br (p | F , ℓ),
or

• p(y2) := p(Y = y2) = 0 and y1, y2, y3 ∈ Br (p | F , ℓ),
or

• p(y3) := p(Y = y3) = 0 and y1, y2, y3 ∈ Br (p | F , ℓ).

6 A number x is an α-quantile of the distribution p if p((−∞, x)) ≤ α

and p((∞, x]) ≥ α.
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We show that the second case, p(y2) = 0, is equivalent
to Eq. (9); i.e., g2(y1, y2, y3) = 0. The arguments for the
remaining cases are parallel.

Suppose that p(y1) + p(y3) = 1. The forecaster is
indifferent between forecasting Y = y1 and Y = y3 iff the
two forecasts yield the same expected loss, that is, iff

ℓ(y1, y3)p(y3) = ℓ(y3, y1)p(y1), (11)

where we also use the fact that ℓ(y, y) = 0. Similarly, the
forecaster is indifferent between forecasting Y = y1 and
Y = y2 iff

ℓ(y1, y3)p(y3) = ℓ(y2, y1)p(y1) + ℓ(y2, y3)p(y3). (12)

Using p(y1) + p(y3) = 1, one can solve for p(y1) and p(y3)
using Eq. (11) and substitute the resulting expressions into
Eq. (12). This yields Eq. (9). □

Thenext result uses Proposition1 to construct an easier-
to-check sufficient condition for a loss function to belong to
the identified set G. Let D3

0 denote the set of triples with
pairwise distinct coordinates in the interior of D3. Each
point in D3

0 defines a three-point set F = {y1, y2, y3} that is
to be tested for the boundary problem as follows.

Proposition 2. If the sets g−1
j (0) = {(y1, y2, y3) ∈ D3

0 :

gj(y1, y2, y3) = 0}, j = 1, 2, 3, have Lebesgue measure zero
in R3, then the loss function ℓ belongs to G.

Proof. Let Ui, i = 1, 2, . . . be i.i.d. uniform random vari-
ables with support D. Then, with probability one, {Ui}

∞

i=1
is dense in D; Un, Um and Uk are distinct for any distinct
n,m, k, and g1(Un,Um,Uk) ̸= 0, g2(Un,Um,Uk) ̸= 0,
g3(Un,Um,Uk) ̸= 0. Hence, for almost all realizations of
the sequence {Ui}

∞

i=1, the dense set D′
:= {Ui}

∞

i=1 ⊂ D will
satisfy the requirement that ℓ has no three-point boundary
problem at any {y1, y2, y3} ⊂ D′. □

The following lemma,which is a special case of Theorem
1 of Ponomarev (1987), states the conditions under which
the inverse image of a measure zero set is a measure zero
set. A simple corollary of this lemma is particularly useful
for verifying the conditions of Proposition 2.

Lemma 1. Let O be an open subset of Rn and f : O → R
be a continuously differentiable function on O. If ∇f (x) ̸= 0
almost everywhere in O, then f −1(A) has Lebsegue measure
zero in Rn whenever A has Lebesgue measure zero in R.

Corollary 1. If the set {x ∈ O :
∂
∂xi

f (x) = 0} has Lebesgue
measure zero in Rn for any i ∈ {1, . . . , n}, then f −1(A) has
measure zero in Rn whenever A has measure zero in R.

3.3. Controlled identification is possible for Bregman losses

We can now show formally that Bregman losses are
potentially identified.

Proposition 3. For any Bregman loss ℓ, the sets g−1
j (0),

j = 1, 2, 3 have Lebesgue measure zero in R3, and hence
ℓ ∈ G.

Proof. We will apply Corollary 1 with O = D3
0, f = g2,

i = 2, and A = {0}. That is, we need to show that the set of
triples in D3

0 for which

∂

∂y2
g2(y1, y2, y3) = −ℓ(y1, y3)ℓŷ(y2, y1)

−ℓ(y3, y1)ℓŷ(y2, y3) = 0

is ameasure zero subset ofR3, where ℓŷ denotes the partial
derivative of ℓ with respect to its first argument. By the
definition of Bregman loss, ℓŷ(ŷ, y) = −φ′′(ŷ)(y − ŷ), so
that
∂

∂y2
g2(y1, y2, y3) = ℓ(y1, y3)φ′′(y2)(y1 − y2)

+ℓ(y3, y1)φ′′(y2)(y3 − y2).

As φ′′(y2) > 0,
∂

∂y2
g2(y1, y2, y3) = 0 ⇔ ℓ(y1, y3)y1

−[ℓ(y1, y3) + ℓ(y3, y1)]y2
+ℓ(y3, y1)y3 = 0. (13)

Let h(y1, y2, y3) = ℓ(y1, y3)y1 − [ℓ(y1, y3) + ℓ(y3, y1)]y2 +

ℓ(y3, y1)y3. Based on the equivalency stated in Eq. (13), we
can complete the proof by showing that the zeros of h in
D3
0 are a measure zero set. Applying Corollary 1 again, it is

sufficient to argue that ∂
∂y2

h(y1, y2, y3) is nonzero almost
everywhere in D3

0. Indeed,

∂

∂y2
h(y1, y2, y3) = −[ℓ(y1, y3) + ℓ(y3, y1)] < 0,

given that y1 and y3 are distinct. Hence, ∂
∂y2

h has no zeros
in D3

0. The test functions g1 and g3 can be dealt with using
analogous arguments. □

The implication of Proposition 3 is that any two Breg-
man losses can be told apart by restricting the set of allow-
able forecasts to the support of the predictive distribution.

3.4. Controlled identification is not possible for α-GPL losses

Using Proposition 1 only, we will now show that GPL
losses have a boundary problem with any three-point set
chosen from (the interior of) D. This fact not only violates
the sufficient condition for ℓ ∈ G stated in Proposition 2,
but, as we will explain below, actually implies that GPL
losses are not in G.

Proposition 4. For any α-GPL loss ℓ, the set ∪
3
j=1g

−1
j (0) is

equal to D3
0.

Proof. Pick a point in D3
0 with, say, y1 < y2 < y3. The

definition of GPL loss implies: ℓ(y1, y3) = −α[ψ(y1) −

ψ(y3)], ℓ(y3, y1) = (1 − α)[ψ(y3) − ψ(y1)], ℓ(y2, y1) =

(1 − α)[ψ(y2) − ψ(y1)] and ℓ(y2, y3) = −α[ψ(y2) −

ψ(y3)]. Substituting into the equation g2(y1, y2, y3) = 0
and dividing through by α(1 − α) yields

[ψ(y3) − ψ(y1)]2 + [ψ(y1) − ψ(y3)][ψ(y2) − ψ(y1)]
+[ψ(y2) − ψ(y3)][ψ(y3) − ψ(y1)] = 0.
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As ψ is strictly increasing, ψ(y3) > ψ(y1), and therefore
the equation simplifies further to

[ψ(y3)−ψ(y1)] − [ψ(y2)−ψ(y1)] + [ψ(y2)−ψ(y3)] = 0,

which holds for all y1, y2, y3. Any other ordering of the
coordinates will set some gj identically to zero. □

The result ∪
3
j=1g

−1
j (0) = D3

0 means that, no matter how
one picks three distinct points F = {y1, y2, y3} from the
interior of D, the underlying loss function has a three-point
boundary problem at F . Clearly, there is no dense subset
D′ of Dwith the property that three-point subsets of D′ are
free from the boundary problem. Thus, by the definition of
G, GPL losses do not belong in G.

4. Unrestricted identification results

The Bregman losses show that restricted forecasts (con-
trolled environments) can reveal strictly more information
about loss functions than unrestricted forecasts. We will
now focus on the class of smooth, convex loss functions and
characterize the identifying power of unrestricted fore-
casts within this class in a general and mathematically
precise way.

The setup is as follows. LetD2
conv be defined as the set of

loss functions in Cnbcc such that (i) for each y ∈ D = [a, b],
the second derivative of ℓ w.r.t. ŷ exists on some open
interval containing D; (ii) ℓŷŷ(ŷ, y) is jointly continuous
over D×D; and (iii) ℓŷŷ(ŷ, y) > 0 at all (ŷ, y) pairs in D×D.
For each loss function ℓ ∈ D2

conv, we define

B(ℓ) =
{
ℓ† ∈ Cnbcc : Br

(
ℓ† | D, p

)
= Br (ℓ | D, p) for all p ∈ ∆(D)

}
.

This is the set of loss functions in Cnbcc that are consistent
for the same statistical functional as ℓ.

We are concerned with the size or richness of the sets
B(ℓ) and B(ℓ) ∩ D2

conv. We first observe that B(ℓ) does
not just contain multiples of ℓ; in general, B(ℓ) is a non-
trivial, infinite-dimensional equivalence class that is akin
to a Bregman or GPL class. Nevertheless, B(ℓ) ∩ D2

conv is a
tiny subset of D2

conv in a precise mathematical sense that
will be described below. Loosely speaking, this means that
smooth, convex losses that are consistent for the same
functional are rare; given any one of them, unrestricted
forecasts can distinguish it from ‘‘almost every’’ other loss
in D2

conv.

4.1. Generating unrestrictedly forecast equivalent losses

The fact that B(ℓ) does not just contain scalar multi-
ples follows from Osband’s principle (after Osband, 1985).7
Given an initial loss function ℓ(ŷ, y), the idea is to generate
unrestrictedly forecast equivalent losses via the integral

ℓ†(ŷ, y) :=

∫ ŷ

y
ℓŷ(t, y)w(t)dt, (14)

where w(t) > 0 is a continuously differentiable weight
function. When ℓ(·, y) is convex, so is

∫
ℓ(·, y) dp(y), but

7 We thank a referee for pointing this out.

ℓ†(·, y) need not be, unlessw(·) satisfies further conditions
(c.f. Fissler, 2017, Ch. 4). The next set of arguments shows
that for anyw(·), the first-order condition d

dŷ

∫
ℓ†(·, y) dp(y)

= 0 has the same unique solution as the corresponding
condition for ℓ, and the second-order condition for a mini-
mum is also satisfied at the unique solution.

• Integrating ℓ† with respect to a distribution p ∈ ∆(D),
taking the derivative with respect to ŷ, and then in-
terchanging the two operations (see Lemma 2(ii) in
Appendix A.1) yields
d
dŷ

∫
ℓ†(ŷ, y)dp(y) =

∫
ℓ
†
ŷ(ŷ, y)dp(y), (15)

and therefore,
d
dŷ

∫
ℓ†(ŷ, y) dp(y) = w(ŷ)

∫
ℓŷ(ŷ, y) dp(y). (16)

• Pulling the derivative out of the integral on the r.h.s.
(see again Lemma 2(ii) in Appendix A.1) gives
d
dŷ

∫
ℓ†(ŷ, y) dp(y) = w(ŷ)

d
dŷ

∫
ℓ(ŷ, y) dp(y), (17)

for all ŷ ∈ (a, b). Eq. (17) shows that the first-order
condition for Br

(
p | D, ℓ†

)
is uniquely satisfied at

the unique solution to the first-order condition for
Br (p | D, ℓ).

• We check that the second-order condition holds by
taking the derivative in Eq. (17):
d
dŷ
w(ŷ)

∫
ℓŷ(ŷ, y) dp(y) = w′(ŷ)

∫
ℓŷ(ŷ, y) dp(y)

+w(ŷ)
∫
ℓŷ,ŷ(ŷ, y) dp(y).

When the first order condition holds, the first term is
zero, and the second term is strictly positive.

By varying the weight function w(·), one can generate
an entire class of forecast equivalent loss functions to ℓ,
a class in which the first-order conditions determine the
unrestricted optimal forecast uniquely.8

4.2. Unrestrictedly forecast equivalent losses are rare inD2
conv

Our contribution to the theory of losses that are con-
sistent for the same statistical functional is to show that,
despite the freedom in choosing w(·), the set B(ℓ) ∩ D2

conv
is still a tiny subset of D2

conv according to a number of
technical but easy-to-interpret criteria. Before stating our
result, we provide a brief discussion of what it means for
a subset of an infinite-dimensional function space to be
‘‘tiny’’. In particular, our definition combines two ideas.
One is purely topological and has a long history in real
analysis; the other is a measure theoretic notion that has
been developed more recently and that generalizes the
properties of Lebesgue null sets to infinite-dimensional
settings, where the Lebsegue measure is not defined.

8 For example, starting from the square loss (ŷ − y)2 , Bregman losses
can be generated by integrating 2w(t)(t − y). Working in a more general
setting, Steinwart et al. (2014) demonstrate that all order-sensitive unre-
strictedly forecast equivalent loss functions can be generated this way.
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Definition 6 (a). If X is a (topologically) complete metric
space, B ⊂ X is Baire small if it is closed and has an empty
interior or if it is the countable union of such sets. (b) If X
is a (topologically) complete convex metric space, B ⊂ X
is 1-shy if there exists a 1-dimensional line segment L in
X such that µL(B + x) = 0 for all x ∈ X , where µL is the
uniform distribution on L.

Remarks.

(i) The standard terminology for Baire small sets in real
analysis is the rather nondescript ‘‘first category’’
set. A non-trivial textbook example is as follows. Let
C = C[0, 1] denote the set of continuous functions
on [0, 1] that are endowed with the sup metric. Let
D(x) = {f ∈ C : f is differentiable at x}. Then,
D = ∪x∈[0,1]D(x) is Baire small in C . For the proof,
see for example Ross (2013, Ch. 7). Hence, nowhere
differentiable functions are the ‘‘typical’’ elements of
C .

(ii) A shy set extends the concept of a Lebesgue null set;
if some property holds for all x ∈ X outside of a shy
set, then that property can be said to hold ‘‘almost
everywhere’’. The general definition of shyness is
more involved; see Hunt, Sauer, and Yorke (1992) or
Anderson and Zame (2001) for detailed treatments.
The definition of 1-shyness given here is based on
sufficient conditions for shyness.

(iii) Throughout the paper, we say that a set is ‘‘tiny’’ if it
is both Baire small and shy, and that it is ‘‘large’’ or
‘‘generic’’ if its complement is tiny.

(iv) To illustrate the perhaps lesser-known concept of
shyness in ‘‘action’’, we will show that, for a given
x, the set D(x) defined in item (i) above is 1-shy. A
one-dimensional line segment in C is parameterized
as L(β) = βf1 + (1 − β)f2, where f1 and f2 are fixed
elements of C and β ∈ [0, 1]. We need to show that
there is a choice of f1, f2 such that the sets Ar = {β :

L(β) ∈ D(x) + r} have Lebesgue measure zero for all
r ∈ C . Pick f1 and f2 such that f1 − f2 /∈ D(x). Suppose
that there exist two distinct scalars β ̸= β ′ such that
βf1 + (1−β)f2 = d+ r and β ′f1 + (1−β ′)f2 = d′

+ r
for some d, d′

∈ D(x). Taking the difference of the
two equations and rearranging yields

f1 − f2 =
1

β − β ′
(d − d′). (18)

The function on the r.h.s. of Eq. (18) is differentiable
at x, while the function on the l.h.s. is not, by virtue
of the choices of f1 and f2. This is a contradiction,
implying #Ar = 0 or #Ar = 1. In either case Ar has
Lebesgue measure zero.

(v) The set D defined in item (i) above is shy in the
general sense, but it is not 1-shy; see Hunt et al.
(1992, Proposition 4). This shows that 1-shyness is
a particularly stringent condition for smallness.

Relating Definition 6 to our setup,D2
conv plays the role of

the ambient space X , and B(ℓ) ∩ D2
conv plays the role of the

subset B that is of interest. We state the following result.

Proposition 5. For each ℓ ∈ D2
conv, the set B(ℓ) ∩ D2

conv is
1-shy and Baire small (in D2

conv). That is, for each ℓ ∈ D2
conv,

the set G2(ℓ) := D2
conv \ B(ℓ) is a generic subset of D2

conv,
and has the property that for every ℓ† ∈ G2(ℓ), there exists
p ∈ ∆(D) such that Br

(
p | D, ℓ†

)
̸= Br (p | D, ℓ).

Remarks.

(i) The proof of Proposition 5 is somewhat detailed, and
is given in the Appendix A.

(ii) By Lemma B.4 of LS, if Br
(
p | D, ℓ†

)
̸= Br (p | D, ℓ)

for some p, there exists a non-empty open set of
distributions containing p forwhich the same is true.

(iii) B(ℓ) contains many non-convex losses. To see why,
take ℓ(ŷ, y) =

1
2 (ŷ − y)2 and define ℓ† as in Eq. (14).

Then, by direct calculations,

ℓ
†
ŷŷ(ŷ, y) = w(ŷ) + (ŷ − y)w′(ŷ),

where the second term can be negative. In fact, if one
allows D = R, then for any choice ofw(·) and ŷ such
thatw′(ŷ) ̸= 0, the inequality ℓ†ŷŷ(ŷ, y) < 0 holds for
all y above or below some threshold. Hence, scalar
multiples of the square loss are the only globally
convex Bregman losses over R, a point that follows
from the more general results of Fissler (2017). If
B(ℓ) ∩ D2

conv is a one-dimensional set, it is of course
shy and Baire small inD2

conv. However,D is a compact
interval in our setup, which means that ℓ†ŷŷ > 0 over
D× D for a multitude of weight functionsw(·), even
when ℓ is a square loss. Hence, B(ℓ) ∩ D2

conv is not
simply a one-dimensional set, and Proposition 5 is a
thoroughly non-trivial result.

(iv) Together with Osband’s principle, Proposition 5 of-
fers novel insights into the structure of the setD2

conv.
In particular, unrestricted forecast equivalence,
viewed as an equivalence relation among loss func-
tions, partitions D2

conv into an uncountably large
number of tiny equivalence classes. Given any loss
in D2

conv, ‘‘almost all’’ other loss functions give rise
to a different statistical functional from the unre-
stricted optimal forecast. Nevertheless, from a prac-
tical standpoint, B(ℓ) ∩ D2

conv may still be a diverse
set of losses.

(v) Proposition 5 is stronger than the identification re-
sults of LS in thatwedonot need to have control over
which sets the forecasters choose, but is also weaker
in two senses. First, the generic set G2(ℓ) depends on
ℓ, and we do not know whether there exists a single
generic E ⊂ D2

conv with the property that for each
pair ℓ, ℓ′

∈ E , ℓ ̸= r · ℓ′, r > 0, the two losses are
consistent for different functionals. Second, we are
restricting attention to loss functions that are both
smooth and convex — a class that includes some,
but not all Bregman loss functions on D, and that
contains none of the α-GPL loss functions.

5. Implications ofOsband’s principle formoment-based
loss function estimation

We illustrate the practical relevance of the abstract
identification problems addressed in this paper by draw-
ing out the consequences of Osband’s principle for the
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moment-based loss function estimation method proposed
by Elliott et al. (2005; henceforth EKT). EKT’s framework
achieves identification by assuming very specific classes of
loss functions: asymmetric absolute loss (lin-lin) or asym-
metric quadratic loss (quad-quad), with the asymmetry
parameter α requiring estimation. Nevertheless, Osband’s
principle implies that, given α, there are many other losses
that explain the data equally well (in the case of lin-lin, for
example, other α-GPL losses). Thus, any conclusions that
may be drawn about the shape of the underlying loss from
the estimate of α are extremely sensitive to the specific
parametrization used.We nowmake this argument formal
and provide a partly empirical example.

5.1. The ambiguity of the EKT moment conditions

Let Ŷt+1 denote the forecast of the target variable Yt+1
that is made by the forecaster at time t . The information
set that is available to the forecaster and on which the
forecast is based is denoted by Ωt ; the predictive distri-
bution pt is the conditional distribution of Yt+1 given Ωt .
The loss function possessed by the forecaster is modeled
by the econometrician as ℓ(ŷ, y; θ ), where θ is a finite-
dimensional vector of parameters. If the model for the loss
function is specified correctly, there exists some value θ0
of the parameters such that the observed forecast Ŷt+1
minimizes the expectation of ℓ(ŷ, y; θ0) with respect to pt ,
and hence satisfies the corresponding FOC:

d
dŷ

∫
ℓ(Ŷt+1, y; θ0)dpt (y) =

∫
ℓŷ(Ŷt+1, y; θ0)dpt (y) = 0.

(19)

While pt itself is not observed by the econometrician, Eq.
(19) and the law of iterated expectations imply

E[Wtℓŷ(Ŷt+1, Yt+1; θ0)] = 0, (20)

whereWt is any random vectormeasurablewith respect to
Ωt and for which the expectation is well-defined. Thus, as
was put forward by EKT, one can estimate the loss function
parameters θ0 using moment conditions in the form of Eq.
(20) without a full knowledge of Ωt . All that is required is
some instrument vectorWt thatmay plausibly be available
to the forecaster at time t .

While the estimation strategy described above cleverly
deals with the problem that pt is not observed by the
econometrician, Osband’s principle implies that strong ad-
ditional assumptions are needed to identify the forecaster’s
loss function. In particular, Eq. (17) shows that, given a suit-
able weight function w(·), the loss function ℓ†(ŷ, y; θ0) =∫ ŷ
y w(t)ℓŷ(t, y; θ0)dt satisfies

d
dŷ

∫
ℓ†(Ŷt+1, y; θ0)dpt (y) =

∫
w(Ŷt+1)

× ℓŷ(Ŷt+1, y; θ0)dpt (y) = 0.

Again, for any Ωt-measurable random vector Wt , this im-
plies

E[Wtℓ
†
ŷ(Ŷt+1, Yt+1; θ0)] = E[Wtw(Ŷt+1)ℓŷ(Ŷt+1, Yt+1; θ0)]

= 0, (21)

Fig. 1. The loss functions in Eq. (22) for different values of b and α = 1/2.
The realization y is fixed at 1 and the forecast ŷ varies.

provided that the expectations exist. The identification
problem arises because Wtw(Ŷt+1) is also Ωt-measurable,
since Ŷt+1 is, of necessity, a function of the information
available at time t . Hence, themoment condition in Eq. (21)
has two equally valid interpretations: it can be regarded
as a consequence of the forecaster’s FOC under either the
loss ℓ(ŷ, y; θ0) and instrument choice Wtw(Ŷt+1) or, alter-
natively, the loss ℓ†(ŷ, y; θ0) and instrument choice Wt .
Even if these moment conditions point-identify θ0, the loss
functions ℓ and ℓ† may look very different. A knowledge of
θ0 on its own says very little, if anything, about the shape
of the underlying loss.

5.2. Empirical example

An example will help to reinforce the argument. Let us
embed lin-lin losses into a larger class of GPL loss functions,
introduced by Patton (2016). In particular, the function
ψ(t) = sgn(t)|t|b is strictly increasing for b > 0, so

ℓ(ŷ, y;α) = [1(y − ŷ < 0) − α] · [sgn(ŷ)|ŷ|b

−sgn(y)|y|b], α ∈ (0, 1), (22)

is indeed a collection of GPL losses for any b > 0. Setting
b = 1 corresponds to lin-lin loss, but other values of b give
rise to very differently shaped loss functions that may be
asymmetric in either direction; see Fig. 1 for an illustration
with α fixed at 0.5.

While each loss function exhibited in Fig. 1 has the
property that themedian of pt is the optimal point forecast
for any distribution pt , these losses are not equivalent
economically. For example, suppose that the forecaster is
presented with the following question: ‘‘If Yt+1 = 1, how
much would you be willing to pay to avoid a forecast error
of size +1 versus one of size −1?’’ Clearly, a forecaster
whose loss is given by the dashed line would respond
differently from a forecaster whose loss is given by the
dotted line.
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Table 1
Estimated α parameters for various values of b.

b = 0.25 b = 0.5 b = 1 b = 2 b = 3

α̂ 0.46 0.46 0.45 0.40 0.33
s.e. (0.11) (0.11) (0.11) (0.11) (0.11)
p-value (α = 0.5) [0.36] [0.35] [0.32] [0.18] [0.07]

Notes: Based on the IMF’s current-year budget deficit forecasts for France.
Sample period: 1980–2000; Wt = constant, lagged budget deficit (EKT’s
instrument 3). The GMM weighting matrix Ŝ is specified as per EKT. The
case b = 1 corresponds to the original EKT estimator (their estimate of α
is 0.54).

Let us now turn to the moment conditions for estimat-
ing α that result from Eq. (22). In this case, Eq. (20) takes
the form

E
{
Wt |Ŷt+1|

b−1
×

[
−α1(Yt+1 > Ŷt+1)

+(1 − α)1(Yt+1 < Ŷt+1)
]}

= 0. (23)

For any given b > 0, the generalized method of moments
estimator of α that is derived from the sample analog
of Eq. (23) is isomorphic to EKT’s estimator with the in-
strument choice Wt |Ŷt+1|

b−1
(in EKT’s setting, b = 1).

We highlight the ambiguity in interpreting estimates of α
by revisiting one of EKT’s original applications involving
annual budget deficit forecasts published by the IMF for
various countries. Using Eq. (23), we re-estimate the α
parameter for different values of b, while setting Wt equal
to one of the original instruments considered by EKT.9

Table 1 shows a small set of result. While α̂ varies
somewhat as a function of b, the null hypothesis that α =

0.5 cannot be rejected formally at the 5% level in any of
the cases (albeit the conclusion is borderline for b = 3).10
If, following EKT, one takes lin-lin as the underlying loss,
these estimates suggest no significant deviation from sym-
metry, with the different values of b simply corresponding
to different instruments. Nevertheless, an alternative, and a
priori equally plausible interpretation of Eq. (23) is that the
underlying losses belong to the set in Eq. (22), with some
value of b being different from 1. Plotting the loss functions
that correspond to different (b, α̂) pairs in Table 1 would
yield a picture that is similar to Fig. 1: the observed budget
forecasts and realizations can also be rationalized by loss
functions that are asymmetric in either direction!

The conservative interpretation of the α estimates re-
ported in EKT’s Table 2 (and our Table 1) is that they simply
approximate the quantile of the forecaster’s predictive dis-
tribution that is used as the point forecast. There is then a
diverse class ofα-GPL losses that canpotentially rationalize
this behavior. Hence, any conclusions drawn by EKT about

9 As we do not have access to EKT’s original dataset, we collected our
own data for the same sample period (1980–2000).
10 If there are differences between the point estimates that go beyond
small sample variation, a plausible explanation is that the family of losses
in Eq. (23) is misspecified, in the broader sense that the point forecasts
reported by the forecaster do not correspond to a fixed quantile of the un-
derlying predictive distributions. Other possible interpretations include
instrument invalidity (Wt is not in the forecaster’s information set) or
forecaster irrationality.

the (a)symmetry of the underlying loss11 are conditional
on complete trust in the lin-lin specification. However, our
results in Section 3 show that differentα-GPL losses are ob-
servationally equivalent even in controlled environments,
so it requires strong theoretical arguments to single out any
particular subclass as the appropriate model of forecaster
behavior.

A property that makes lin-lin losses special among GPL
losses is that the forecaster’s loss is a function of the fore-
cast error y − ŷ only, independently of the level of ŷ or
y. All of EKT’s statements about symmetry depend criti-
cally on this implicit identifying assumption. In general,
any loss function estimation exercise that uses the lin-lin
(or quad-quad) specification should argue the point that
a loss function that depends solely on the forecast error
is appropriate for the situation at hand. Another approach
thatwas proposed recently by Schmidt andKatzfuss (2018)
is to give up on recovering the loss function altogether, and
to focus simply on estimating the quantile or expectile of
the predictive distributions that best corresponds to the
observed point forecasts.

6. Conclusion

The main result of LS is that a generic subset of Cnbcc ,
namely the set G, is potentially identified. We can frame
this statement as a ‘‘possibility theorem’’, saying that, al-
though it may require a tremendous amount of variation
in the conditional distributions faced by the forecaster, as
well as in the set of allowable forecasts, eventually any
loss function in G can be identified nonparametrically up
to scale. While observational data on forecasts are unlikely
to incorporate sufficient variation for this result to be of
practical application, preference recovery is at least theo-
retically possible.

By showing that Bregman losses are part of the po-
tentially identified set G, this paper highlights the role of
varying the set of allowable forecasts in identifying loss
functions. If the forecasts are unrestricted, Bregman losses
are a striking example of a very diverse set of loss func-
tions being observationally equivalent. Nevertheless, this
equivalence is broken if the predictions of the forecaster
must belong to the support of their distributions. On the
other hand, the α-GPL classes of loss functions show that
even this type of variation may not be sufficient for dis-
tinguishing among all possible loss functions, albeit these
counterexamples are part of a tiny setwithin Cnbcc . Proposi-
tion 2 provides a novel, and applicable, method of checking
whether a given loss function belongs to the ‘‘good’’ class
of loss functions.

Motivated by these results, we have studied identi-
fication by unrestricted forecasts in a general setting. If
ℓ is a member of D2

conv, the set of twice continuously
differentiable, convex losses, then unrestricted forecasts
distinguish it from all other members of D2

conv, with the
exception of a subset of D2

conv that is both shy and Baire

11 One example: ‘‘[T]he point estimates of α suggest strong asymme-
tries in the loss function... For some countries they indicate that under-
predictions of budget deficits are viewed as up to three times costlier than
overpredictions’’. (EKT, p. 1117).
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small. Nevertheless, this exceptional set may still contain
losses other than scalar multiples of ℓ, so even though con-
vex losses that are consistent for the same functional are
rare in a theoretical sense, practical identification problems
can (and do) remain. There are open theoretical questions
as well: (i) Is there a single generic subset E ⊂ D2

conv
such that no two members of E are unrestrictedly forecast
equivalent (unless scalar multiples)? (ii) Can a single class
of distributions smaller than ∆(D) distinguish each ℓ from
every loss in G2(ℓ), and how large does this collection need
to be? (iii) Can the results be extended to classes more
general than D2

conv?
While these identification results have an abstract fla-

vor, we have also argued that Osband’s principle, i.e., the
fundamental non-uniqueness of consistent losses, has im-
portant consequences for applied research that is aimed
at estimating a forecaster’s loss function from observed
data. In particular, the conclusions drawn about the shape
of the underlying loss can be very sensitive to the exact
parametrization used, and therefore the properties of the
adopted parametric model (such as convexity and forecast
error dependence) should be carefully motivated based on
subject matter theory. The loss function estimation exer-
cises that we are aware of do not address this important
point.
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Appendix A. Proof of Proposition 5

Appendix A.1 provides preliminary results, while
Appendix A.2 gives the actual proof. Throughout, we nor-
malize the interval D = [a, b] to D = [0, 1]. Let ∆(D)
denote the set of distributions over (subsets of) D; we
equip ∆(D) with the Prokhorov metric. As Proposition 5
is concerned only with unrestricted forecasts, and because
the optimal forecast is unique for ℓ ∈ D2

conv (see below), it
will be convenient to replace the notation Br (p | D, ℓ)with
ŷ∗

ℓ(p). We use various standard notations to denote partial
derivatives.

A.1. Preliminary results

Wemake a number of simple observations about D2
conv.

Lemma 2. Loss functions in D2
conv have the following prop-

erties:

(i) For all ℓ1, ℓ2 ∈ D2
conv and all r, s > 0, rℓ1+sℓ2 ∈ D2

conv,
i.e., D2

conv is a convex cone.
(ii) For every ℓ ∈ D2

conv and every p ∈ ∆(D),

dj

dŷj

∫
ℓ(ŷ, y)p(dy) =

∫
∂ j

∂ ŷj
ℓ(ŷ, y)p(dy), j = 1, 2.

(24)

(iii) For every ℓ ∈ D2
conv and every p ∈ ∆(D), the solution to

minŷ
∫
D ℓ(ŷ, y) dp(y) is a singleton ŷ∗

ℓ(p).
(iv) For every ℓ ∈ D2

conv, the functional p ↦→ ŷ∗

ℓ(p) is
continuous over∆([0, 1]).

(v) For every ℓ ∈ D2
conv and every distribution p that puts

positive mass on (0, 1), the interior of D, the solution
ŷ∗

ℓ(p) satisfies 0 < ŷ∗

ℓ(p) < 1.

Proof. In what follows, let F (ŷ) :=
∫
D ℓ(ŷ, y) dp(y).

(i) Immediate.
(ii) Take j = 1 and ŷn → ŷ. The l.h.s. of Eq. (24)

is limn{[F (ŷn) − F (ŷ)]/(ŷn − ŷ)} = limn
∫
{[ℓ(ŷn, y) −

ℓ(ŷ, y)]/(ŷn − ŷ)}dp(y). By the mean value theorem, the
absolute value of the integrand is dominated by g(y) :=

maxt∈D |ℓŷ(t, y)|, where g(y) is continuous, and hence
bounded over D. Applying the dominated convergence
theorem completes the proof.

(iii) The function F (ŷ) is strictly convex on [0, 1].
(iv) The function (ŷ, p) ↦→

∫
D ℓ(ŷ, y) dp(y) is jointly

continuous over [0, 1] × ∆([0, 1]). The claim then follows
from the work of Corbae, Stinchcombe, and Zeman (2009,
Theorem 4.2.17) and point (iii).

(v) ℓŷ(0, y) < 0 for all y ∈ (0, 1] because ℓŷ(y, y) = 0
and ℓŷ(ŷ, y) strictly increases in ŷ. Similarly, ℓŷ(1, y) >
0 for all y ∈ [0, 1). The claim then follows from the
fact that d

dŷF (ŷ) =
∂
∂ ŷℓ(ŷ, 0)p(0) +

∫
(0,1)

∂
∂ ŷℓ(ŷ, y) dp(y) +

∂
∂ ŷℓ(ŷ, 1)p(1). □

We equipD2
conv with the followingmetric. Given a func-

tion f : R × R → R, (x1, x2) ↦→ f (x1, x2), let ∂α

∂xα1
f (x◦

1, x
◦

2),
α = 1, 2, . . . , denote the first, second, etc., partial deriva-
tive of f with respect to its first argument at a point (x◦

1, x
◦

2).
For α = 0, the same notation means f itself. We measure
the distance between two functions in D2

conv using the
(Sobolev) metric

d(ℓ, ℓ′) =

∑
α∈{0,1,2}

(
max

(ŷ,y)∈D×D
|
∂α

∂ ŷα
ℓ(ŷ, y) −

∂α

∂ ŷα
ℓ′(ŷ, y)|

)
.

Intuitively, if ℓ and ℓ′ are close to each other in the Sobolev
metric, then in addition to |ℓ(ŷ, y) − ℓ′(ŷ, y)| being uni-
formly small, the distance between the partial derivatives
w.r.t. ŷ (up to order two) is also uniformly small. A metric
space is complete topologically if it has an equivalent met-
ric in which it is complete. With the given metric, D2

conv is
topologically complete.

For any given loss function ℓ in D2
conv, the unrestricted

optimal forecast ŷ∗

ℓ(p) is a statistical functional that maps
distributions on [0, 1] into [0, 1], and is continuous over
∆([0, 1]). We let C(∆([0, 1]); [0, 1]) denote the set of such
functionals, and equip it with the sup norm. We say that
a loss function ℓ is consistent for a given (continuous)
functional ŷ(p) if the optimal forecast under ℓ is given by
ŷ(p) for any distribution p.

Hence, the forecaster’s problem also defines a map-
ping from loss functions to functionals, γ : D2

conv →

C(∆([0, 1]); [0, 1]), where γ (ℓ) = ŷ∗

ℓ(·) gives the statistical
functional for which the loss function ℓ is consistent. The
mapping γ (·) is continuous over D2

conv; i.e., if a loss ℓ† is
close to some given ℓ in Sobolev metric, then the statistical
functional γ (ℓ†) = ŷ∗

ℓ†
(·) is close to γ (ℓ) = ŷ∗

ℓ(·) in sup
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distance. The proof relies on the ℓŷ,ŷ of any ℓ ∈ D2
conv being

uniformly above zero on the compact set D × D.12

A.2. Main argument

To prove Proposition 5, we need to show that B(ℓ) ∩

D2
conv is 1-shy andBaire small. Tomake thenotation cleaner,

set B2(ℓ) := B(ℓ) ∩ D2
conv. This is the set of loss functions

in D2
conv that are consistent for the same functional as ℓ ∈

D2
conv.
B2(ℓ) is 1-shy. Fix ℓ ∈ D2

conv. We first show that for
sufficiently small values of |r| > 0, both

ℓ†(ŷ, y) := ℓ(ŷ, y) · (1 + rŷ) and
ℓ‡(ŷ, y) := ℓ(ŷ, y) · (1 − rŷ)

(25)

belong to D2
conv. For any |r| < 1, the functions ℓ† and ℓ‡

belong to Cnbcc and are twice continuously differentiable.
By direct calculation, ℓ†ŷŷ = ℓŷŷ + r(ℓ + ℓŷ + ŷℓŷŷ), where
ℓŷ can be negative. Since ℓ(·, ·) is twice continuously dif-
ferentiable over a set that contains the compact domain
D × D, the functions ℓ, ℓŷ and ℓŷŷ are all bounded over
D × D, and ℓŷŷ > 0 is bounded away from zero on D × D
by assumption. This implies that ℓ†ŷŷ > 0 for values of |r|
that are sufficiently close to zero. The treatment of ℓ‡ is
parallel. For what follows, fix some r ̸= 0 satisfying these
conditions.

Pick an arbitrary ℓ◦
∈ D2

conv and consider the set of
β ∈ [0, 1] such that βℓ† + (1 − β)ℓ‡ ∈ B2(ℓ) + ℓ◦. From
Definition 6, it is sufficient to show that there is at most
a single β in this set. Pick an arbitrary full support p and
let ŷ∗

= ŷ∗

ℓ(p) be the unique solution to the first-order
condition for ℓ, i.e.,∫
ℓŷ(ŷ∗, y) dp(y) = 0. (26)

If βℓ† + (1 − β)ℓ‡ belongs to B2(ℓ) + ℓ◦, then the unique
optimal forecast under the loss function −ℓ◦

+ βℓ† + (1−

β)ℓ‡ is also ŷ∗. In otherwords, replacing ℓwith−ℓ◦
+βℓ†+

(1 − β)ℓ‡ in Eq. (26) must leave the equality intact, i.e.,

−

∫
ℓ◦

ŷ(ŷ
∗, y) dp(y) + β

∫
ℓ
†
ŷ(ŷ

∗, y) dp(y)

12 Take a sequence ℓn → ℓ and fix p. The optimal forecasts are ŷ∗
n =

ŷ∗
n(p) for ℓn and ŷ∗

= ŷ∗(p) for ℓ. Expanding the first-order condition∫
∂
∂ ŷ ℓn(ŷ

∗
n, y) dp(y) = 0 around ŷ∗ gives

∫
∂
∂ ŷ ℓn(ŷ

∗, y) dp(y) + (ŷ∗
n −

ŷ∗)
∫

∂2

∂ ŷ2
ℓn(ỹ∗

n, y) dp(y) = 0, where ỹ∗
n is between y∗

n and ŷ∗ . As ℓn → ℓ

in Sobolev metric, there exists some ϵ > 0 such that ∂2

∂ ŷ2
ℓn(·, ·) > ϵ for all

large enough values of n. Then, |ŷ∗
n(p) − ŷ∗(p)| is bounded from above by

1
ϵ

⏐⏐ ∫ ∂

∂ ŷ
ℓn(ŷ∗, y) dp(y)

⏐⏐ =
1
ϵ

⏐⏐ ∫ (
∂

∂ ŷ
ℓn(ŷ∗, y)

−
∂

∂ ŷ
ℓ(ŷ∗, y)) dp(y)

⏐⏐
<

1
ϵ
max
ŷ,y

⏐⏐ ∂
∂ ŷ
ℓn(ŷ, y)

−
∂

∂ ŷ
ℓ(ŷ, y)

⏐⏐.
The last upper bound does not depend on p and converges to zero. Hence,
|ŷ∗

n(p) − ŷ∗(p)| converges to zero uniformly in p.

+(1 − β)
∫
ℓ
‡
ŷ(ŷ

∗, y) dp(y) = 0. (27)

However, using the definitions of ℓ† and ℓ‡ and taking
Eq. (26) into account gives∫

ℓ
†
ŷ(ŷ

∗, y) dp(y) = r
∫
ℓ(ŷ∗, y) dp(y) and∫

ℓ
‡
ŷ(ŷ

∗, y) dp(y) = −r
∫
ℓ(ŷ∗, y) dp(y).

(28)

Substituting Eq. (28) into Eq. (27) yields

−

∫
ℓ◦

ŷ(ŷ
∗, y) dp(y) − r

∫
ℓ(ŷ∗, y) dp(y)

+2rβ
∫
ℓ(ŷ∗, y) dp(y) = 0.

The last equation is linear in β with a strictly positive or
negative slope. Therefore, it has at most one solution in
[0, 1].

B2(ℓ) is small in the sense of Baire. B2(ℓ) is closed because
it is the inverse image of a point under the continuous
mapping γ (·). To show that the interior of B2(ℓ) is empty,
pick an arbitrary ℓ′

∈ B2(ℓ). It is sufficient to show that
there are points (losses) in D2

conv that are arbitrarily close
to ℓ′ but are not in B2(ℓ). Consider the point ℓ′

+δℓ†, where
δ > 0 and ℓ† is defined in Eq. (25) with some sufficiently
small r > 0. Because D2

conv is a convex cone, this loss
also belongs to D2

conv. For any full support p, the optimal
forecast ŷ∗

ℓ′
(p) is in (0,1) and is equal to ŷ∗

ℓ(p). However, it
is not hard to see that the optimum forecast for ℓ′

+ δℓ†

is strictly smaller than ŷ∗

ℓ′
(p) for any δ > 0, and hence,

ℓ′
+ δℓ† /∈ B2(ℓ). Nevertheless, ℓ′

+ δℓ† converges to ℓ′

as δ ↓ 0. □

Appendix B. Supplementary data

Supplementary material related to this article can be
found online at https://doi.org/10.1016/j.ijforecast.2018.
11.007.
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