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MAXWELL B. STINCHCOMBE

1. Putting ∗’s on Everything

The readings for the first two sections are Ch. 11.1 - 11.2 in Corbae, D., Stinchcombe,
M. B., and Zeman, J. (2009). An introduction to mathematical analysis for economic
theory and econometrics. Princeton University Press, Princeton, NJ, Ch. 8.3 - 8.4 in
Fudenberg, D. and Tirole, J. (1991). Game theory. MIT Press, Cambridge, MA, and
Lindstrøm, T. (1988). An invitation to nonstandard analysis. In Nonstandard analysis
and its applications (Hull, 1986), volume 10 of London Math. Soc. Stud. Texts, pages
1–105. Cambridge Univ. Press, Cambridge.

1.1. Properties of Purely Finitely Additive Point Masses. The basic device for
us is the set of µ equivalence classes of sequences where µ is a purely finitely additive
“point mass.” We will later show that there exists a “probability” on the integers, µ,
with the following properties:

1. for all A ⊂ N, µ(A) = 0 or µ(A) = 1;
2. µ(A ∪B) = µ(A) + µ(B) for all disjoint A,B ⊂ N;
3. µ(N) = 1; and
4. µ(A) = 0 if A ⊂ N is finite.

Some useful and pretty obvious consequence of these properties:

1. If E1, . . . , EK is a partition of N, then µ(Ek) = 1 for exactly 1 of the partition
elements. To give a formal argument, start from the observation that this is true if
K = 2 (from the second property above), and if true for K, then it is true for K,
then it is true for K + 1.

2. If µ(A) = µ(B) = 1, then µ(A∩B) = 1. Since µ(A∪B) = 1 because A ⊂ (A∪B),
this consequence follows from the observation that µ(Ac) = µ(Bc) = 0 so that
A\B = A∩Bc is a subset of a 0 set, hence has mass 0, and, by the same reasoning,
B \A is a null set. Finally, A∪B is the disjoint union of the sets (A \B), (B \A),
and (A ∩B).

1.2. The Equivalence Classes. For any set X, XN denotes the set of sequences in
X. We define two sequences x = (x1, x2, . . .) and y = (y1, y2, . . .) to be equivalent,
x ∼µ y, if µ({n ∈ N : xn = yn}) = 1. By the second of the consequences just given,
this is an equivalence relation. For any x ∈ XN, 〈x1, x2, x3, . . .〉 denotes the equivalence
class of x.

We define “star X,” written ∗X to be the set of all equivalence classes, ∗X =
(XN)/ ∼µ. This gives us new objects to use. The pattern is to “put ∗’s on ev-
erything,” where by ‘everything’ we mean relations, functions, sets, classes of sets,
correspondences, etc.
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Example 1.2.1. ∗[0, 1] contains the equivalence class dt := 〈1, 1
2
, 1

3
, . . .〉, called a non-

standard number as well as all of the equivalence classes r := 〈r, r, r, . . .〉, and these
are called the standard numbers. Since µ({n ∈ N : 1

n
< r}) = 1 if r ∈ (0, 1] and

µ({n ∈ N : 0 < 1
n
}) = 1, we write 0∗ < dt∗ < r. This means that our new number,

dt, is strictly greater than 0 and strictly less than all of the usual, standard strictly
positive numbers. We write this as dt ' 0 and say that dt is infinitesimal. The
only standard number in ∗[0, 1] that is infinitesimal is 0.

Example 1.2.2. Another infinitesimal is dx = 〈1, 1
4
, 1

9
, . . . 〈, indeed, dx = (dt)2 and

0 < dx < dt < r (where we have not put ∗’s on the less than signs). Yet another
infinitesimal is dy = 〈 1

10
, 1

102
, 1

103
, . . .〉. Now 0 < dy < dx < dt < r, and s := dx

dy
=

〈 1/n
1/10n
〉 = 〈10, 102

2
, 103

3
, . . .〉 has the property that for any R ∈ R, R < s. We either say

that s is an unlimited number or we say that it is an infinite number.

Example 1.2.3. For x, y ∈ ∗R, we define x−y = 〈x1−y1, x2−y2, x3−y3, . . .〉, x+y =
〈x1 +y1, x2 +y2, x3 +y3, . . .〉, x ·y = 〈x1 ·y1, x2 ·y2, x3 ·y3, . . .〉, |x| = 〈|x1|, |x2|, |x3|, . . .〉,
and so on. We write that x ' y if |x−y| ' 0, and say that x and y are infinitely close
to each other, or we say that they are at an infinitesimal distance from each other.

Example 1.2.4. A function f : [0, 1] → R is continuous iff for all a ∈ [0, 1], [xn →
a]⇒ [f(xn)→ f(a)]. For any x ∈ ∗[0, 1], we define ∗f(x) = 〈f(x1), f(x2), f(x3), . . .〉.
From this, you can see that the function f is continuous at a iff [x ' a] ⇒ [∗f(x) '
f(a)]. An infinitesimal move in the domain of the function leads to an infinitesimal
move in the range.

1.3. Some Real Analysis Problems. The due date for these problems is Mon. Sept.
23. Hints come directly after.

The first set of problems are closely related to the previous examples.

A. CSZ 11.1.2.
B. CSZ 11.1.5.
C. CSZ 11.1.7.
D. CSZ 11.1.9.
E. CSZ 11.1.11.

The next set of problems ask you to push yourself further through the patterns of
“putting ∗’s on everything.”

F. n 7→ sn is a Cauchy sequence in R iff ∗sn ' ∗sm for all n,m ∈ ∗N \ N.
G. The continuous functions on [0, 1] are denoted C([0, 1]), the metric we use on them

is d∞(f, g) = maxt∈[0,1] |f(t)− g(t)|.
1. A function f : [0, 1]→ R belongs to C([0, 1]) iff for all t1 ' t2 ∈ ∗[0, 1], ∗f(t1) '
∗f(t2).

2. If T ∈ ∗PF ([0, 1]), ∗dH(T, ∗[0, 1]) ' 0, and t ∈ T solves ∗maxt∈T
∗f(t) for f ∈

C([0, 1]), then ◦t solves maxt∈[0,1] f(t).
3. Suppose that f ∈ C([0, 1]) and that f(0) > 0 > f(1). Using a set T as in the

previous problem, show that f(c) = 0 for some c ∈ (0, 1).
H. Some exercises with derivatives and related. Throughout, dx 6= 0.
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1. For r ∈ R, we define er =
∑∞

n=0
rn

n!
. Show that if m,m′ ∈ ∗N \ N and r ∈ ∗R is

finite, then
∑m

n=0
rn

n!
'

∑m′

n=0
rn

n!
.

2. Show that if dx ' 0, then edx ' 1 and (edx − 1)/dx ' 1. From this show that

for any x ∈ R, ex+dx−ex
dx

' ex.

3. Show that for x ∈ R and dx ' 0, (x+dx)n−xn
dx

' nxn−1.
4. If f and g are continuously differentiable at 0, g′(0) 6= 0, and f(0) = g(0) = 0,

then limx→0
f(x)
g(x)
' f(dx)

g(dx)
' f ′(0)

g′(0)
.

I. Show that if h ∈ ∗R+ \ R+, then (
√
h+ 1 −

√
h) ' 0. From this conclude that

limx→∞(
√
x+ 1−

√
x) = 0.

J. For every r ∈ R, there exists q ∈ ∗Q such that ◦q = r. In particular, {◦q : q ∈
∗Q, q finite }, is much larger than Q, while {◦r : r ∈ ∗R, r finite } = R.

1.4. Some Hints. Cauchy sequences: A sequence in X is a function s : N → X,
denoted above as n 7→ sn. The ∗’d version of a function is what one uses to think
about the values of sn, sm for infinite m,m′, that is m,m′ ∈ ∗N \ N. For a given
sequence n 7→ sn, and M ∈ N, define δM = sup{d(xm, xm′) : m,m′ ≥ M}. Note that
δM+1 ≤ δM , and that the sequence is Cauchy iff δM ↓ 0.

• Therefore, for arbitrary ε ∈ R++, ∗{M ∈ NδM < ε} contains all infinite m,m′ when
n 7→ sn is Cauchy. This means that for any ε > 0 and any pair of infinite integers
m,m′, d(sm, sm′) < ε, i.e. d(sm, sm′) ' 0.
• Now suppose that ∗sn ' ∗sm for all n,m ∈ ∗N \ N. For arbitrary ε ∈ R++, the
internal set {M ∈ ∗N : (∀m,m′ ≥ M)[d(sm, sm′) < ε] } contains arbitrary small
infinite elements, hence contains finite elements.

Continuous functions: By definition, a function f : [0, 1] → R is continuous at
a ∈ [0, 1] if for all sequences xn → a, f(xn)→ f(a).

• Let x = 〈x1, x2, . . .〉 be the equivalence class of any sequence converging to a, for
any ε ∈ R++, {n ∈ N : d(f(xn), f(a)) < ε} has only a finite complement, hence
d(∗f(x), f(a)) ' 0.
• Since [0, 1] is compact, for any t1 ' t2 ∈ ∗[0, 1], there is a unique a ∈ [0, 1] such that
a = ◦t1 = ◦t2, and d(∗f(t1), f(a)) ' 0 and d(∗f(t2), f(a)) ' 0.
• If T ∈ ∗PF ([0, 1]) with dH(T, ∗[0, 1]) ' 0, and f : [0, 1] → R is continuous and
f(0) > 0 > f(1), consider the internal set T++ = {t ∈ T : ∗f(t) > 0}, set t′ = maxT++.
Let a = ◦t′ and note that f(a) = 0.

Theorem 1.1 (Robinson). A metric space (X, d) is compact iff for every x ∈ ∗X,
there exists an a ∈ X such that d(a, x) ' 0.

Proof. Recall that a metric space (X, d) is compact iff it is both totally bounded and
complete.
⇒: Let x = 〈x1, x2, . . .〉 ∈ ∗X with X complete and totally bounded. By total
boundedness, there exists a finite subset F1 = {a1,1, . . . , a1,M1} such that for all a ∈ X,
d(a, F1) < 1

21
. Disjointify the finite open cover of X given by {B1/21(a1,m : m ≤ M1}

into the sets A1,m. The sets E1,m := {n ∈ N : xn ∈ A1,m} partition N, hence exactly
one, say E1,m1 , of them has µ-mass 1. Let n1 be the first element in E1,m1 .
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Disjointify an open cover of A1,m1 by 1
22

balls and repeat, letting n2 be the first
element of the set of integers E2,m2 that has µ-mass 1.

Continuing gives a Cauchy subsequence xnk
, which, by completeness has a limit in

X, call it a. For every k ∈ N, d(a, x) < 1
2k

, hence d(a, x) ' 0.
⇐: If X is not totally bounded, then there exists ε ∈ R++ such that for every finite
set F , there exists an x ∈ X such that d(x, F ) ≥ ε. Let F1 = {x1}, pick xn+1 such that
d(xn+1, Fn) ≥ ε, and set Fn+1 = Fn∪{xn+1}. Let x ∈ ∗X = 〈x1, x2, . . .〉. There can be
no a ∈ X that is the standard part of x because this would mean that d(a, x) < ε/3,
which would imply that along a subsequence xnk

, d(xnk
, xnk′

) < d(xnk
, a)+d(a, xnk′

) <
ε/3 + ε/3 < ε.

If X is not complete, then there exists a Cauchy sequence xn that is not converging
to any a ∈ X. Let x ∈ ∗X be the equivalence class 〈x1, x2, . . .〉. If a ∈ X is the
standard part of x, then d(xnk

, a) → 0 for some subsequence, but if any subsequence
of a Cauchy sequence converges, the whole sequence converges. �

2. Some Equilibrium Refinement

2.1. Notation. A finite game is Γ = (Ai, ui)i∈I where A := ×i∈IAi is finite and
ui ∈ RA. Mixed strategies for i ∈ I and ∆(Ai) := {µi ∈ RAi

+ :
∑

ai∈Ai
µi(ai) = 1}.

Utilities are extended to ×i∈I∆(Ai) by ui(µ) =
∑

a∈A ui(a)Πi∈Iµi(ai). The (relative)
interior of ∆(Ai) is denoted ∆◦i and defined by ∆◦i = {µi ∈ ∆(Ai) : µi � 0}. We will
use the notation µ \ νi for the vector (µ1, . . . , µi−1, νi, µi+1, . . . , µI) and we will pass
back and forth between point mass on ai, i.e. δai , and ai as convenient.

For µ ∈ ×i∈I∆(Ai) and j ∈ I, Brj(µ) := argmaxai∈Ai
ui(µ \ ai). With this notation

we have the starting point for non-cooperative game theory.

Definition 2.1. µ∗ is a Nash equilibrium if (∀i ∈ I)[µi(Bri(µ)) = 1]. The set of
Nash equilibria for a game is denoted Eq(Γ).

2.2. Refinement. Especially when the strategies ∆(Ai) are the agent normal form
strategies for an extensive form game, there are many Nash equilibria. One way to get
rid of them is to ask that they be robust to infinitesimal perturbations in the games.

Here are three perturbation based equilibrium refinement concepts, in increasingly
order of strength. After these three we have a version of a set-valued solution concept.

Definition 2.2. For ε ∈ ∗R++, µ ∈ ×i∈I∗∆◦i is ε-perfect if

(∀i ∈ I)(∀bi ∈ Ai)[ [max
ai∈Ai

ui(µ \ ai) > ui(µ \ bi)]⇒ [µi(bi) < ε] ]. (1)

µ∗ ∈ ×i∈I∆(Ai) is a perfect equilibrium if µ∗ = ◦µ for some ε-perfect µ with ε ' 0.
The set of perfect equilibria for a game is denoted Per(Γ).

Definition 2.3. For ε ∈ ∗R++, µ ∈ ×i∈I∗∆◦i is ε-proper if

(∀i ∈ I)(∀ai, bi ∈ Ai)[ [ui(µ \ ai) > ui(µ \ bi)]⇒ [µi(bi) < ε · µi(ai)] ]. (2)

µ∗ ∈ ×i∈I∆(Ai) is a proper equilibrium if µ∗ = ◦µ for an ε-proper µ with ε ' 0.
The set of proper equilibria for a game is denoted Pro(Γ).
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Definition 2.4. µ∗ ∈ ×i∈I∆(Ai) is strictly perfect if for all µ ∈ ×i∈I∗∆◦i ,
[ [µ ' µ∗]⇒ (∀i ∈ I)[µi(Bri(µ) ' 1] ]. (3)

The set of proper equilibria for a game is denoted Str(Γ).

Definition 2.5. A closed connected set S ⊂ Eq(Γ) is robust to perturbations if

(∀µ ∈ ×i∈I∗∆◦i )[ [dH(µ, ∗S) ' 0]⇒ (∀i ∈ I)[µi(Bri(µ)) ' 1] ]. (4)

A closed and connected S ⊂ Eq(Γ) is p-stable if it is robust to perturbations and no
closed, connected strict subset of S is robust to perturbations.

2.3. Some Game Theory Problems.

J. Prove the following inclusion results.
1. Every perfect equilibrium is a Nash equilibrium, Per(Γ) ⊂ Eq(Γ).
2. Every proper equilibrium is a perfect equilibrium, Pro(Γ) ⊂ Per(Γ).
3. Pro(Γ) 6= ∅.
4. Every strictly perfect equilibrium is a perfect equilibrium, Str(Γ) ⊂ Per(Γ).
5. Every strictly perfect equilibrium is a proper equilibrium, Str(Γ) ⊂ Pro(Γ).
6. If S is a p-stable set, then S ⊂ Per(Γ).
7. If S is a p-stable set, then S ∩ Pro(Γ) 6= ∅.

K. If µ∗ ∈ Per(Γ), then there exists µ ∈ ∗×i∈I ∆◦i such that (∀i ∈ I)[µi(Bri(µ
∗) ' 1],

but the reverse is not true. [This captures the difference between sequential and
trembling hand perfect equilibria.]

L. Give the set of perfect equilibria for the following game and show that it strictly
contains the set of proper equilibria.

L R A2

T (1, 1) (0, 0) (−1,−2)
B (0, 0) (0, 0) (0,−2)
A2 (−2,−1) (−2, 0) (−2,−2)

M. The following game has no strictly perfect equilibrium. Find its p-stable set of
equilibria.

L M R
T (1, 2) (1, 0) (0, 0)
B (1, 2) (0, 0) (1, 0)

3. Decision Theory with Full Support Probabilities

Readings for this section are Blume, L., Brandenburger, A., and Dekel, E. (1991a).
Lexicographic probabilities and choice under uncertainty. Econometrica, 59(1):61–79
and Blume, L., Brandenburger, A., and Dekel, E. (1991b). Lexicographic probabilities
and equilibrium refinements. Econometrica, 59(1):81–98.

Looking at strategies in ∗∆◦i made equilibrium refinement work pretty well, essen-
tially because at all points in a game tree, the players had to pay attention to all
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possibilities, but could assign relatively small probability to non-best responses. An-
other aspect of strictly positive probabilities is that one never has to condition on a
null set, all of the conditional probabilities are well-defined. This will save us a great
deal of hassle once we get to stochastic process theory.

3.1. The Basic Model. We assume that we have a probability space (Ω,F , P ) where
Ω is a ∗-finite set, F = P(Ω), and P , the prior distribution, is strictly positive.
Utility depends on a random state, ω ∈ Ω, and the choice of action, a ∈ A, u(a, ω).
When we work with games, ω will be the choices of other players.

Let E1, . . . , EK be ∗-finite partition of Ω, representing what the decision maker will
know before their decision. That is, before making a decision, one learns which Ek,
k ∈ {1, . . . , K} contains ω. In extensive form games, this corresponds to learning what
information set we are at. Because P is strictly positive, we never divide by 0 in the
following observation,

(∀A ∈ F)

[
P (A) =

∑
k

P (Ek)
P (A ∩ Ek)
P (Ek)

=
∑
k

P (Ek)P (A|Ek)

]
. (5)

Another way to put this is that one’s posterior beliefs, that is, beliefs after having
observed your information, about an event A are P (A|Ek). This equation tells us
that your average belief is your prior belief. As it holds for all A, we could write it
P (·) =

∑
k P (·|Ek)Pk in ∆(Ω) where Pk = P (Ek).

3.2. Bridge Crossing. The decision problem is

P : max
a1,...,aK∈A

∫
1Ek

u(ak, ω) dP (ω). (6)

This kind of decision theory leads us to Bayes’ law updating, and the K problems

Pk : max
a∈A

∫
u(a, ω) dP (ω|Ek). (7)

Recall the saying, “I’ll cross that bridge when I get to it.” It is usually understood
to mean that I’ll figure out what I need to do once I know more about the decision
problem. Here, what you will know is some one of the Ek.

Lemma 3.1 (Bridge-Crossing). (a∗1, . . . , a
∗
K) solves the decision problem P if and only

if each a∗k solves problem Pk.

The Bridge-Crossing Lemma tells us that solving each Pk and putting it back to-
gether is the same as solving P , and vice versa. Defining P (·|Ek) when P (Ek) = 0 is
not a straightforward business.

3.3. Heirarchies of Beliefs. For the rest of the semester, we will almost exclusively
be looking at the case when P ∈ ∗∆◦(Ω). In this case, P (Ek) > 0 for all k, which is
nice. The difference between the infinitesimal and non-infinitesimal P (ω|Ek) gives rise
to heirachies of beliefs as follows:

1. For P ∈ ∗∆◦(Ω), let Q1 = ◦P , and let E1 = {ω : Q1(ω) > 0}.
2. If Ec

1 6= ∅, define Q2 = ◦P (·|Ec
1), and let E2 = {ω : Q2(ω) > 0}.

3. If (E1 ∪ E2)c 6= ∅, define Q3 = ◦P (·|(E1 ∪ E2)c), and let E3 = {ω : Q3(ω) > 0}.
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4. And so on and so forth until some QK is reached (the process must end because Ω
is finite).

5. The heirarchy associated with P is (Q1, . . . , QK).

What is at work is the “order” of the infinitesimals.

Example 3.3.1. Let Ω = {ω1, ω2, . . . , ω7}, for an infinitesimal non-zero ε, and let

P = (1
2
, 1

2
− (ε+ ε2), 1

3
ε, 1

2
ε, 1

6
ε, 3

4
ε2, 1

4
ε2) so that K = 3 and

Q1 = (1
2
, 1

2
, 0, 0, 0, 0, 0)

Q2 = (0, 0, 1
3
, 1

2
, 1

6
, 0, 0)

Q3 = (0, 0, 0, 0, 0, 3
4
, 1

4
).

The two papers for this section work out some of the implications and properties
of a decision theory based on heirarchies like this. For game theory, what is at work
is perturbations in beliefs of agents in an agent normal form, and perturbations must
arise from other players playing strictly positive strategies.

4. Random Variables for Stochastic Process Theory

We’ll begin with a useful dynamic optimization problem with no stochastics, then
turn to the basics of random variables on ∗-finite probability spaces, then to stochastic
processes, which are collections of random variables indexed by time, in our case, by a
∗-finite time set with infinitesimal increments. The readings for this part of the course
are Chapters 1 - 8 of Nelson, E. (1987). Radically elementary probability theory, volume
117 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ.

4.1. A Deterministic, Dynamic Problem. For the following, partition the time
interval [0, T ] into N equal length parts,

[0, T ] = [0, T · 1
N

) ∪ [T · 1
N
, T · 2

N
) ∪ · · · ∪ [T · N−2

N
, T · N−1

N
) ∪ [T · N−1

N
, T ].

At the beginning of each sub-interval, Tn := [T · n−1
N
, T · n

N
), we will make a decision.

That decision cannot be changed until the beginning of the next interval. We will be
particularly interested in what happens when N ∈ ∗N\N so that ∆ = dt := T · 1

N
' 0.

N. We need to produce a total amount B of a good by time T . In each sub-interval, if
we produce at a rate r per unit of time, our cost per unit is linear in r, with slope
c1. The cost of storing an amount R is c2 · R per unit of time we store it. Letting
∆ = T · 1

N
be the length of the subintervals, the problem is

min
r1,...,rN

∑
n

[
c1 · (rn)2 ·∆ + c2

∑
m<n

rm ·∆

]
subject to

∑
n

rn ·∆ = B.

1. Characterize the solution to this minimiztion problem.
2. For infinite N , the function f(t) =

∑
n rn1Tn(t) is near-standard in C([0, T ]) iff

for all t1 ' t2, f(t1) ' f(t2).
3. For infinite N , the solution f ∗(t) =

∑
n r
∗
n1Tn(t) is near-standard in C([0, 1]).
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The point of developing all of this is that the standard part of f ∗ solves the problem

min
∫ T

0
(c1[S ′(t)]2 + c2S(t)) dt subject to S(0) = 0, S(T ) = B. (8)

To show this, we are going to need the nonstandard theory of integration, which often
turns out to be a theory of summation. Integration is a crucial thing that one does
with random variables, so we leave dynamic optimization knowing, as Arnold says,
“I’ll be back.”

4.2. Random Variables. Fix a ∗-finite probability space (Ω,F , P ) with F = P(Ω)
and P ∈ ∗∆◦(Ω).

Definition 4.1. A random variable is a an element X of RΩ.

Example 4.2.1. Ω = {1, . . . , n}, P (A) = #A
n

. It is often useful to take n = m! for

some infinite integer m. Define X(k) ∈ ∗[0, 1] by X(k) = k
n

. For any 0 ≤ a < b ≤ 1,
P (◦X ∈ (a, b]) ' (b − a), which looks like the uniform distribution. A useful fact:
if (M,d) is any complete separable metric space and µ is any probability on M , then
there exists a measurable f : [0, 1]→M such that µ(E) = Unif(f−1(E)). We will see
that this means that this probability space allows us to model (up to an infinitesimal),
all probabilities on all complete separable metric spaces.

Example 4.2.2. Let T = {0, 1
n
, 2
n
, . . . , n−1

n
, 1} be a ∗-finite set infinitely close to ∗[0, 1],

i.e. with n an infinite integer. Let Ω = {−1,+1}T and define P so that the canonical
projection mappings projt(ω) := ωt are an i.i.d. collection with P (ωt = −1) = P (ωt =
+1) = 1

2
.

From this, define X(t, ω) as follows: X(0, ω) ≡ 0, X(1, ω) = 1√
n
ω1, X(2, ω) =

1√
n
(ω1 + ω2), . . ., X( k

n
, ω) = 1√

n

∑k
i=1 ωi. This is a random walk model.

If r ∈ (0, 1] and k
n
' r, then X( k

n
, ·) is the sum of infinitely many i.i.d. random

variables that have been scaled so that Var(X( k
n
, ·)) ' r, and the oldest (deMoivre)

arguments for the central limit theorem should tell you that X( k
n
, ·) is infinitely close

to being a Gaussian distribution. Further for k < k′ < k′′, the random increments,
(X(k

′

n
, ·)−X( k

n
, ·)) and (X(k

′′

n
, ·)−X(k

′

n
, ·)) are independent. If you’ve seen a definition

of a Brownian motion, this looks awfully close.

Example 4.2.3. Let T = {0, 1
n
, 2
n
, . . . , n−1

n
, 1} be a ∗-finite set infinitely close to ∗[0, 1]

as before. Let Ω′ = {0, 1}T and define Q so that thet canonical projection mappings
projt(ω

′) := ω′t are an i.i.d. collection with P (ω′t = 1) = λdt where dt is the infinitesi-
mal size of the incremental steps in the time set, and λ ∈ R++. Define Y (0, ω′) ≡ 0,
Y ( 1

n
, ω′) = ω′1, Y ( k

n
, ω′) =

∑
i≤k ω

′
i.

For r ∈ (0, 1] and k
n
' 0, Y ( k

n
, ·) is infinitely close to having a Poisson(λr) dis-

tribution. Further, for k < k′ < k′′, the random increments, (Y (k
′

n
, ·) − Y ( k

n
, ·)) and

(Y (k
′′

n
, ·)− Y (k

′

n
, ·)) are independent. If you’ve seen a definition of a Poisson process,

this looks awfully close.

Example 4.2.4. We can glue the previous two examples as Ω × Ω′ so that P and Q
are independent. After doing that, we can define Z( k

n
, (ω, ω′)) = X( k

n
, ω) + Y ( k

n
, ω′).
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The central limit theorem has two parts: the one you are most likely to be used
to is like the X process, composed of infinitely many identical random pieces, all of
them very small, indeed infinitesimal; the other one is like the Y process, it allows
the largest of the infinitely many identical random pieces to have a non-infinitesimal
probability of being far away from 0, that is, not infinitesimal. This is the beginnings
of the study of infinitely divisible distributions and Levy processes.

We are going to be particularly interested in properties of the set of time paths
that arise. In the last three examples, pick an ω, an ω′, or a pair (ω, ω′). The time
paths are the functions t 7→ X(t, ω), t 7→ Y (t, ω′) and t 7→ Z(t, (ω, ω′)). After taking
care of the fact that T is a strict subset of ∗[0, 1], we will see that the X paths are
nearstandard in C([0, 1]), and that the Y paths and the Z paths are nearstandard in
D([0, 1]) (the cadlag paths with the Skorohod metric). In order to do this, we need
to understand what continuity looks like when stretched onto a set such as T , what
bounded fluctuations look like, and how infinite sums behave. This last will get us
into the ∗-finite versions of integration theory.

A big part of the arguments behind these results is Ulam’s theorem: every countably
additive probability on a complete separable metric space is tight, i.e. for all ε > 0,
there is a compact Kε carrying at least mass 1 − ε. This means that understanding
probabilities on compact (subsets of) metric spaces is part of the background we need.
Behind that is what is (mistakenly) called the Riesz representation theorem.

4.3. Expectations, Norms, Inequalities. Recall that we have in mind a ∗-finite
probability space (Ω,F , P ) with P strictly positive.

For A ∈ F , P (A) =
∑

ω∈A P (ω).
For a random variable X, EX :=

∑
ωX(ω)P (ω).

4.3.1. Expectations of some classic functions. Bilinear forms: for random variables X
and Y , EXY = E YX, and EXX > 0 unless X = 0. The norm of X is defined as√
EXX and denote ‖X‖2.
The class of constant random variables is a linear subspace of RΩ. The mapping

X 7→ EX is orthogonal projection onto that subspace, and εX := X − EX to the
projection.

For random variables X and Y : Var(X) := E (X−EX)2 = E (εX)2 is the variance

of X;
√

Var(X) is the standard deviation of X; Cov(X, Y ) := E (X −EX)(Y −E Y )

is the covariance of X and Y ; and ρX,Y := Cov(X,Y )√
Var(X)

√
Var(Y )

is the correlation, also

known as the cosine of the angle between the vectors X and Y .

4.3.2. Some norms. The Lp-norms, p ∈ [1,∞) are ‖X‖p := (E |X|p)1/p and ‖X‖∞ :=
maxω∈Ω |X(ω)|. Recall Jensen’s inequality, for any convex f : R→ R,

f(
∑
ω

X(ω)P (ω)) ≤
∑
ω

f(X(ω))P (ω), equivalently (9)

f(EX) ≤ E f(X), (10)

provable from the definition of convexity and induction.

Lemma 4.1. For all random variables X and ∞ ≥ p > q ≥ 1, ‖X‖p ≥ ‖X‖q.
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Proof. The case p =∞ is immediate, so we suppose that ∞ > p.
Suppose first that p > q = 1, from Jensen’s inequality using the convex function

f(r) = rp for r ≥ 0 on the random variable |X|, we have (E |X|)p ≤ E |X|p. Taking
p’th roots on both sides, E |X| ≤ (E |X|p)1/p = ‖X‖p.

For the last case, p > q ≥ 1, using the convex function f(r) = rp/q on the random
variable |X|q, we have (E |X|q)p/q ≤ E(|X|q)p/q = E |X|p. Taking p’th roots on both
sides, (E |X|q)1/q ≤ (E |X|p)1/p, that is, ‖X‖p ≥ ‖X‖q. �

This means that p 7→ ‖X‖p is an increasing function of p ∈ [1,∞), strictly in-
creasing unless X is a constant random variable. We know that all bounded mono-
tonic functions on subsets on R have a supremum. We now ask what that supremum
is. Let ω0 solve the problem maxω |X(ω)|. Because ‖X‖p ≥ (|X(ω0)|pP (ω0))1/p =
‖X‖∞P (ω0)1/p and P (ω0)1/p ↑ 1 as p ↑ ∞, we have limp↑∞ ‖X‖p = ‖X‖∞, hence
limp↑∞ ‖X‖p = ‖X‖∞.

4.3.3. The triangle inequality for norms. Recall that for vectors x,y ∈ R`, xy =
cos(θ)

√
xx
√
yy. From this, one can conclude that |xy| ≤

√
xx
√
yy, and that

√
xx =

max {xy :
√
yy = 1}. From this, we find for any vectors r, s,

√
(r + s)(r + s) ≤√

rr+
√
ss. This is the basis of the triangle inequality — take r = x−y and s = y−z

and find that the distance between x and z is less than the sum of the distances
between x and y and between y and z,

√
(x− z)(x− z) ≤

√
(x− y)(x− y) +√

(y − z)(y − z). We are after the same triangle inequality result for the ‖ ·‖p norms.
It is called Minkowski’s inequality. The starting point is the following, notice the part
where the conditions for equality versus strict inequality appear.

Lemma 4.2 (Hölder). For any random variables X, Y , and any p ∈ (1,∞), if 1
p

+ 1
q

=

1, then |EXY | ≤ ‖X‖p‖Y ‖q.

Proof. If X = 0 or Y = 0, the inequality is satisfied. For the other cases, we can divide
each X(ω) by κx := ‖X‖p and each Y (ω) by κy := ‖Y ‖q. After we have done that, the
left-hand side is also divided by κxκy, and we have reduced the problem to showing that∑

ω |X(ω)Y (ω)|P (ω) ≤ 1 when we know that
∑

ω |X(ω)|pP (ω) =
∑

ω |Y (ω)|qP (ω) =
1. Here is an odd-looking observation that will make the argument go, 1

p
+ 1

q
= 1 so

that we need only show that

∑
ω

|X(ω)Y (ω)|P (ω) ≤ 1

p

∑
ω

|X(ω)|p P (ω) +
1

q

∑
ω

|Y (ω)|q P (ω). (11)

Since the logarithm strictly concave, for any non-zero pair X(ω), Y (ω), we have

log(
1

p
|X(ω)|p +

1

q
|Y (ω)|q) ≥ 1

p
log(|X(ω)|p) +

1

q
log(|Y (ω)|q) (12)

with equality iff |X(ω)|p = |Y (ω)|q. Now, 1
p

log(|X(ω)|p)+1
q

log(|Y (ω)|q) = log(|X(ω)Y (ω)|),
so we have

log(
1

p
|X(ω)|p +

1

q
|Y (ω)|q) ≥ log(|X(ω)Y (ω)|). (13)

10



Since the logarithm is strictly monotonic, this means that 1
p
|X(ω)|p + 1

q
|Y (ω)|q ≥

|X(ω)Y (ω)|. Taking the probability weighted convex combination of these inequalities
yields what we were after,

1

p

∑
ω

|X(ω)|pP (ω) +
1

q

∑
ω

|Y (ω)|qP (ω) ≥
∑
ω

|X(ω)Y (ω)|P (ω) (14)

because now the inequality holds even if X(ω) = 0 or Y (ω) = 0. �
Let us return to the part of the proof where we said that we have “equality iff
|X(ω)|p = |Y (ω)|q.” In more detail, what we showed is that

∑
i |X(ω)Y (ω)| ≤

‖X‖p‖Y ‖q with equality when, for each i, we have X(ω) = sgn (Y (ω))|Y (ω)|q/p. Com-
bining yields the following.

Lemma 4.3. For each X ∈ R`, ‖X‖p = max‖Y ‖q=1 EXY .

From which we have the triangle inequality for the ‖ · ‖p-norms.

Lemma 4.4 (Minkowski). For any R, S ∈ R` and any p ∈ (1,∞), ‖R + S‖p ≤
‖R‖p + ‖S‖p.
Proof. Same logic as the vector case. �

4.3.4. Chebyshev. Or was that Tchebyshov? For X ≥ 0 and r > 0, X ≥ r1X≥r for
every ω, hence EX ≥ rE 1X≥r, turning it around we have

P (X ≥ r) ≤ 1

r
E X. (15)

For any random variable X, r > 0, and p > 0, {|X| > r} = {|X|p > rp} so that

P (|X| ≥ r) ≤ 1

rp
E |X|p. (16)

I’ve seen both of these (and some other forms) called Chebyshev’s inequality.

4.4. Vector Algebras of Random Variables. Recall for a random variable X
and non-empty A, E (X|A) = 1

P (A)

∑
ω∈AX(ω)P (ω) = 1

P (A)
EX · 1A. When A =

{A1, . . . , AK} is a partition of Ω, E (X|A) is, by definition, the random variable∑
k E (X|Ak) · 1Ak

(ω). Letting X = 1B, we have E (X|A) = P (B|A) and P (B|A) =
E (1B|A). This is another random variable.

The trick with vector algebras of functions is that they always take the form
span {1Ak

: k = 1, . . . K} where {A1, . . . , AK} is a partition of Ω. This will mean
that conditional expectations are orthogonal projections.

We are going to abuse notation and also use A ⊂ RΩ to be a vector algebra (of
functions). Contrary to some usages, we will always assume that our vector algebras
contain the constant functions.

Definition 4.2. A ⊂ RΩ is a vector algebra if for all X, Y ∈ A and all α, β ∈ R,

a. α1Ω ∈ A,
b. αX + βY ∈ A, and
c. XY ∈ A.

Atoms are, historically, the indisolubly small objects.
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Definition 4.3. An atom of a vector algebra A is a maximal event on which all
elements of A are constant.

For any atom A and ω 6∈ A, let Y ∈ A have the property that Y (ω) 6= Y (A), define

Xω(·) =
Y (·)− Y (ω)

Y (A)− Y (ω)
. (17)

Note that Xω(ω) = 0, Xω(A) = 1, and Xω ∈ A. Now consider the function

R(·) = Πω 6∈AXω(·). (18)

What we have is that R = 1A. That is the hard part of the argument behind the
following.

Lemma 4.5. If A is a vector algebra and {A1, . . . , AK} is its collection of atoms, then
A = span ({1Ak

: k = 1, . . . , K}).

The following is a nearly immediate corollary.

Lemma 4.6. The mapping X 7→ E (X|A) is orthogonal projection.

4.5. Stochastic Processes. For this course, the time set, T = {t0 < t1 < · · · < tN},
will be a member of ∗PF (R) with the property that (tn+1 − tn) ' 0 for n = 1, . . . , N .
We will often take t0 = 0 and tN = 1, another frequent option has tN unlimited.

Definition 4.4. A stochastic process on T is a function ξ : T → RΩ.

It is often useful to think of this in the form ξ : T×Ω→ R. Time paths are functions
t 7→ ξ(t, ω), ω ∈ Ω. Picking ω according to P gives us the random time path ξ(·, ω).

We are going to need ways of talking about strong laws, central limit theorems,
properties of time paths, and we are going to want these to be internal. At this point,
it makes sense to go back and be a bit more clear about what we meant by “putting
∗’s on everything.”

5. Putting ∗’s on Everything Redux

The basic device for us is the set of µ equivalence classes of sequences where µ is a
purely finitely additive “point mass.” This material is based on Ch. 11.5 in Corbae, D.,
Stinchcombe, M. B., and Zeman, J. (2009). An introduction to mathematical analysis
for economic theory and econometrics. Princeton University Press, Princeton, NJ After
this we turn to superstructures, then putting ∗’s on superstructures.

5.1. Purely Finitely Additive Point Masses. We are interested in a purely finitely
additive probability µ : P(N) → {0, 1}. Probabilities taking on only the values 0 or
1 are best thought of as point masses, and we will return to the question “Point
mass on what?” at some point later. These probabilities can also be understood as
µ(A) = 1F(A) where F ⊂ P(N) is a free ultrafilter on the integers, which contains
a bunch of as-yet-undefined terms.
F ⊂ P(N) is a filter if it is closed under finite intersections, A,B ∈ F , and supersets,

A ⊂ B and A ∈ F imply B ∈ F .
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Examples: F(n) = {A ∈ P(N) : n ∈ A}; the Frechet filter (aka the cofinite filter),
F cof = {A ∈ P(N) : Ac is finite }; the trivial filter, F = {N}; the largest filter,
F = P(N).

A filter is proper if it is a proper subset of P(N), so no proper filter can contain ∅.
We will only work with proper filters from here onward.

Note that
⋂
{A : A ∈ F(n)} = {n} 6= ∅ while

⋂
{A : A ∈ F cof} = ∅. A filter F is

free if
⋂
{A : A ∈ F} = ∅.

A (proper) filter is maximal if it is not contained in any other filter. A (proper)
filter is an ultrafilter if for all A ∈ P(N), A ∈ F or Ac ∈ F .
F(n) is an ultrafilter, and cannot be a strict subset of any other (proper) filter.

Lemma 5.1. A (proper) filter is maximal iff it is an ultrafilter.

Proof. A little bit of arguing. �
Since F cof is a proper, free filter, the following implies that free ultrafilters exist, at

least if you accept Zorn’s Lemma, which is equivalent to the Axiom of Choice.

Theorem 5.1. Every proper filter is contained in an ultrafilter.

Proof. Zorn’s lemma plus the previous result. �

Relevant properties of µ(A) := 1F(A) when F is a free ultrafilter: µ(A) = 0
for all finite A; µ(A∪B) = µ(A)+µ(B) if A∩B = ∅; µ(N) = 1; [µ(A) = µ(B) = 1]⇒
[µ(A ∩ B) = 1]; µ(A) = 1 and A ⊂ B imply µ(B) = 1; if A1, . . . , AK is a partition of
N, then µ(Ak) = 1 for exactly one k ∈ {1, . . . , K}.

5.2. The equivalence relation ∼µ and ∗X. For any set X, XN denotes the class
of X-valued sequences. For x, y ∈ XN, x ∼µ y if µ({n ∈ N : xn = yn}) = 1. We define
star-X by ∗X := XN/ ∼µ.

We will spend the rest of the semester working out what we have defined, and what
it is good for. Special cases of interest take X = R, or X = PF (A), the class of
finite subset of a set A. To do all of this once in an consistent fashion, we work with
superstructures.

5.3. Superstructures. Readings: Ch. 2.13 and 11.2 in Corbae, D., Stinchcombe,
M. B., and Zeman, J. (2009). An introduction to mathematical analysis for economic
theory and econometrics. Princeton University Press, Princeton, NJ

We start with a set S containing R and any other points we think we may need
later (which will not be very much).

Definition 5.1. Define V0(S) = S and Vn+1(S) = Vn(S)∪P(S). The superstructure
over S is ∪∞n=0Vn(S). For any x ∈ V (S), the rank of x is the smallest n such that
x ∈ Vn(S). S is a set, and anything in V (S) with rank 1 or higher is a set, nothing
else is a set.

In particular, every set has finite rank, which avoids Russell’s paradox. A state-
ment A(x) is the indicator function of set, where we interpret A(x) = 1 as “the
statement A is true for x.”
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Examples: ordered pairs; functions from R to R; the set of sequences in R; the set of
Cauchy sequences in R; R`

+; rational preference relations on R`
+; rational preferences

on R`
+ that can be represented by C∞ utility functions; the Hilbert cube [0, 1]N with

the metric d(x, y) =
∑ |xn−yn|

2n
; the collection of Gδ’s in the Hilbert cube; the collection

of Polish spaces; the collection of compact metric space games with I players.

5.4. Defining V (∗S) inductively. Now would be a good time to recall the properties
of our {0, 1}-valued, purely finitely additive µ.

1. Let Gn be a sequence in V0(S), define (G1, G2, . . .) ∼ (H1, H2, . . .) if µ({n ∈ N :
Gn = Hn}) = 1 and for any sequence, let 〈G1, G2, . . .〉 denote its equivalence class.
V0(∗(S) is defined as the set of these equivalence classes. If G = 〈G,G,G, . . .〉, then
G is a standard point, otherwise it is nonstandard point.
a. 0 = 〈0, 0, 0, . . .〉, more generally r = 〈r, r, r, . . .〉, r ∈ R, are typical standard

points.
b. 〈1, 1

2
, 1

3
, . . .〉 ' 0, 〈r+ 1, r+ 1

2
, r+ 1

3
, . . .〉, and 〈1, 4, 9, 16, 25, . . .〉 are nonstandard

points, an infinitesimal, a near-standard (aka limited) point, and an infinite (aka
unlimited) point.

2. Let Gn be a sequence in V1(S) that is not a sequence in V0(S). V1(∗S) is defined
as the union of V0(∗S) and the set of µ-equivalence classes of such sequences. An
element x = 〈xn〉 of V0(∗S) belongs to G = 〈Gn〉 if µ{n ∈ N : xn ∈ Gn} = 1,
written x∗ ∈ G or x ∈ G. If G = 〈G,G,G, . . .〉, then G is standard, otherwise it is
internal.
a. 〈[0, 1], [0, 1], [0, 1], . . .〉 is the standard set we denote ∗[0, 1], ∗R+ = 〈R+,R+,R+, . . .〉.
∗[0, 1] contains the standard point 〈r, r, r, . . .〉 as long as 0 ≤ r ≤ 1, ∗R+ contain
unlimited points such as the factorials 〈n!〉. ∗[0, 1] also contains the infinitesi-
mal 〈1, 1

2
, 1

3
, . . .〉, and the nearstandard point 〈r + 1, r + 1

2
, r + 1

3
, . . .〉 as long as

0 ≤ r < 1.
b. F = 〈{0, 1}, {0, 1

2
, 1}, {0, 1

4
, 2

4
, 3

4
, 1}, . . . is an internal set satisfying dH(F, ∗[0, 1]) =

〈1
2
, 1

4
, 1

8
, . . .〉 ' 0. The function dH does not belong to V1(∗S), and we should be

able to figure out when it does appear.
3. Let Gn be a sequence in Vn+1(S) that is not a sequence in Vn(S). And so forth and

so on . . . .
a. The Hausdorff metric for R is a function from pairs of compact subsets of R to

R+. Every compact subset of R belongs to V1(S). The class of compact sets
belongs to V2(S). Every ordered triple of the form (K1, K2, r), r ∈ R, belongs
to V3(S). dH is a particular subset of such triples, hence belongs to V4(S).
Letting KR denote the compact subsets of R, for every pair Ka = 〈Ka,1, Ka,2, . . .〉
and Kb = 〈Kb,1, Kb,2, . . .〉 in ∗KR, we have set things up so that dH(Ka, Kb) =
〈dH(Ka,1, Kb,1), dB(Ka,2, Kb,2), . . .〉.

b. If (Ω,F , P ) is a finite probability space with F = P(Ω), then RΩ is the set of
random variables on Ω. If (Ω,F , P ) = 〈(Ω1,F1, P1), (Ω2,F2, P2), (Ω3,F3, P3) . . .〉,
then RΩ = 〈RΩ

1 ,RΩ
2 ,RΩ

3 , . . .〉 is the set of ∗-random variables on the internal set
Ω = 〈Ω1,Ω2,Ω3, . . .〉.

Some more examples.
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Example 5.4.1. ∗N is standard while F = 〈{k/2n : k = 0, . . . , n · 2n}〉 is an internal
subset of ∗R+ with the property that for all limited r ∈ R, d(r, F ) ' 0.

Example 5.4.2. ∗C([0, 1]) is standard while Poly = 〈span ({xk : k = 0, . . . n})〉 is
an internal subset of ∗C([0, 1]), and the Stone-Weierstrass theorem tells us that every
standard f ∈ ∗C([0, 1]), d(f, Poly) ' 0.

6. Internal Sets for Stochastic Processes

To recognize when we have an internal set, it is useful to know when we don’t.

6.1. Some External Sets.

Theorem 6.1. The following sets are external.

a. {n ∈ ∗N : n is standard }.
b. {n ∈ ∗N : n is nonstandard }.
c. {r ∈ ∗R : r is limited }.
d. {r ∈ ∗R : r is unlimited }.
e. {r ∈ ∗R : r is infinitesimal }.

Proof. �
Here is an implication that will be useful many times.

Lemma 6.1 (Robinson). If n 7→ xn is an internal function (i.e. its graph is an internal
set) and xn ' 0 for all limited n, then there exists an unlimited m such that xn ' 0
for all n ≤ m.

6.2. Statements. We are going to be interested in Theorems/Lemmas/Propositions
(TLPs) that have statements of the form (∀x ∈ X)[A(x)⇒ B(x)] and (∃x ∈ X)[A(x)].
The set X will belong either to V (S) or to V (∗S), and statements A(·) can be identified
with sets A = {x ∈ X : A(x)}, this being a set in V (S) or V (∗S). This means that
the first kind of TLP is the statement A ⊂ B, and the second kind of TLP is the
statement X ∩ A 6= ∅.

The transfer principle has a deceptively simple formulation: A ⊂ B in V (S) iff
∗A ⊂ ∗B in V (∗S); and X ∩ A 6= ∅ in V (S) iff ∗X ∩ ∗A 6= ∅ in V (∗S).
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