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Abstract

Under study are games in which players receive private signals and then simultaneously choose actions
from compact sets. Payoffs are measurable in signals and jointly continuous in actions. This paper gives
a counter-example to the main step in Cotter’s [K. Cotter, Correlated equilibrium in games with type-
dependent strategies, J. Econ. Theory 54 (1991) 48–69] argument for correlated equilibrium existence for
this class of games, and supplies an alternative proof.
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1. Introduction

This paper studies equilibrium existence for games in which players receive private signals
(their types), and then simultaneously choose actions from compact sets. By assumption, the pay-
offs are measurable in signals, jointly continuous in actions, and integrable. This class of games
has been used to model firm competition with private information, strategic signaling, purifica-
tion of mixed strategy equilibria, and wars of attrition.
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Despite the continuity in actions, the expected utility payoff functions in these games often
fail to be jointly continuous, and Simon [32] showed that Nash equilibria do not generally exist.
The discontinuities are serious enough that there are correlated equilibria that are only reachable
as limits of strategies that fail to be ε-equilibria for any ε close to 0. The companion paper [35]
examines the properties of these discontinuities in more detail.

1.1. Correlated equilibria

The correct generalization of Aumann’s [3] correlated equilibrium to this class of games is
given in Cotter [8]. That paper approximates this class of measurable-continuous games by re-
stricting players to strategies that are measurable with respect to increasingly fine sequences of
finite sub-partitions of their signal spaces. The increasingly fine aspect of the sequences means
that the players can nearly play any of their strategies, but, in taking limits of such sequences of
strategies, correlation between the players’ actions can be lost.

Cotter’s [8] argument for the existence of correlated equilibria has two steps. First, the com-
pactness of the set of finitely additive probabilities (with respect to a topology making the
expected utilities continuous) guarantees the existence of convergent sequences of strategies.
Second, a limit argument is given to show that the finitely additive limits can be replaced by
legitimate, countably additive correlation devices.

Example A shows that the limit argument is not correct, that one needs some other repre-
sentation of the correlation lost in taking the limit. A novel class of ‘diagonally concentrated’
probability spaces provides the representation. Theorem A uses this class to deliver the existence
of correlated equilibria.

1.2. On the use of nonstandard analysis in the proof

Diagonally concentrated probability spaces are products of two probability spaces. The first
is a standard space, here taken to be a player’s space of signals, and the second is a nonstandard,
expanded version of the same space. The reason this works so well is that nonstandard spaces
contain elements that represent the fine details of sequences while taking limits suppresses them.1

In R, the four sequences

x − 1/n, x − 1/n2, x + 1/n2, and x + 1/n (1)

all converge to x. This single limit point represents the tail behavior of all four sequences, and
this suppresses the details: the first and second sequence converge from below, the third and the
fourth from above; the middle two sequences converge at a much faster rate than the outer two
sequences.

The nonstandard, expanded version of R is denoted ∗
R. As well as containing every r ∈ R, ∗

R

contains an infinitesimal, denote it by ε, that represents the sequence 1/n. The new number, ε,
is both strictly positive and smaller than any r ∈ R++. With ε, the four sequences in (1) are
represented by

x − ε, x − ε2, x + ε2, and x + ε. (2)

1 Both Lindström [21] and Corbae, Stinchcombe, and Zeeman [7, Chapter 11] develop nonstandard analysis building
directly on intuitions from sequences and limit constructions.
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Here, the first two nonstandard numbers are strictly less than x, the second two strictly larger.
Further, ε2/ε = ε is infinitesimal, so the middle two numbers are infinitely closer to x than the
outer two numbers.

Suppose that a player’s signal belongs to R and has the distribution P . A diagonally concen-
trated probability μ corresponding to P is a probability on R × ∗

R with the following property:
for any measurable E,

μ
(
E × ∗

R
) = μ

(
R × ∗E

) = P(E), (3)

where ∗E ⊂ ∗
R is the nonstandard expansion of E ⊂ R. The property that for all n ∈ N,

μ({(x, x′) ∈ R × ∗
R: |x − x′| < 1/n}) = 1 is why these probabilities are called diagonally con-

centrated.
This paper combines Cotter’s approximations with nonstandard representations of the se-

quences of finite partitions of the spaces of signals. In R, the limit of any sequence of σ -fields
generated by finite partitions that become arbitrarily fine is the usual Borel σ -field. By contrast,
in ∗

R, the limit is a σ -field based on a partition of ∗
R into elements having infinitesimal diam-

eter, and the partition depends on the chosen sequence. The nonstandard representations of the
sequences of finite partitions keeps the correlation from disappearing, and the standard part keeps
track of the signal itself.

The difficult part of the argument is to guarantee that the information in the nonstandard
representations of the limits is innocuous, that it reveals none of the players’ private information.2

Intuitively, taking limits of approximations in which players know less about others’ private
information should not give rise to situations in which they know more. However, this intuition
is decidedly partial [35, Example 5.3].

1.3. Outline

The next section contains examples of the games under study as well as the notation and
assumptions used throughout. Section 3 contains the counterexample, an explanation of finitely
additive correlating devices, and an explanation of why they do not lead to correlated equilibrium
existence for this class of games.

Section 4 is the longest. It: (1) reformulates correlated equilibria in a fashion that meshes
with game models that use exhaustive, star-finite partition approximations to the agents’ infor-
mation; (2) shows that these star-finite approximations are innocuous informational expansions;
(3) shows that they have Nash equilibria; and (4) shows that the Nash equilibria of any innocuous
informational expansion of a game is a correlated equilibrium of the original game.

The companion paper to this one [35] is a more thorough study of the information structures in
these games. It provides a novel strategic interpretation of the conditions known to be sufficient
for the existence of a Nash equilibrium, and shows that these conditions are strongly nongeneric.
Further, it shows that the discontinuities of the expected utility functions that arise are of the
kind that cannot be “fixed” by the addition of ideal points. Of particular interest is the notion
of a balanced and an unbalanced approximation to an infinite game, a concept that should help
illuminate the differences between finite and infinite extensive form games.

2 In signaling games and in games of almost perfect information, limits of approximations introduce cheap talk [24,12].
In normal form games, approximations may introduce specialized utility transfers by a randomizing referee [31,15]. More
generally, limits of approximations can destroy information structures, forcing unwilling revelation of private informa-
tion, allowing observation of what should be unobservable, or allowing concealment of what should be observable [34].
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2. Examples, notation and assumptions

Under study are finite player games in which the players have differential information, iden-
tified as their types. Types are distributed to a commonly known distribution. As a function of
their types, the players simultaneously pick actions in compact sets. Payoffs are measurable in
information/type, continuous in actions, integrable, and, except when otherwise specified, prob-
abilities are countably additive. This section discusses some of the uses of this class of games,
sets notation and assumptions, demonstrates the discontinuity of the expected utility functions,
and discusses Cotter’s [8] insights into the limits it is necessary to place on correlation devices
for this class of games.

2.1. Examples

The class of games under study appear in our models of firm competition with private, stochas-
tic, cost structures, demand functions, or other payoff relevant information. They also appear in
strategic signaling games, in purification interpretations of mixed strategy equilibria, and in wars
of attrition. Because of the assumption that payoffs are continuous in actions, they are not nat-
ural models of auctions.3 The known Nash existence result that applies to this class of games
for all integrable (ui(·))i∈I depends on an informational diffuseness condition due to Milgrom
and Weber [27].4 As shown in [35, Theorem 1], this assumption requires that there not be any
continuously distributed, commonly observable information.

2.1.1. Cournot competition with private information
Firms i ∈ I have increasing, convex cost functions ci(·). As a function of the privately

known, stochastic cost structures, ci(·), and signals about demand conditions, ωi , they pick
their quantities qi ∈ [0, qi]. Expected profits conditional on signal ωi are E(πi(c, q)|ωi) =
E([qipi((qj )j∈I )− ci(qi)]|ωi) where pi(·) is i’s, possibly random, demand function. One might
expect the cost functions and the signals about demand conditions to contain, in general, many
continuously distributed common components, including input prices, technological knowledge,
and other market information. If so, the question of Nash equilibrium existence is open.

2.1.2. Signaling games with finite signal spaces
Two players observe their private information, ω1 and ω2. Then the sender chooses a1 in a

finite space A1. The receiver observes a1 and picks a point in K(a1), a compact metric space.
Thus, the receiver’s action space is A2 =×a1∈A1

K(a1).
If the ui are measurable in ω, continuous on each K(a1), and integrable, then the signaling

game fits into the class considered here. When ω2 is a degenerate random variable and A1 is
not finite, Manelli [24] shows that, to accomodate limits of approximations and to guarantee
equilibrium existence, the appropriate strategy space for the sender includes an expansion to
allow for cheap talk. When ω1 and ω2 have a continuously distributed, commonly observable
information, the question of Nash equilibrium existence is open.

3 Introducing discontinuities, while no longer conceptually difficult, requires a great deal of supplementary technique
(Jackson et al. [15], Jackson and Swinkels [16], Stinchcombe [34]), technique that would obscure the lessons that these
games offer about the treatment of infinite models of differential information in game theory.

4 Balder [5] proves equilibrium existence after generalizing essentially every aspect of the games studied by Milgrom
and Weber except the information diffuseness condition.
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2.1.3. Purifications
Randomization is crucial to the existence of saddle points in 0-sum games, and, more gener-

ally, to Nash’s (1950) equilibrium existence theorem for finite games. Despite its crucial role in
game theory, randomization is, to many, not an attractive behavioral assumption. Bellman and
Blackwell [6] and Dvoretzky et al. [11] were early studies of the extent to which randomization
might not be needed in games. Harsanyi [14] shows that, generically at least, mixed strategy
equilibria are observationally equivalent to pure strategy equilibria of infinitesimal perturbations
of the game. A stronger version of this result is in Govindan, Reny, and Robson [12].

Fix a game G(v) = (Ai, vi)i∈I where each Ai is finite, v = (vi)i∈I , and the utilities vi ∈ R
A,

A =×i
Ai . For all v outside a closed set having Lebesgue measure 0, every equilibrium of

G(v) = (Ai, vi)i∈I is regular.
Let (ωi)i∈I be an independent collection of random vectors in R

A assigning, for all i ∈ I and
for any fixed strategy σ−i of the players, mass 0 to the event that (ωi(ai, ·) − ωi(a

′
i , ·)) lies in

the hyperplane orthogonal to σ−i (e.g. if the distribution of the ωi has a density with respect to
Lebesgue measure). A perturbation of G(v) is an incomplete information game in which each
i ∈ I observes the vector ωi , picks an ai ∈ Ai , and payoffs are vi(a) + ωi(a). A perturbation
is a δ-perturbation if the distribution of the ωi is within δ of point mass on 0 in the weak∗
topology.

For regular equilibria σ , [12] shows that for all ε > 0, there is a δ > 0 such that any
δ-perturbation of G(v) has an essentially strict, hence pure strategy, equilibrium inducing a
distribution on A that is within ε of σ . The interpretation is that mixed strategies played in
equilibrium are, observationally, impossible to distinguish from strict pure strategy equilib-
ria in nearby games. These nearby games have independent idiosyncratic shocks to utilities,
and the pure strategy equilibria of these nearby games “purify” the (regular) mixed equilibria
of G(v).

The independence of the ωi(a) rules out the existence of any continuously distributed com-
mon information, and is crucial to the existence of Harsanyi’s purifications. Radner and Rosen-
thal [28] give a generic game G(v) and expand it using ωi(a) that are uniformly distributed on
a bounded triangle in R

A. Posterior distributions are, with probability 1, atomless, which is part
of what is needed for purification.5 Because of the way that independence of the signals fails
in Radner and Rosenthal’s example, the game has a unique equilibrium in which the players
randomize after seeing a probability 1 set of signals.

The finiteness of A is also crucial to exact purification. Khan et al. [18] present a game in
which Ai = [0,1] and exact purification is not possible, even when types are smoothly and in-
dependently distributed. They further show that exact purification is possible when the Ai are
countable.

2.1.4. Wars of attrition
Two players have types ti smoothly distributed in (0,1). A bounded, increasing value func-

tion v : (0,1) → [0, v] gives the value of an object, in terms of the cost of time spent fighting,
to a player of type ti . A pure strategy for i is a mapping bi from (0,1) to Ai = [0,2 · v], with
bi(ti) being the time at which the player stops fighting for the object. If player j plays a strat-
egy giving an atomless cdf Fj on Aj , the payoff to i of fighting until a is ui(ti , (a, bj )) =∫ a

0 (v(ti) − s) dFj (s) − a(1 − Fj (a)).

5 In related work, Aumann et al. [4] showed that each player having, with probability 1, a non-atomic posterior is
sufficient for approximate purification.
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In games with independent types, Milgrom and Weber [27] show that the first order conditions
∂ui/∂a = 0 contain a great deal of information about pure strategy equilibria. The independence
of types rules out any continuously distributed common information, and is the leading special
case of Milgrom and Weber’s informational diffuseness requirement. They show that if the joint
distribution of the types is diffuse in the sense of having a density with respect to the product
of its marginals, then the game has jointly continuous expected utility functions and compact
strategy sets, leading to Nash equilibrium existence.

2.1.5. Special classes of games
An alternative approach to equilibrium existence is to look for useful classes of games

by putting conditions on the utility functions and the joint distribution of types. Mamer and
Shilling [23] study 0-sum games and show that information diffuseness can be dispensed with.
Athey [2] gives joint conditions on the signals and the utility functions that give rise to single
crossing condition that leads to the existence of pure strategy Nash equilibria. McAdams [26]
contains a large generalization of Athey’s analysis. Reny [29] goes further, substituting a weaker
best response monotonicity condition and showing that one does not need Milgrom and Weber’s
informational diffuseness in this setting.

2.2. Notation and assumptions

For each i ∈ I , I a finite set of players, the “type” ωi belongs to a measure space (Ωi, Fi ).
The joint distribution of ω = (ωi)i∈I ∈ Ω =×i

Ωi is given by a countably additive probabil-
ity P defined on a σ -field F ,

⊗
i Fi ⊂ F . Summarizing, an information structure is a triple,

(×i
(Ωi, Fi ), F ,P ).

Each i ∈ I has a compact, metric action space Ai , and A :=×i
Ai . The utility functions, ui ,

are assumed to belong to L1(P ;C(A)), the set of integrable functions from Ω to the separa-
ble Banach space C(A) (with the supnorm, ‖ · ‖∞, the associated topology and Borel σ -field).
Specifically, the assumption is that for all i ∈ I ,

∫
Ω

‖ui(ω)‖∞ P(dω) < ∞. Player i receives
utility ui(ω)(a) if ω occurs and a is chosen by the players.

	i is the set of (countably additive) Borel probabilities on Ai with the weak∗ topology and
the corresponding σ -field. Bi (Fi ) is i’s set of behavioral strategies, the Fi -measurable func-
tions from Ωi to 	i . Bi (Fi ) is given the weak∗ topology, so that a sequence (or net if need
be) bn

i → bi iff
∫
Ω

〈vi(ω), bn
i (ω)〉P(dω) → ∫

Ω
〈vi(ω), bi(ω)〉P(dω) for all vi ∈ L1(P ;C(Ai))

where 〈f,μi〉 := ∫
Ai

f (ai)μi(dai) for f ∈ C(Ai) and μi ∈ 	i . Cotter [8] showed that Bi (Fi ) is
compact, and metrizable if Fi is countably generated.

Given a vector b = (bi)i∈I ∈ B :=×i
Bi (Fi ), player i’s expected utility if b is played is

defined by

uP
i (b) =

∫
Ω

〈
ui(ω),×i

bi(ω)
〉
P(dω) (4)

where 〈f, ν〉 := ∫
A

f (a) ν(da) for continuous f : A → R and Borel probabilities ν, and×i
bi is

the product probability on A having bi as the i’th marginal. For b ∈ B and b′
i ∈ Bi , (b\b′

i ) denotes
the strategy vector b with b′

i substituted into the i’th component. (Bi (Fi ), u
P
i )i∈I denotes the

normal form game.

Definition 2.1. A (Nash) equilibrium for (Bi (Fi ), u
P
i )i∈I is a vector b ∈ B such that for all i ∈ I

and all b′ ∈ Bi , uP (b) � uP (b\b′).
i i
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2.3. Discontinuous expected utility functions

For fixed b−i , the expected utility function uP
i (·, b−i ) is individually continuous, hence

achieves its maximum on the compact set Bi (Fi ). If the Fi are not only countably generated,
but generated by a countable partition, then the expected utilities are jointly continuous. Jointly
continuous utilities and compact strategy spaces imply that (Bi (Fi ), u

P
i )i∈I has a Nash equilib-

rium.
If 2 or more players can both infer the value of a continuously distributed random variable,

then for generic ui in L1(P ;C(Ai)), the expected utilities, fail joint continuity [35, Theorem 2].
Whether or not Nash equilibria exist in this case is not known. The failure of joint continuity can
be seen in

Example 2.1 (Milgrom and Weber, Cotter). For the two players, Ω1 = Ω2 = [0,1], P is the
uniform distribution on the diagonal so that, with probability 1, the common value of the ωi is
known to each player. The action spaces are Ai = {Li,Ri}. Payoffs are (10,10) if the players
coordinate on (L1,L2), (2,2) if they coordinate on (R1,R2), and (0,0) otherwise. Expected
payoffs are (6,6) if both play the strategy bn

i (ωi) = δLi
(pointmass on Li ) if ωi ∈ (k/2n,

(k + 1)/2n] with k even, bn
i (ωi) = δRi

otherwise.
Let ηn denote the distribution on Ω × A induced by bn. The ηn have a unique weak limit, η,

determined by the equalities

η
(
E × {

(L1,L2)
}) = 1

2
P(E), η

(
E × {

(R1,R2)
}) = 1

2
P(E), (5)

E ∈ F . η represents a public signal correlated equilibrium, and has expected payoffs (6,6). By
contrast, the unique weak∗ limit of the bn

i is uncoordinated strategy (b∞
1 , b∞

2 ) where b∞
i (ω) ≡

1
2δLi

+ 1
2δRi

. This uncoordinated, non-equilibrium strategy vector delivers payoffs of (3,3).

In this example, the payoffs do not depend on ω. It is not the measurable dependence on ω that
gives rise to the failure of joint continuity. Rather, the discontinuity arises because the players
both observe the value of a continuously distributed signal. This allows them to play strategies
that become arbitrarily tightly coordinated, but the coordination is lost in the limit.

2.4. Nonstandard signaling spaces

An outline of the use of nonstandard versions of signal spaces can be seen in Example 2.1.
If ε ∈ ∗

R is a non-zero infinitesimal, then 1/ε ∈ ∗
R is an infinitely large number. Among the

infinitely large numbers in ∗
R are the infinitely large integers, ∗

N ⊂ ∗
R.

The nonstandard representation of the sequence of finite partitions, Pn = {(k/2n,

(k + 1)/2n]: k = 0, . . . ,2n − 1}, is a ∗finite partition PN = {(k/2N, (k + 1)/2N ]: k = 0, . . . ,

2N − 1} where N ∈ ∗
R \ R is an infinite integer. The sequence of strategies has a nonstandard

representation, bN
i (ωi) = δLi

if ωi ∈ (k/2N, (k + 1)/2N ] with k even, bN
i (ωi) = δRi

otherwise.
Here, an “even” infinite integer is one belonging to the set ∗{2 · n: n ∈ N}, and the ωi are points
in ∗Ωi , the expanded, nonstandard version of Ωi .

In general, the diagonally concentrated probabilities on Ωi × ∗Ωi will be based on the dis-
tribution of i’s signals. In the expanded games, each i will observe the vector signal, (ωi,ω

f
i )

before choosing their action. The first component, ωi , is the original signal, the second compo-
nent contains the extra correlating information. In this case, the correlating information is which
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element of the ∗finite partition contains the signal. The difficulty is to guarantee that nothing but
correlating information is added.

2.5. Replacing only the lost coordination

Correlating devices can mimic the lost coordination, which is useful, but extreme care is re-
quired lest they do more than replace the lost coordination. If the correlating device fails to be
independent of ω, it can force unwilling revelation of private information or allow information
leakage in the form of players conditioning on unobservable events and/or variables. This ex-
plains the form of the following definition. Let B

◦
i denote the set of all F -measurable functions

from Ω to 	i , not merely the Fi -measurable ones.

Definition 2.2 (Cotter). A strategy correlated equilibrium (SCE) is a probability measure ν on×i∈I
B

◦
i such that ν(×i∈I

Bi (Fi )) = 1, and for each i ∈ I and each measurable γi : Bi → Bi ,∫
×i∈I B

◦
i

ui(b) ν(db) �
∫

×i∈I B
◦
i

ui

(
γi(bi), b−i

)
ν(db).

If ν is a point mass on a strategy b, then b must be a Nash equilibrium.
To see how independence between ν and P is maintained, note that whatever b is recom-

mended by ν, P is used to evaluate payoffs. The restriction that ν(×i∈I
Bi (Fi )) = 1 prevents

other forms of information leakage. As noted in [8], many ν give rise to the limit distribution η

in Example 2.1.

Example 2.2. For any [0, α] ⊂ [0,1], define the strategies that play “L up to α with R after” and
“R up to α with L after” by

b
L,α
i (ωi) = δLi

1[0,α](ωi) + δRi
1(α,1](ωi)

and

b
R,α
i (ωi) = δRi

1[0,α](ωi) + δLi
1(α,1](ωi).

For any α, the distribution να := 1
2δ

(b
L,α
1 ,b

L,α
2 )

+ 1
2δ

(b
R,α
1 ,b

R,α
2 )

mixes 1
2 : 1

2 over the two strategies

“L up to α” and “R up to α.” Each να , α ∈ [0,1], induces the distribution η, though ν0 and ν1
seem the most intuitive.

3. Finitely additive correlation and a counter-example

If the σ -fields Fi are generated by a countable partition, the expected utility functions are
jointly continuous and equilibrium existence is guaranteed. This suggests approximating general
Fi by nets/sequences of larger and larger finite sub-σ -fields, taking limits, along a subsequence
if necessary, of the equilibria, and representing any coordination lost in the passage to the limit
by a correlating device.

A version of this strategy appears in Cotter [8]. His first step is to represent the coordination
lost in the limit as a finitely additive correlating device. His second step is to come back to the
countably additive ‘nearby’ part of the finitely additive probability.
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Cotter’s first step uses the main advantage of the set of finitely additive probabilities. This is
its compactness in the weakest topology making integration against bounded measurable func-
tions continuous, a topology that makes the expected utility functions continuous. The second
advantage is the ease with which finitely additive probabilities represent the coordination in a
sequence of strategies.

The disadvantage is that drawing a point according to a purely finitely additive distribution
corresponds to drawing a point in a much larger compactification of the original space.6 For this
reason, one needs the second step, of turning the finitely additive correlating device back into a
countably additive one having the same coordinating properties.

The counterexample given here shows that this second step does not work. The discussion of
finitely additive mixtures directly below shows that the first step does work, and leads directly
to the counterexample. This paper arrives at correlated equilibria using correlating devices di-
rectly linked with the signals via diagonally concentrated joint distributions. This is a different
approach, neither a distribution over strategies nor a distributional strategy. The correlating de-
vices used here indirectly, but immediately, yield distributions over strategies and distributional
strategies. Finding an alternative to this indirectness seems extraordinarily difficult.

3.1. The role of finitely additive mixtures

If one allows finitely additive mixtures over×i∈I
Bi , there are intriguing alternative repre-

sentations for the limits of sequences of strategies such as the bn
i in Example 2.1. The easiest

class of representations corresponds to purely finitely additive ‘point masses.’ Let μ be a purely
finitely additive {0,1}-valued measure on the set of all subsets of N such that μ(N) = 1, and μ

is equal to 0 on all finite sets.7

To fix the ideas, consider a sequence, xn ↓ 1
2 in [0,1]. The sequence is a mapping from N

to [0,1], and the image distribution of μ under the sequence is a purely finitely additive proba-
bility on the subsets of [0,1]. Specifically, define μx−1(E) = μ({n: xn ∈ E}). This is a purely
finitely additive probability that puts mass 1 on every open neighborhood of 1

2 but puts mass 0
on 1

2 itself. Let Am = ( 1
2 − 1

m
, 1

2 + 1
m

), m ∈ N, so that μx−1(Am) = 1 while μx−1(
⋂

m Am) =
μx−1({ 1

2 }) = 0.
For any continuous f : [0,1] → R,

∫
f (r)μx−1(dr) = f ( 1

2 ). For continuous functions, there
is no difference between μx−1 and the point mass δ 1

2
. In this sense, δ 1

2
is the unique countably

additive probability that is ‘nearby’ μx−1.
In Example 2.1, a sequence of pure strategy, ‘saw-tooth’ bn

i weak∗ converges to b∞
i (ω) ≡

1
2δL + 1

2δR . For E ⊂ B1(F1) × B2(F2), define νf a(E) = μ({n: bn ∈ E}). Let Bε(b
∞
i ) be the

ε-ball around b∞
i in Bi (Fi ). νf a puts mass 1 on each set Bε(b

∞
1 ) × Bε(b

∞
2 ) even though

νf a({(b∞
1 , b∞

2 )}) = 0.

6 In stochastic process theory [20] gives an early use of these larger spaces, and Kingman [19] uses them to explain inter
alia how finitely additive probabilities on the set of polynomials represent pure jump processes. [33] uses the extra points
in these larger spaces to resolve the money pump paradoxes of finitely additive decision theory, and discusses a number
of the other uses of these points in economic theory. Applications of these points in game theory include [25,13,34].

7 Zorn’s Lemma implies the existence of a free ultrafilter, U , on N. Setting μ(A) = 1 if A ∈ U , and μ(A) = 0 otherwise
gives a measure with these properties. Conversely, any such measure determines a free ultrafilter. Since ultrafilters can be
identified with points in the Stone–Čech compactification of N, each {0,1}-valued μ corresponds to point mass on this
much larger space.
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To see that νf a replaces the coordination lost in the passage to the limit, fix E ∈ F and ε > 0.
Let H(E,ε) denote the set of strategy pairs b = (b1, b2) for which the induced outcome, ηb , is
within ε of satisfying (5), that is, for which∣∣∣∣ηb

(
E × {

(L,L)
}) − 1

2
P(E)

∣∣∣∣ < ε,

and ∣∣∣∣ηb

(
E × {

(R,R)
}) − 1

2
P(E)

∣∣∣∣ < ε. (6)

By construction, νf a(H(E, ε)) = 1 and
∫

B
uP (b) νf a(db) = (6,6).

Finitely additive correlating devices are difficult to interpret. The failure of countable additiv-
ity means that there exists a sequence of events En ↓ ∅ with the property that νf a(En) ↓ δ for
some δ > 0. This means that there is no point or set of points to support a probability mass of
size δ. In the discussion above, take En = {bn, bn+1, . . .} and δ = 1.

3.2. The counterexample

The basic limit result in Cotter’s work is [8, Theorem 4.3]. The following is a special case.

Limit Claim. For each i ∈ I , let F n
i be an increasing sequence of finite sub-σ -fields of Fi such

that Fi = σ({F n
i : n ∈ N}). For each n ∈ N, let νn be an SCE for the game (Bi (F n

i ), ui)i∈I . Then
there exist a subsequence {νnk } of {νn} and a countably additive probability, ν, on×i∈I

B
◦
i , such

that

(a) ν is an SCE for the game (Bi (Fi ), u
P
i )i∈I , and

(b) for every v ∈ L1(P ;C(A)) and continuous γi : Bi → 	i ,

lim
k→∞

∫
×i∈I B

◦
i

[ ∫
Ω

[ ∫
A−i

[ ∫
Ai

v(ω)(ai, a−i ) γi(bi)(dai)

]
b−i (da−i )

]
P(dω)

]
νnk (db)

=
∫

×i∈I B
◦
i

[ ∫
Ω

[ ∫
A−i

[ ∫
Ai

v(ω)(ai, a−i )γi(bi)(dai)

]
b−i (da−i )

]
P(dω)

]
ν(db). (7)

The subsequence arises from compactness of the set of finitely additive probabilities. The
limit, ν, should be the countably additive probability that is ‘nearby’ the finitely additive limit.
The counterexample works with the sequence of Nash equilibria in Example 2.1.

Example A. For n ∈ N, let νn be point mass on the vector of strategies bn from Example 2.1,
that is, bn

i (ωi) = δLi
(pointmass on Li ) if ωi ∈ (k/2n, (k + 1)/2n] with k even, bn

i (ωi) = δRi

otherwise. Each (bn
1 , bn

2) is a Nash equilibrium, hence each νn is an SCE. For S ⊂ A, define
vS ∈ L1(P ;C(A)) by vS(ω)(a) = 1Ω(ω) · 1S(a). For each ε > 0, i ∈ I and ai ∈ Ai , pick a
continuous γ ε

i,ai
satisfying γ ε

i,ai
(bi) = δai

if bi is within ε of b∞
i and γ ε

i,ai
(bi) = xi if bi is more

than 2ε from b∞
i , for some xi ∈ 	i .

The γ ε
i,ai

are possible deviations from an SCE. They specify playing ai for sure if the corre-
lating device tells player i to play a strategy bi that is within ε of b∞ and to play an arbitrary
i
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xi outside of the 2ε-neighborhood of b∞
i . Calculations below will show that the limits of the

integrals in (7) are the same along any subsequence, and independent of xi .
Having the same limit along each subsequence arises because, for any ε > 0, for large n, each

νn puts mass 1 on the ε-neighborhood of (b∞
1 , b∞

2 ). If (7) is to hold, then integration against
ν must give the limit, and this is independent of xi . Since ν is countably additive, this implies
that ν({(b∞

1 , b∞
2 )}) = 1. A correlated equilibrium which recommends only one strategy must

recommend a Nash equilibrium, but we have seen that (b∞
1 , b∞

2 ) is not a Nash equilibrium. This
shows that (a) in the Limit Claim cannot be true.

Calculations. Since the νn are point masses on the strategies bn, and the bn(ω)’s are also point
masses, calculating the integrals in (7) is not too difficult. For example, take S = {(L1,L2)}. For
n large enough that bn

1 is ε or closer to b∞
1 , γ ε

1,L1
(bn

1) = δL1 , which yields

∫
×i∈I B

◦
i

[ ∫
Ω

[ ∫
A2

[ ∫
A1

vS(ω)(a1, a2)γ
ε
1,L1

(b1)(da1)

]
b2(da2)

]
P(dω)

]
νn(db)

=
∫
Ω

[ ∫
A2

[ ∫
A1

1{(L1,L2)}(a1, a2)γ
ε
1,L1

(
bn

1

)
(da1)

]
bn

2(ω)(da2)

]
P(dω)

=
∫
Ω

[ ∫
A2

[ ∫
A1

1{(L1,L2)}(a1, a2) δL1(da1)

]
bn

2(ω)(da2)

]
P(dω)

=
∫
Ω

[ ∫
A2

1{L2}(a2) bn
2(ω)(da2)

]
P(dω) = 1

2
. (8)

The first equality follows from νn being a point mass on (bn
1 , bn

2). The second equality
follows from n being large enough that γ ε

1,L1
(bn

1) = δL1 . The third equality comes from
1{(L1,L2)}(L1, a2) = 1{L2}(a2). The fourth, and final, equality comes from bn

2(ω) playing L2 and
R2 with probability 1

2 each. Similar calculations for other S ⊂ A and γ ε
i,ai

show that the limit of
the integrals are the same along any subsequence and independent of xi .

4. Correlated equilibrium existence

The section is devoted to proving Theorem A, which shows that all games (Bi (Fi ), u
P
i )i∈I

have correlated equilibria. The proof has three conceptual steps. The first is to introduce a related
class of games with extra signals. If the extra signals do not convey too much information, they
are called innocuous informational expansions. The second step involves defining a special class
of nonstandard informational expansions. These can be shown to be innocuous, and to have
Nash equilibria. The final step is to show that the Nash equilibria of any innocuous informational
expansion is a correlated equilibrium of the original game.

4.1. Notation

The following conventions serve to lessen the notational burden for σ -fields and sub-σ -
fields on product spaces: let X =×k

Xk and for each k, let Xk be a σ -field of subsets of Xk ;
X = ⊗

Xk denotes the product σ -field on X; X =× Xk denotes the product field (not σ -field)
k k
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of finite unions of measurable rectangles X; in a piece of context-dependent notational ambi-
guity, the symbol Xk also denotes the sub-σ -field of X given by {π−1

k (Ek): Ek ∈ Xk} where
πk : X → Xk is the canonical projection map; Xj ⊗ Xk denotes the smallest sub-σ -field of X
containing both Xj and Xk . In particular, a set Ek ∈ Xk can be regarded either as a subset of Xk ,
or as π−1

k (Ek), a “cylindrical” subset of X.
([0,1], B, λ) is the unit interval with the usual Borel σ -field and Lebesgue measure. The

following two results can be found in e.g. [10, Chapter 13]: for M an uncountable, complete
separable metric space, E is an uncountable Borel subset of M if and only if it is measurably
isomorphic to [0,1]; and any Borel probability, η, on M is of the form η(E) = λ(f −1(E)) for
some measurable f : [0,1] → M .

As above, 	i is the set of Borel probabilities on the compact metric space Ai . As is well-
known, 	i is compact in the weak∗ topology. Di denotes the Borel σ -field on 	i generated by
the weak∗ topology.

4.2. Correlated equilibria

The following replaces a SCE’s recommendation of a vector (bi)i∈I of complete contingent
plans with each player i observing their own ωi and an r ∈ [0,1].

Definition 4.1. A correlated strategy for i is a measurable function ϕi on the probability space
(Ωi × [0,1], Fi ⊗ B,P × λ) to 	i . A correlated strategy is a mapping (ω, r) �→ (ϕi(ωi, r))i∈I

where each ϕi is a correlated strategy for i.

The expected utility associated with a correlated strategy ϕ is

uP (ϕ) :=
∫

[0,1]
uP

(
ϕ(·, r))λ(dr) =

∫
Ω×[0,1]

〈
u(ω, ·),×i

ϕi(ωi, r)
〉
P × λ(dω,dr). (9)

If ψi is an Fi ⊗ Di/Di -measurable function from Ωi × 	i to 	i , and ϕ is a correlated strategy,
〈ϕ‖ψi〉 denotes the correlated strategy with j ’th component (ω, r) �→ ϕj (ωj , r), j �= i, and i’th
component (ω, r) �→ ψi(ωi, ϕi(ωi, r)).

Definition 4.2. A correlated strategy is a correlated equilibrium if for all i ∈ I and all measurable
ψi from Ωi × 	i to 	i , uP

i (ϕ) � uP
i (〈ϕ‖ψi〉).

It is straightforward to show that f (r) := (ϕi(·, r))i∈I is measurable, and that ν(E) :=
λ(f −1(E)) is a SCE if and only if the correlated strategy (ϕi(·, r))i∈I is a correlated equilib-
rium.

4.3. Innocuous informational expansions

Adding an independent observation of a point in [0,1] to the domain of the players’ strategies
in a payoff-irrelevant way is an example of an informational expansion.

Definition 4.3. An informational expansion of Γ = (Bi (Fi ), u
P
i )i∈I is a game Γ ′ with infor-

mation structure (×i
(Ωi × Ω ′

i , Fi ⊗ F ′
i ), F ⊗ F ′,P ′), action sets Ai , and utility function u′

where
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(1) each (Ω ′
i , F ′

i ) is a measure space,
(2) P ′ is a probability on F ⊗ F ′ with P ′(E × Ω ′) = P(E) for all E ∈ F , and
(3) u′(ω,ω′) = u(ω),

where Ω ′ =×i∈I
Ω ′

i .

Informational expansions can substantively change a game.

Example 4.1. Set Ω ′
i =×j �=i

Ωj with P ′ being the image of P under the mapping ω �→
(ωi,ω−i )i∈I . This expansion makes public everyone’s private information.

To prevent such changes we have

Definition 4.4. An informational expansion is innocuous if for all E ∈ F and for all players
i ∈ I , P ′(E × Ω ′|Fi ⊗ F ′

i ) = P ′(E × Ω ′|Fi ) P ′-a.e.

The product measure structure of P × λ renders innocuous the information in Definitions 4.1
and 4.2.

4.4. Outcome equivalence

The proof of the existence of correlated equilibria introduces a class of innocuous expansions
for which Nash equilibrium existence is easily shown. The remaining question is whether the
Nash equilibria of all innocuous informational expansions ‘are’ correlated equilibria. They are in
the sense that their outcome distributions are equal.

Definition 4.5. The outcome associated a strategy s′ for the expansion Γ ′ is the probability Qs′
on Ω × 	 defined by Qs′(E) = P ′{(ω,ω′): (ω, s′(ω,ω′)) ∈ E}, E ∈ F ⊗ D. Two strategy pro-
files, s′ and s′′, for two information expansions, Γ ′ and Γ ′′ are outcome equivalent if Qs′ = Qs′′ .

Lemma 4.1. If s′ is a Nash equilibrium of an innocuous information expansion Γ ′, then s′ is
outcome equivalent to a correlated equilibrium of Γ .

Proof. Let s′ be an equilibrium of an innocuous information expansion Γ ′ of Γ . The proof has
two steps: first, show that any outcome equivalent correlated strategy is a correlated equilibrium;
and second, show that there is a correlated strategy that is outcome equivalent to s′.

First step: Suppose that ϕ is a correlated strategy outcome equivalent to s′. Pick i ∈ I and let ψi

be an Fi ⊗ Di -measurable function from Ωi × 	i to 	i . In the game Γ ′, consider the strategy
s′\t ′i with t ′i (ω,ω′) = ψi(ω, s′

i (ω,ω′)). Because s′
i is Fi ⊗ H′

i -measurable, so is the strategy t ′i .
Checking measurable rectangles shows that the strategy s′\t ′i is outcome equivalent to the strat-
egy 〈ϕ‖ψi〉. Because s′ is an equilibrium of Γ ′, uP

i (ϕ) � uP
i (〈ϕ‖ψi〉).

Second step: For i ∈ I , let G◦
i be the field generated by measurable rectangles, Ei × Hi , Ei ∈ Fi

and Hi ∈ H′
i . Since G◦

i is a field generating Gi , each s′
i is the P ′-a.e. limit of a sequence, s′n

i , of
simple G◦

i -measurable functions. There is no loss in assuming that the (s′
i )

n are measurable with
respect to fields Gn generated by an increasingly fine sequence of product partitions, P n × Qn,
i i i
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of Ω × Ω ′ into measurable rectangles. Let P n × Q′n be the coarsest common refinement of the
partitions (P n

i × Qn
i )i∈I .

The correlated strategy ϕ the limit of an inductively constructed sequence ϕn that replicates
the sequence s′n. To begin the inductive construction, define s′0 = μ0 as a constant function on
the rectangle Ω × Ω ′ with P 0 × Q′0 := {Ω × Ω ′}. The rectangle Ω × Ω ′ is associated with the
rectangle Ω × [0,1) with P 0 × B′0 := {Ω × Ω ′}. The function ϕ0 on Ω × [0,1) is defined to
match s′0 on associated rectangles. For n = 0, this requires ϕ0 ≡ μ0.

For n � 1, note that each rectangle, E × H in P n−1 × Q′n−1 is a associated with a rectangle
E ×B , B = [a, b), in P n−1 × Bn−1. Further E ×H is a disjoint union of rectangles in P n × Q′n,
enumerable as E ×H = ⋃K

k=1
⋃L

�=1 Ek ×H�. For each k ∈ {1, . . . ,K}, partition B = [a, b) into
� disjoint half open intervals, (B�)

L
�=1, such that P ′(Ek × H�) = P × λ(Ek × B�). This can

be done because λ is non-atomic, the marginal of P ′ on Ω is equal to P , and P ′(E × H) =
P × λ(E × B). Associate each Ek × H� with Ek × B� and define ϕn on Ek × B� to equal s′n on
Ek × H�.

On a set with P ′-probability 1, each s′n
i is convergent. This implies that on a set with P × λ-

probability 1, each ϕn
i is convergent. The measurability of the ϕi and the outcome equivalence

of s′ and ϕ are immediate. �
4.5. Finitistic versions of information structures

The star-finite sets that replace the information structure (×i
(Ωi, Fi ), F ,P ) are constructions

from Robinson’s [30] nonstandard analysis. Star-finite (or ∗-finite) measure spaces were first
examined in [22], their use entails little restriction in generality [1].

By assumption, all the nonstandard objects used here belong to an ℵ-saturated extension,
∗V (X), of a superstructure V (X) where the base set, X, contains R, each Ωi and Ai , i ∈ I , and
ℵ is a cardinal greater than the cardinality of V (X). If Y ∈ V (X), the elements of ∗Y in ∗V (X)

are called internal. The class of finite subsets of any Z ∈ V (X) is denoted P f (Z), and is itself
an element of V (X).

Definition 4.6. The ∗-finite or star-finite subsets of Y are ∗P f (Y ).

Definition 4.7. A partial order � on Y ∈ V (X) is finitely satisfiable if for all finite {y1, . . . ,

yN } ⊂ Y , there exists a y ∈ Y such that y � yn, n = 1, . . . ,N .

A consequence of saturation is that if � is finitely satisfiable, then there exists an y′ ∈ ∗Y
such that for all y ∈ Y , y′ ∗� y. One of the most fruitful applications of this is the existence of
exhaustive ∗-finite sets.

Definition 4.8. For Z ∈ V (X), an element Zf of ∗P f (Z) is exhaustive for Z or is a finitistic
version of Z if for any z ∈ Z, ∗z ∈ Zf .

Take Y to be P f (Z) and y1 � y2 to be y1 ⊃ y2. This gives a finitely satisfiable partial order
on Y . Hence, there exists a y′ ∈ ∗Y such that for all y′ ∈ Y , y′ ⊃ ∗y. Let Zf = y′, and we see that
Zf is exhaustive for Z.

Fix an information structure (×i
(Ωi, Fi ), F ,P ). The construction of a ∗-finite version of

(×i
(Ωi, Fi ), F ,P ) which provides an innocuous information expansion is a four-step process.

Notationally, “f ” replaces the “ ′ ” of information expansions in Definition 4.3.
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Definition 4.9. A star finite expansion of (×i
(Ωi, Fi ), F ,P ) is an information structure of the

form (Ω × Ωf , (Fi ⊗ F f
i )i∈I , F ⊗ F f ,P f ) where

(1) Ω
f
i = ∗Ωi ,

(2) F f
i = σ(Ni ) where Ni ∈ ∗

Fi , for each i ∈ I , Fi is the set of finite sub-fields of Fi , and Ni

is exhaustive for Fi ,
(3) F = σ(N ) where N ∈ ∗

F, F is the set of finite sub-fields of F , N contains×i∈I
Ni and is

exhaustive for F , and
(4) for E ∈ F and D ∈ F f , P f (E × D) = L(∗P)(∗E ∩ D) on measurable rectangles where

L(∗P) is the Loeb measure on σ(F f ) generated by ∗P .

Partially ordering F and the Fi by inclusion gives a finitely satisfiable relation and shows that
F f and the F f

i exist. Condition (4) is crucial because it gives rise to a property called diagonal
concentration.

4.6. Diagonal concentration

Let X be a non-empty set, X a σ -field of subsets of X, Xf = ∗X, and let X f be an ∗-finite
sub-field of ∗X that is exhaustive for X .

Definition 4.10. A probability μf on X ⊗ σ(X f ) is diagonally concentrated if for all finite,
measurable partitions E1, . . . ,EN of X, μf (

⋃
n(En × ∗En)) = 1.

The next result shows that condition (4) of Definition 4.9 specifies a unique probability. This
implies that P f is diagonally concentrated because P f (En × ∗En) := L(∗P)(∗En ∩ ∗En).

Lemma 4.2. If ν is a probability on X and μf is defined by μf (E × D) = L(∗ν)(∗E ∩ D)

on measurable rectangles in X × Xf , then μf has a unique extension to the product σ -field
X ⊗ σ(X f ).

Proof. By Caratheodory’s extension theorem, it is sufficient to show that μf is countably addi-
tive. Let H = {H1,H2, . . .} be a countable subset of X . Define the Blackwell pseudo-metric on
X by

dH(x, y) = 1

min{n: 1Hn(x) �= 1Hn(y)} .

Let XH be the quotient space under the equivalence relation x ∼H y iff dH (x, y) = 0, so that
(XH, dH) is a separable metric space. Let stH : Xf → XH be standard part mapping in the
dH metric topology on XH. The Borel σ -field on XH is generated by H, and each Hn is both
closed and open. Since st−1

H (Hn) = ∗Hn ∈ X f , st−1
H is measurable, implying that the mapping

xf �→ (stH (xf ), xf ) is measurable. Let μ
f

H be the image of L(νf ) under this mapping. μ
f
H is

countably additive on the σ -field σ(H) ⊗ σ(X f ).
If X is separable, taking H to be a generating set completes the proof. If X is not separable,

partially order the countable subsets of X by inclusion. If H′ � H, then μ
f

H′ restricts to μ
f

H, and

both μ
f and μ

f
′ agree with μf on the field σ(H) × σ(X f ). Thus, for all H, μ

f is the unique
H H H
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countably additive extension of μf from the field σ(H)× σ(X f ) to the σ -field σ(H)⊗ σ(X f ).
Take An ↓ ∅ in X × σ(X f ). For any H ⊃ {A1,A2, . . .}, μ

f

H is countably additive, implying that
μf (An) ↓ 0. �

The main implication of diagonal concentration is that an X ⊗ X f -measurable function de-
pends only on its second component μf -a.e.

Lemma 4.3. If S is a complete metric space, f : X × Xf → S is X ⊗ X f -measurable, and
μf is diagonally concentrated, then f (x, xf ) = g(xf ), μf -a.e. for some σ(X f )-measurable
g : Xf → S.

Proof. The set of functions f for which the statement is true includes the simple X × σ(X f )-
measurable functions and is closed under μf -a.e. convergence. �
4.7. Finitistic expansions of games

Fix a game (Bi (Fi ), u
P
i )i∈I with information structure (×i

(Ωi, Fi ), F ,P ).

Definition 4.11. A star-finite expansion of (Bi (Fi ), u
P
i )i∈I is denoted Γ f and defined as a game

with a star-finite expansion, (Ω × Ωf , (Fi ⊗ σ(Ni ))i∈I , F ⊗ σ(N ),P f ), of the information
structure, action sets Ai for i ∈ I , and utilities defined by uf (ω,ωf ) = u(ω).

Lemma 4.4. Any star-finite expansion, Γ f , of (Bi (Fi ), u
P
i )i∈I is innocuous.

Intuitively, this holds because the Ni represent the “limits” of sub-fields of the information
contained in the σ -field Fi .

Proof. Pick E ∈ F . Definition 4.4 requires

γ := P f
(
E × Ωf

∣∣Fi ⊗ F f
i

) = η := P f
(
E × Ωf

∣∣Fi

)
P f -a.e.

The set of s ∈ [0,1] such that either P(γ = s) > 0 or P(η = s) > 0 is at most a countable set
so that its complement is dense. Pick arbitrary r in the complement. It is sufficient to show that
P({γ > r}	{η > r}) = 0.

Since γ is Fi ⊗ F f
i -measurable, Lemma 4.3 implies that it is equal, P f -almost everywhere,

to a function that depends only on ω
f
i . Since η is Fi -measurable, Doob’s Theorem (e.g. [9,

Chapter I.18, pp. 12–13]) implies that it is equal, P f -almost everywhere, to a function that
depends only on ωi . It is diagonal concentration that allows two such functions to be equal P f -
almost everywhere.

Since Ai := {η > r} ∈ Fi and Ni is exhaustive for Fi , ∗Ai ∈ Ni . From Definition 4.9(4),
P f (∗Ai	Ai) = 0. Therefore, it is sufficient to show that {γ > r} = ∗Ai P f -almost every-
where.

Consider any Bi ∈ Fi with Bi ⊂ Ai and P(Bi) > 0. By the definition of conditional probabili-
ties, we know that

∫
Bi

P (E|Fi ) dP = P(Bi ∩ E). Since Bi ⊂ Ai ,
∫
Bi

P (E|Fi ) dP >
∫
Bi

r dP =
r · P(Bi). Combining, P(Bi ∩ E) > r · P(Bi). By transfer, for any Bi ∈ ∗Fi with Bi ⊂ ∗Ai
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and ∗P(Bi) > 0,

∗P
(
Bi ∩ ∗E

)
> r · ∗P(Bi). (10)

Since (10) is also true for any subset of Bi , any Bi ⊂ ∗Ai is a subset of {γ � r}. Since
P f (γ = r) = 0, this establishes that ∗Ai ⊂ {γ > r} P f -almost everywhere. The same arguments
applied to Ac

i = {η < r} establishes that {γ > r} ⊂ ∗Ai P f -almost everywhere. �
4.8. Equilibrium existence

The prerequisites are now in place.

Theorem A. All games (Bi (Fi ), u
P
i )i∈I have correlated equilibria.

Proof. Let Γ f be any star-finite expansion of (Bi (Fi ), u
P
i )i∈I . By Lemmas 4.1 and 4.4, it is

sufficient to show that Γ f has a Nash equilibrium.
Consider the internal version of (Bi (Fi ), u

P
i )i∈I associated with Γ f , that is, the game

with information structure (×i
(∗Ωi, Ni ), N , ∗P), actions sets ∗Ai , and utility functions ∗ui ∈

∗L1(P ;C(A)). Transfer of Fan’s or Glicksberg’s existence result implies that this internal game
has a Nash equilibrium, β = (βi)i∈I (see also Khan and Sun [17]). Defining bi(ωi,ω

f
i ) =

stβi(ω
f
i ) pushes down the strategies, and yields b = (bi)i∈I , a vector of Fi ⊗ σ(Ni)-measurable

functions from Ωi × Ω
f
i to 	i . It is sufficient to show that b is a Nash equilibrium for Γ f .

Consider any i ∈ I and strategy (ωi,ω
f
i ) �→ ci(ωi,ω

f
i ) for Γ f . By Lemma 4.3, there is no

loss in assuming that ci is a function of ω
f
i only. Let γi be any lifting of ci . Since β is a Nash

equilibrium, is sufficient to show that∫

Ω×Ωf

〈
u(ω), (b\ci)

(
ωf

)〉
P f

(
d
(
ω,ωf

)) �
∫

Ωf

〈∗u(
ωf

)
, (β\γi)

(
ωf

)〉 ∗P
(
dωf

)
,

and this follows from Lemmas 4.2 and 4.3. �
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