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Abstract

Foundations for priors can be grouped in two broad categories: objective, deriving probabilities from 
observations of similar instances; and subjective, deriving probabilities from the internal consistency of 
choices. Partial observations of similar instances and the Savage–de Finetti extensions of subjective priors 
yield objective and subjective sets of priors suitable for modeling choice under ambiguity. These sets are 
best suited to such modeling when the distribution of the observables, or the prior to be extended, is non-
atomic. In this case, the sets can be used to model choices between elements of the closed convex hull of 
the faces in the set of distributions over outcomes, equivalently, all sets bracketed by the upper and lower 
probabilities induced by correspondences.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

An uncertain decision problem is one where chance intervenes between the decision and the 
outcome. When chance intervenes according to a known probability distribution, the problem is 
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called a risky decision problem, when the probability distribution is unknown or only partially 
known, it is called an ambiguous problem. Introspection and experiments have motivated re-
search into the systematic differences between ambiguous decisions and risky decisions in single 
agent problems, general equilibrium, finance theory, and games.

The model of risky choice most frequently extended to ambiguous choice involves preferences 
between state-contingent bundles, that is, between functions from a state space to utility relevant 
consequences. The model covers risky choice problems by assuming that there is a single prior 
probability distribution over states, it covers ambiguous choice problems by replacing the single 
prior by a set of priors. In modeling either risky or ambiguous choice problems, the states are, by 
assumption, utility neutral. For risky problems, the neutrality assumption implies that preferences 
between functions depend only on the distributions they induce, for ambiguous problems, it 
implies that preferences depend only on the set of distributions they induce. The Skorokhod 
question for a set of priors is what sets they can induce.

1.1. Foundations and the Skorokhod question

For models of risky choice, approaches to the foundations of probability and its meaning 
are grouped in two broad categories. The objective approaches derive the single prior from ob-
servations of similar instances, the subjective approaches derive the single prior from an internal 
consistency of choices that reveals prior knowledge. This paper develops two observational learn-
ing models and one subjective model as foundations for the sets of priors that replace the single 
prior in ambiguous choice models, and then answers the pragmatic, Skorokhod question, “Which 
problems can and which cannot be modeled using these sets of priors?”

For single prior models of risky choice, the answer to the corresponding pragmatic question 
turns on the non-atomicity of the prior. If a decision maker’s prior has an atom of some given size, 
then every distribution induced by a function from states to consequences has an atom of at least 
that size. By contrast, if the prior is non-atomic, then for a broad range of models of utility rel-
evant consequences, Skorokhod’s representation theorem (Skorohod, 1956, Thm. 3.1.1) implies 
that every distribution on consequences arises as the image law of the prior under some function. 
The answer for the sets of priors developed here is not correspondingly inclusive, though the 
descriptive possibilities are largest in the presence of non-atomicity.

The objective models developed here derive sets of priors from repeated partial observations, 
and the partial nature of the information leads to the indeterminacy needed to model ambiguous 
choice problems. The subjective model supposes that there is internal consistency on a subset of 
possible choices, a subset that only partially determines a prior. In both classes of models, the 
sets of priors are defined as all probabilities consistent with partial information, equivalently, as 
the set of all extensions of a probability defined on a small field or σ -field of sets to a larger one. 
Such sets of extensions have an integral representation, and it is the integral representation that 
leads to the answer to the Skorokhod question. The following is the main result of the paper.

If the distribution of observables or the prior to be extended is non-atomic, then in both 
classes of models, the descriptive range of the associated sets of probabilities is the closed 
convex hull of the set of closed faces.

We turn now to short discussions of the three models and the class of decision problems the 
associated sets of priors can model, suppressing many details.
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1.2. Partially observable econometric models

In this class of models, repeated observations of a random vector (Y, X) lead, in the limit, 
to knowledge of the joint distribution, denoted μ. From this joint distribution one can answer 
questions of the form “How would the expected value of Y change if we observed X = x′ rather 
than x?” However, economic interest centers on the cæteris paribus value of the effect of chang-
ing X from x to x ′, and knowledge of the joint distribution of Y and X is not sufficient to identify 
this in the presence of partial observability.

If there is an unobserved random Z with the property that E (Y |X) is not equal to E (Y |X, Z), 
then we have a partially observable model. Examples include selection biases, errors-in-variables 
and other forms of endogeneity. Selection biases arise when agents are described by (e.g. demo-
graphic) variables X but use the unobserved Z (e.g. abilities and/or resources) to make choices 
that affect the value of Y (e.g. levels of education, income or savings). Errors-in-variables arise 
when the observed values of X are an error-perturbed version of the true causal variable, and the 
perturbations, Z, are stochastically related to the outcome, Y .

In this context, the learned set of priors is the set of joint distributions of the vector ((Y, X), Z)

having marginal equal to μ. Let C denote the σ -field for the observations of (Y, X) and X the 
σ -field for ((Y, X), Z). The set of extensions of interest is the partially identified set, here 
defined as the set of countably additive ν on X such that ν(E) = μ(E) for all E ∈ C, and denoted 
�(μ).

In models with utility neutral states, if a decision maker must choose between the measurable 
functions, say ((y, x), z) �→ f ((y, x), z) and ((y, x), z) �→ g((y, x), z), then the choice depends 
only on preferences between the sets of distributions on consequences induced by the functions, 
that is, depends only on preferences between f (�(μ)) and g(�(μ)). The descriptive range of 
�(μ), is the class of all sets of the form f (�(μ)). Integrating conditional probabilities provides 
an answer to the Skorokhod question, “How large is the descriptive range of �(μ)?”

For every (y, x), let qy,x be a distribution for Z. The integrals of this mapping, ν(E × E′) =∫
E

qy,x(E
′) dμ(y, x), gives rise to a ν in the partially identified set, E a measurable set of ob-

servables E′ a measurable set of unobservables. Further, all partially identified ν arise from some 
measurable (y, x) �→ qy,x under this mapping.2

For a function ((y, x), z) �→ f ((y, x), z), F(y, x) denotes the range of f ((y, x), ·) and 
�(F(y, x)) denotes the set of distributions putting mass 1 on F(y, x). Conditional on any given 
(y, x), the set of image measures for the partially identified set is �(F(y, x)) because there are 
no restrictions on the distribution qy,x . From the definition of the integral of a correspondence, 
this yields

f (�(μ)) =
∫

�(F(y, x)) dμ(y, x). (1)

Thus, f (�(μ)) is a convex combination of sets of the form �(F) with convex weights given by 
μ(·, ·).

The set of distributions putting mass 1 on a set F is denoted �(F) and called a face in the 
simplex of distributions. The integral representation in (1) gives the answer to the Skorokhod 
question — the sets of distributions over consequences that decision maker can conceive of 
choosing between are convex combinations of faces. Further, we will see that if μ is non-atomic, 
then all convex combinations of faces arise this way.

2 For a quick development of these results, see Dellacherie and Meyer (1978, III.72-4).
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1.3. Purely finitely additive partial observability

In this class of models, repeated observations allow the decision maker to learn the probability, 
μ(E), of every set E in a field of observable events, C where C is a strict subset of the set of all 
events, X . Again, we define �(μ) as the set of all probabilities ν that agree with μ on C. There 
are two differences between this model and the previous one: first, C generates the σ -field, X , 
on which μ is defined; and second, μ is, by assumption, purely finitely additive (pfa).

If μ is countably additive on C, then Carathéodory’s extension theorem (e.g. Billingsley, 1995, 
Thm. 3.1, p. 36) guarantees that the set of countably additive extensions of μ from C to X , is a 
singleton set. It is the failure of countable additivity that makes this class of models indetermi-
nate: Lemma 4 (below) shows that if the smallest field containing C is a strict subset of X , then 
for some probability μ, �(μ) contains a probability ν with supE∈X |μ(E) − ν(E)| = 1. Under 
an additional condition on C, Theorem 2 shows that this diameter 1 result holds for all purely 
finitely additive μ.

We can see how the indeterminacy of �(μ) arises in the context of the simplest infinite state 
space: let X be the complete separable metric space of integers, N, with the metric d(n, m) =
|n − m|; and let the σ -field, X , be the associated Borel σ -field. A probability, μ on X , is finitely 
additive if for all disjoint sets E and F , μ(E ∪ F) = μ(E) + μ(F). A probability μ on X
is countably additive (ca) on a field C ⊂ X if for every decreasing sequence of sets En in C
with empty intersection, μ(En) ↓ 0, and it is purely finitely additive (pfa) on C if C contains a 
decreasing sequence of sets, En with empty intersection and μ(En) ≡ 1.

Every observation, Xn ∈ X, is recorded as the vector (1C(Xn))C∈C . We suppose that the law 
of large numbers holds, that is, that 1

N

∑N
n=1 1C(Xn) → μ(C) for every C ∈ C. Thus, asymptot-

ically, each μ(C) is known, and �(μ) is the set of finitely additive probabilities consistent with 
that knowledge.

Using the field C consisting of all finite sets and their complements yields an example in which 
the analysis is more transparent.3 The value of any probability μ on the field C are determined by 
the values of the cumulative distribution function (cdf), Fμ(N) := μ({1, . . . , N}). A probability 
μ is pfa if and only if Fμ(N) ≡ 0, equivalently, if and only if μ({N + 1, N + 2, . . .}) ≡ 1.

The cdf being identically equal to 0 gives one sense the partial observability — one never 
observes an integer when drawing from a pfa because all the mass is far out “to the right of N.” 
To get a sharper sense of this, let S = {0, 1}C denote the space of possible records and let s∞ ∈ S

denote the vector with s∞
C = 0 for all finite C ∈ C and s∞

C = 1 for C ∈ C with finite complement. 
A probability on X is pfa if and only if it is a probability 1 event that the record is s∞. Here is 
a more precise sense of the partial observability — the state space X is not observable because 
there is no point in X that yields the record s∞ and s∞ happens with probability 1.

In this example, the probability induced by the observations is always the same point mass, 
which implies that �(μ) is equal to the set of all pfa probabilities. Therefore, for any function f , 
f (�(μ)) = �(F) where F is the set of utility relevant consequences, w for which f −1(w)

is infinite. In this, the simplest version of the pfa observational model, the decision maker can 
conceive of choosing between faces, but cannot conceive of choosing between any other sets of 
probabilities on utility relevant consequences. Here we see that it is the interaction between the 
probability μ and the class of observable events, C, that determines how useful the indeterminacy 

3 The following analysis is a slight elaboration of Yosida and Hewitt (1952, Note 1.8a).
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is — if μ is non-atomic on C, the descriptive range of �(μ) will contain all convex combinations 
of faces.

1.4. The Savage–de Finetti extension set

In this class of models, we assume that the decision maker can, in principle at least, specify 
for each event E in a class C and each r ∈ [0, 1], whether they would prefer to take the bet 
f r

E := 1E − r or to take the other side of the bet, gr
E := r − 1E . Define rE as the number making 

the bets f r
E and gr

E indifferent. Ramsey and de Finetti independently showed that a preference 
ordering over this collection of bets is internally consistent if and only if the mapping E �→ rE is 
a finitely additive probability.4

The proposed subjective model for sets of priors supposes that the mapping E �→ rE deter-
mines a prior on C but that the full set of events is the much larger class X =P(X), the class of all 
subsets of X. Use of the measure space (X, P(X)) imposes very strong restrictions on the struc-
ture of the set of probabilities: all countably additive probabilities are either finite or countably 
infinite convex combinations of point masses; all non-atomic probabilities are pfa. Both Savage 
and de Finetti argued these restrictions are acceptable, even necessary, because the existence of 
non-measurable sets represents a challenge, perhaps insuperable, to the meaning of probability 
(e.g. de Finetti, 1974, p. 124, Savage, 1972, Ch. 3, §3).

The Savage–de Finetti extension set, �(μ), is the set of probabilities on X =P(X) such that 
ν(C) = μ(C) for all C ∈ C. De Finetti argued that the indeterminacy of �(μ) captures something 
fundamental about probability (see esp. de Finetti, 1974, pp. 229–231). We will see that, under 
quite general conditions, there exists a measurable class, E , of disjoint, uncountable, measurable 
sets of states and a probability ημ on E such that, for any f ,

f (�(μ)) = ∫
E �(f (E))dημ(E) (2)

where �(f (E)) is the set of probabilities putting mass 1 on f (E). The integral representation 
in (2) yields an answer to the Skorokhod question: each f (�(μ)) is a convex combination of 
faces in the space of distributions over utility relevant consequences; and if ημ is non-atomic, then 
all convex combinations of faces are of the form f (�(μ)) for some state-contingent bundle f .

1.5. The Skorokhod question

The descriptive range of a set of priors is the class of sets of distributions over consequences 
for which it provides a model. As noted, if the distribution of observables or the prior to be 
extended is non-atomic, then in all three classes of models, the descriptive range of the associated 
�(μ) is the closed convex hull of the set of closed faces. In the case that there three utility 
relevant consequences, W = {a, b, c}, it is easy to see that this result implies that the sets of 
priors developed here can model a limited, but non-trivial, class of ambiguous choice problems.

The set of closed convex subsets of �({a, b, c}) is infinite dimensional, but the convex hull 
of the faces is the closed, seven-dimensional class of sets spanned by �({a}), �({b}), �({c}), 
�({a, b}), �({a, c}), �({b, c}), and �({a, b, c}). Convex combinations of the first three sets are 
risky outcomes, the more general elements of this class are also known as Dempster’s (1967, §2)
class of “compatible measures,” that is, they are sets of probabilities that are bracketed between 
the upper and lower probabilities induced by a correspondence.

4 We will cover this argument and a generalization of it due to Smith (1961) below.
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A widely used subclass of the convex combinations of faces are the upper/lower probability 
intervals. For 0 ≤ r ≤ s ≤ 1, these are defined by

A = (s − r)�({w,w′}) + r�({w}) + (1 − s)�({w′})
= {βδw + (1 − β)δw′ : β ∈ [r, s]} (3)

where δw and δw′ are point masses on the consequences w and w′.
The need for non-atomicity can be seen in the version of the pfa observational model sketched 

in §1.3 — because the observables had a point mass distribution, no convexification was possible. 
A decision maker with the associated set of priors, the set of all pfa probabilities, can only 
conceive of choices between faces, a class that includes no non-degenerate risky choices.

1.6. Outline

Before turning to the three models, §2 gives more detail about the descriptive ranges of a sets 
of priors. §3 covers the countably additive partially observable econometrics models while §4
covers the two purely finitely additive models. §5 contains comparisons between the countably 
additive and the purely finitely additive models, as well as comparisons of the present approach 
to Dempster’s (1967, §2) class of “compatible measures,” and to interval-valued probabilities. §6
contains a summary, sketches of some extensions and open questions, as well as a discussion of 
where the present work fits into the literatures on related topics.

Throughout: all probabilities are assumed to be finitely additive, when used, the assumption 
of countable additivity will be explicitly invoked; we also assume that events determine states, 
that is, that for states x �= x ′, there exists an event E in the σ -field X such that 1E(x) �= 1E(x′); 
to avoid complete triviality, we always assume that the space of utility relevant consequences, W
contains two or more points; to avoid some distracting complications, we also assume that W is 
a compact metric space and that preferences over constant functions (those inducing point mass 
distributions) are continuous in the topology on W.

Finally, “Theorem” is reserved for the main results of the paper, other results are “Lemmas,” 
and all proofs are relegated to the appendix.

2. The descriptive range of a set of priors

The von Neumann and Morgenstern (2007) approach to risky choice posits preferences over 
distributions p, q in �(W), the distributions on utility relevant consequences. By contrast, the 
Savage (1972) approach posits preferences over measurable functions taking values in W that 
depend only on the distributions the pfa prior μ induces. For a countably additive prior, μ, 
Skorokhod’s representation theorem (Skorohod, 1956, Thm. 3.1.1) tells us that every countably 
additive p ∈ �(W) can be induced by some measurable function if and only if μ is non-atomic. 
The following extends this result, so far as possible, to finitely additive priors.

Lemma 1. A probability μ ∈ �f a(X ) is non-atomic if and only if for every probability p
on W, there exists a measurable fp : X → W such that for all continuous v : W → R, ∫
X

v(fp(x)) dμ(x) = ∫
W

v(w) dp(w).

The descriptive range of a set of priors, �, is the class of sets of distributions that can be 
induced on W using measurable functions. For the sets of priors developed in this paper, the de-
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scriptive ranges are the closed convex hull of the faces in �(W). This class of descriptive ranges 
is Dempster’s (1967, §2) class of “compatible measures,” those induced by correspondences.

2.1. Notation

The space W is equipped with its Borel σ -field, W . Two (finitely additive) probabilities, 
p, p′ on W are equivalent, p ∼ p′, if 

∫
W

v(w) dp(w) = ∫
W

v(w) dp′(w) for every continuous 
v : W → R. Integration against finitely additive probabilities defines a continuous linear func-
tional on C(W), the continuous functions on W. Therefore the Riesz representation theorem 
(e.g. Corbae et al., 2009, Thm. 9.6.4) implies that every equivalence class of finitely additive 
probabilities contains a countably additive probability.

The set of measurable functions f : X → W is denoted M(X; W). For μ ∈ �f a(X ) and 
f ∈ M(X; W), f (μ) denotes the (equivalence class of) of the induced probability on W, that is, 
the probability assigning μ(f −1(E)) to each measurable E ∈ W . The following class of sets of 
distributions on W will play a crucial role below.

Definition 1. A set D of probabilities on W is a face associated with a closed F ⊂ W if p ∈ D

iff p ∼ p′ for some countably additive p′ putting mass 1 on F . Any such face is denoted �(F).

We will see that the descriptive range of the sets of priors developed here are the class of 
convex combinations of faces.

Definition 2. The descriptive range of a single prior, μ is R(μ) := {f (μ) : f ∈ M(X; W)}. The
descriptive range of a set of priors, � is R(�) := {f (μ) : f ∈ M(X; W), μ ∈ �}. A convex 
set of priors is descriptively complete if R(�) contains, up to equivalence, every closed convex 
subset of �(W) for every compact metric space W.

The convex combinations in the descriptive range of the sets of priors developed here will 
contain sets with integral representations of the following form,

B =
∫
X

�(Fx)dμ(x) (4)

where x �→ Fx is a measurable correspondence. A special case of (4) are the finite convex com-
binations, those of the form 

∑I
i=1 �(Fi)μ(Ei) where the correspondence x �→ Fx is constant 

on sets Ei , i = 1, . . . , I , forming a measurable partition of X. More generally, the integral of a 
correspondence is the set of integrals of almost everywhere selections, that is, p ∈ B if and only 
if there exists a measurable x �→ qx such that μ({x : qx ∈ �(Fx)}) = 1 and p = ∫

qx dμ(x). It is 
when μ is non-atomic that all convex combinations of faces are in the descriptive range.

2.2. Examples

For multiple prior models of preferences over measurable functions, one replaces the single 
prior, μ, with a set of priors �. Suppose that f and g are elements of M(X; W) representing 
e.g. insurance policies with different coverages and deductibles. State independence is the as-
sumption that all that matters for preferences over functions are the induced sets of distributions, 
the assumption that the comparison between f and g is the comparison between the sets of 
distributions over utility relevant consequences, f (�) and g(�).
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Another way to express state independence is that one can use the change of variable theorem 
to do the analysis.

Example 1. The Hurwicz criterion or α-Minmax Expected Utility function (α-MEU, Ghirardato 
et al., 2004, §6) ranks elements of M(X; W) using a weighted average of the worst and the best 
outcomes. These preferences can be represented by the utility function f �→ U(f ) given by

U(f ) := α · min
μ∈�

∫
X

v(f (x)) dμ(x) + (1 − α) · max
ν∈�

∫
X

v(f (x)) dν(x) (5)

where 0 ≤ α ≤ 1 and v : W → [0, 1] is a Bernoulli utility function. Letting B = f (�) ⊂ �(W), 
the utility function in (5) can be re-written, after a change of variable, as

U(B) = α · min
p∈B

∫
W

v(c) dp(c) + (1 − α) · max
q∈B

∫
W

v(c) dq(c). (6)

All functions with f (�) = B are indistinguishable for α-MEU preferences and for all other state 
independent preferences over M(X; W).

Any set of distributions that is not in the descriptive range of � cannot be modeled as a 
choice using the set priors � and state-independent preferences over functions. It is tempting, 
but mistaken, to conclude that a larger set of probabilities has a larger descriptive range.

Example 2. If � is �f a(X ), the set of all probabilities on (X, X ), then for any f ∈ M(X; W), 
f (�) = �(F) where F is the closure of f (X), the range the function f . A decision maker with 
�f a(X ) as their set of priors cannot conceive of any non-degenerate risky choices — {p} ∈
R(�f a(X )) if and only if p is point mass on some w ∈ W. A decision maker with �fa(X )

as their set of priors can only conceive of upper/lower probability intervals (3) of the form A =
�({w, w′}), that is, A = {βδw + (1 − β)δw′ : β ∈ [0, 1]}.

A capacity on (X, X ) is a function c : X → [0, 1] that is monotonic, [E ⊂ E′] ⇒ [c(E) ≤
c(E′)], and normalized, c(∅) = 0 and c(X) = 1. A capacity is convex (or supermodular) if c(E) +
c(E′) ≤ c(E ∪ E′) + c(E ∩ E′) for all E, E′ ∈ X . The core of a convex capacity c is defined as 
the set of all μ ∈ �f a(X ) such that μ(E) ≥ c(E) for all E ∈ X and denoted Pc. The ignorance 
capacity is defined by c(X) = 1 and c(E) = 0 if Ec �= ∅. Here Pc = �f a(X ) and the descriptive 
range of Pc is the same as in Example 2.

It is easy to visualize the descriptive ranges of the various sets of priors when restricting to 
two utility relevant outcomes.

Example 3. We can represent closed convex subsets of �({w, w′}) as upper-lower probability 
intervals, [r, s], 0 ≤ r ≤ s ≤ 1, equivalently, as points in the triangle T = {(r, s) : 0 ≤ r ≤ s ≤ 1}
as in Fig. 1.

• The descriptive range of the three sets of priors developed here is all of T if the distribu-
tion of observables or the prior to be extended is non-atomic.

• The descriptive range of �fa(X ), the core of the ignorance capacity, consists of the three 
extreme points of T .

Let τ ∈ �f a(X ) be non-atomic, let ϕ : [0, 1] → [0, 1] be a strictly increasing, onto, strictly 
convex function, define the ϕ-distortion capacity cϕ : X → [0, 1] by cϕ(E) = ϕ(τ(E)) for 
E ∈ X , and let Pcϕ be its core.
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Fig. 1. Descriptive range of a convex distortion capacity.

• The curved line joining (0, 0) to (1, 1) in T represents R(Pcϕ ) = {[ϕ(t), 1 − ϕ(1 − t)] :
t ∈ [0, 1]}.

• If μ and μ′ have bounded densities with respect to each other and � is the convex hull of 
μ and μ′, then R(�) consists of line segments in T with bounds on the ratio of the probabilities 
of w and w′.

2.3. Descriptive completeness

The following is a useful representation property for sets of countably additive probabilities. 
A metric space is Polish if there is an equivalent metric making it both complete and separable.

Definition 3. A (convex) set of countably additive probabilities � on (X, X ) is descriptively 
complete if for every Polish W and every (convex) measurable set B of countably additive 
probabilities on W, there exists a measurable fB : X →W such that fB(�) = B .

From Dumav and Stinchcombe (2016), � ⊂ �ca(X ) is descriptively complete if and only if 
it is

(a) measurably mutual orthogonal, there exists a measurable, onto d : � → [0, 1] and a mea-
surable, onto ϕ : � → [0, 1] such that for all r ∈ [0, 1], for all μ ∈ d−1(r), μ(ϕ−1(r)) = 1, 
and

(b) simultaneously Skorokhod, for every Polish space W and every countably additive proba-
bility p on consequences, there exists a measurable f : X → W such that for all μ ∈ �, 
f (μ) = p.

Condition (a) is a measurable version of the requirement that � can be partitioned into sets 
probabilities with disjoint carriers: if μr ∈ d−1(r) and μs ∈ d−1(s), r �= s, then μr and μs are 
have disjoint carriers because ϕ−1(r) and ϕ−1(s) are disjoint.
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In decision theoretic terms, (b) is the requirement that the descriptive range of � contain all 
risky choices, a condition that requires that each μ ∈ � be non-atomic and entails the existence of 
a rich class of unambiguous events. Because each μ is non-atomic, for every countably additive 
probability p on W, there exists a measurable fp,μ : X →W with fp,μ(μ) = p. The simultaneity 
condition is that a single measurable fp serve for all of the μ ∈ �.

A simple descriptively complete set is �◦ = {λr : r ∈ [0, 1]} where λr is the uniform distribu-
tion on the slice {r} × [0, 1] in [0, 1] × [0, 1]. Because this is a collection of disjointly supported 
probabilities with no probabilistic structure on the indexing set of r’s, it seems difficult to design 
a learning model delivering knowledge of �◦.

3. Countably additive learning models

The theory of countably additive learning models for risky problems has been extensively 
studied. We begin with a short coverage of a simple case in which naive empiricism yields a 
viable and effective learning and optimization strategy, and then turn to a quick analysis of the 
comparative difficulty of estimation problems. With these in hand, we give the partially ob-
servable econometrics models and indicate the development of the parallel results for partially 
observable econometric models.

In this section, all probabilities are countably additive.

3.1. Naive empiricism

Objective answers to the question “Where do single priors come from?” are of the form, 
“From observing a great deal of relevant data.” We begin with a learning model from statistical 
decision theory gives an observational foundation for a single prior and a corresponding decision 
theory. The model involves a sequence of problems, and a limit problem,

maxa∈A

∫
u(a, x) dPn(x), n ∈ N, and maxa∈A

∫
u(a, x) dμ(x), (7)

where the Pn are a stochastic sequence of probabilities converging to μ.
Call the problems in (7) well-behaved if A is a compact metric space, u(·, ·) is bounded, 

without loss 0 ≤ u(a, x) ≤ 1 for all (a, x), each u(·, x) : A → [0, 1] is continuous, and each 
u(a, ·) : X → [0, 1] is X -measurable. The next result, the uniform convergence of the value 
functions in (7) fails without the assumption of countable additivity.

Lemma 2. If μ and each Pn, n ∈ N, is countably additive and Pn(E) → μ(E) for every E ∈ X , 
then for any well-behaved (a, x) �→ u(a, x),∣∣maxa∈A

∫
u(a, x) dPn(x) − maxb∈A

∫
u(b, x) dμ(x)

∣∣ → 0, (8)

and the solution set at Pn converges upper hemicontinuously to the solution set at μ.

In the independent and identically distributed (iid) version of this model, the Pn are the empir-
ical distributions of n iid observations on X that have distribution μ. In the iid case, and in much 
more general ergodic models, the condition that Pn(E) → μ(E) for every E ∈ X is satisfied for 
a probability 1 set of sequences of Pn’s.

In statistical problems, the a might be an estimator in a set of parameters A, and the expected 
value of the utility function increases if the parameter more closely fits the data, which is encap-
sulated in the stochastic Pn. In economics, the a ∈ A might be insurance or investment policies, 
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the expected value of the utility function increases as the distribution of income is increased 
and/or smoothed, and experience with this problem is encapsulated in the Pn. Observations pin 
down the probability μ asymptotically, and Lemma 2 tells us that the naive empiricist strategy of 
best responding to the interim probabilities, Pn, leads to solutions to the risky limit problem.

Data about μ is relevant to related problems and the same naive empiricist strategy also solves 
these. Let (X′, X ′) be another state space. If Pn(E) → μ(E) for every measurable E, then for 
any measurable function g : X → X

′, Qn(E
′) := g(Pn)(E

′) → ν(E′) := g(μ)(E′) for every 
measurable E′ ⊂ X

′. Therefore, if A′ is a different set of actions and v : A′ × X
′ → [0, 1] is 

well-behaved, we again have value convergence and upper hemicontinuous argmax convergence 
for the problems

maxa′∈A′
∫

v(a′, x′) dQn(x
′), n ∈N, and maxa′∈A′

∫
v(a′, x′) dν(x′). (9)

3.2. The difficulty of risky decision problems

Study of the comparative difficulty of countably additive problems starts with value function 
V (ν) := maxa∈A

∫
u(a, x) dν(x), ν ∈ �ca(X ). As observed, for countably additive probabili-

ties, if Pn(E) → μ(E) for every measurable E, then V (Pn) → V (μ). A well-studied measure of 
the difficulty of the problems is the rate and which |V (Pn) − V (μ)| converges to 0, and slower 
convergence is a marker of a more difficult problem.

In the simplest case, the convergence is at a square root of n rate, that is, |V (Pn) − V (μ)| =
O( 1√

n
) with probability 1. This arises in the iid model if the set of slices, UA := {u(a, ·) : a ∈ A}, 

is a VC class of functions.5 Every finite class of bounded functions is a VC class, so finite prob-
lems, however large, fall into the same difficulty class as finite dimensional parametric estimation 
problems with iid data, however high the dimensionality.

Slower convergence of the value differences indicates that the learning problem is more 
difficult. This directly parallels the slower convergence of optimal estimators for complicated 
estimation problems. In high dimensional non-parametric regression problems, the values can 
converge very slowly, see Stinchcombe (2001) for the genericity of arbitrarily slow convergence 
in infinite dimensional problems.

3.3. Partially observable econometric models

To get at the essentials of the partially observable econometric models, let (M1, M1) and 
(M2, M2) be uncountable standard measure spaces,6 let (X, X ) = (M1 × M2, M1 ⊗ M2) be 
the product space with the product σ -field, let C be the sub-σ -field M1 ⊗{∅, M2}, and let μ be a 
distribution in �ca(X ). The following generalizes the partially identified set introduced §1.2 — 
set M1 =R

1+k and M2 =R
�.

Definition 4. The partially identified set is denoted �ca
X (μ|C) and defined as the set of all 

ν ∈ �ca(X ) such that ν(C) = μ(C) for all C ∈ C.

5 The question that Vapnik and Červonenkis (1971) answered is “How large can a class of measurable sets C (resp. 
class of measurable functions F ) be and still have the convergence of Pn(C) to μ(C) (resp. 

∫
f dPn to 

∫
f dμ)) be 

uniform over C (resp. over F ) and uniform over countably additive μ’s?” Such classes of sets or functions are now called 
VC classes. Dudley’s monograph (Dudley, 1999) thoroughly covers VC classes and the uniform central limit theorems 
they satisfy.

6 A measure space is standard if it is measurably isomorphic to a measurable subset of a Polish metric space.
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We state the next result for finite spaces of consequences. With sufficient care about closure 
and measurability assumptions, it extends to Polish spaces of outcomes.

Theorem 1. For finite W, every element of the descriptive range of �ca
X (μ|C) is a convex com-

bination of faces in �(W), and if the marginal of μ on M1 is non-atomic, then the descriptive 
range is the class of all convex combinations of faces.

The proof shows that �ca
X (μ|C) can be expressed as the integral of a measurable set of dis-

jointly supported probabilities: each observable x1 can arise from any point in {x1} × M2 so that 
�ca

X (μ|C) = ∫
M1

�({x1} × M2) dμ1(x1) where μ1 is the marginal of μ on M1; therefore, if f
is a measurable function from M1 × M2 to W, then f (�ca

X (μ|C)) = ∫
M1

�(Fx1) dμ1(x1) where 
Fx1 := f ({x1} × M2) is the range of f (x1, ·).

3.4. Toward a decision theory for partial observability

Suppose that Pn(C) → μ(C) for all C in the class of sets C =M1 ⊗{∅, M2} given above. Let 
�n be the set of probabilities on X that agree with Pn on C, and let � be the set of probabilities 
that agree with μ. The sequence of sets �n converges to �: for every ν ∈ �, there exists νn ∈ �n

such that νn(E) → ν(E) for every E ∈X ; and if νn ∈ �n satisfies νn(E) → ν′(E) for all E ∈X , 
then ν′ ∈ �. In parallel with the model in (7), consider the problems

maxa∈A U(a,�n), n ∈N, and maxa∈A U(a,�) (10)

where each U(a, ·) is an extension of the expected utility preferences on singleton sets, {ν} �→∫
u(a, x) dν(x), to non-singleton sets of probabilities.
There are two basic parts to the theory of countably additive learning models for risky prob-

lems. The first is the uniform convergence of the value functions and the related upper hemi-
continuous convergence of the argmax set, the second is the study of conditions under which 
the value functions converge at a 

√
n or a slower rate. We begin with an outline of sufficient 

conditions for uniform convergence.
Suppose that for each a ∈ A, the mapping �′ �→ U(a, �′) is linear and continuous in a topol-

ogy that makes the closed convex sets of probabilities on (X, X ) into a Frechet space. From 
Dieudonne’s version of the Banach–Steinhaus (aka uniform boundedness) theorem (Dieudonné, 
1970, Ch. XII, §6), the uniform boundedness of the linear mappings {U(a, ·) : a ∈ A} implies 
that the class of mappings is equi-continuous. In particular, this means that if �n → �, then

|max
a∈A

U(a,�n) − max
b∈A

U(b,�)| → 0. (11)

With this and the compactness of A, upper hemicontinuous convergence of the argmax sets 
follows.

The set of continuous linear functionals on the class of closed convex sets of probabilities 
resists an easy characterization as soon as there are three or more points in the probability space. 
There is, in Dumav and Stinchcombe (2015), a representation result for a dense class of the 
functionals. It involves signed measures on the continuous, bounded functions on X. It seems 
that conditions on the supports of those signed measures, e.g. to uniformly equicontinuous or 
other VC classes of functions, should deliver rate of convergence results in (11).
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4. Two purely finitely additive models

The first purely finitely additive model supposes that internal consistency of choices, in the 
form of a Dutch book argument, delivers a probability on a field C where X strictly contains σ(C). 
This model applies if the internal consistency arises e.g. from a sequence of choices or a sequence 
of elicited preferences. The second model is observational, it gives rise to the set of extensions 
of a purely finitely additive probability from a field C to the smallest σ -field containing C, that 
is, to X = σ(C).

4.1. The Savage–de Finetti extension set

A Dutch book argument due separately to Ramsey and to de Finetti involves decisions be-
tween different possible bets, and gives a subjective foundation for a single prior on a field of 
events C. Given an event E ∈ C, the two numerical consequences 0 and 1, and a number r , con-
sider the two functions (state-contingent outcomes), f r

E(x) = 1E(x) − r and gr
E(x) = r − 1E(x). 

The first function models paying r to buy a bet on E that pays off 1 if E happens and pays off 0
if E does not happen, while the second function models the opposite side of that bet.

Assume that for each E, the decision maker must name a price, rE , and that after they have 
named these prices, they can be forced to take any finite sum of the bets, γ (x) = ∑

E hE(x)

where hE can be either f r
E or gr

E at the chosen price rE . If the decision maker chooses rE’s with 
the property that some γ satisfies γ (x) < 0 for all x, then we say that we can make a Dutch 
book against them. Avoiding Dutch book is a form of rationality that is equivalent to choosing a 
pricing function, E �→ rE , interpretable as a probabilistic prior belief.

Lemma 3 (Ramsey, de Finetti). There is no finite sum with γ (x) < 0 for all x if and only if 
E �→ rE is a finitely additive probability on C.

Both Savage and de Finetti argued that the existence of non-measurable sets represents a chal-
lenge, perhaps insuperable, to the meaning of probability (e.g. de Finetti, 1974, p. 124, Savage, 
1972, Ch. 3, §3). To avoid this, both advocated using the measure space (X, P(X)) as the model 
of randomness (P(X) is the power set of X, that is, the class of all subsets of X). The choice 
to use this measure space imposes strong restrictions on the probabilities: all countably addi-
tive probabilities are either finite or countably infinite convex combinations of point masses; all 
non-atomic probabilities are purely finitely additive.

The Savage–de Finetti extension set is the set of probabilities on P(X) such that ν(C) =
μ(C) for all C ∈ C, denoted �fa

P(X)
(μ|C). Typically, μ|C will have many Hahn–Banach exten-

sions from C to P(X), and the Savage–de Finetti extension set is that indeterminate set. De 
Finetti argued that this indeterminacy captures something fundamental about probability (see 
esp. de Finetti, 1974, pp. 229–231).

4.2. Purely finitely additive observational models

An observational learning model for a class of events C ⊂ X , X = σ(C), and a probability 
μ is a stochastic sequence of probabilities, Pn : C → [0, 1], with the property that, with probabil-
ity 1, Pn(C) → μ(C) for all C in F◦(C), the smallest field containing C. The iid learning model 
is the special case in which Pn(C) = 1

n

∑
m≤n 1C(Yn) is a sequence of empirical distributions 

and the vectors (1C(Yn))C∈C ∈ {0, 1}C are iid with distribution given by E 1C(Yn) = μ(C). The
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partially identified set for a learning model, �fa

X (μ|C), is defined as the set of all probabilities 
ν ∈ �f a(X ) with ν(C) = μ(C) for all C ∈ C.

The observation space is S := {0, 1}C with its product σ -field S , and the observation map-
ping from X to S is ϕC(x) := (1C(x))C∈C . A learning model for (X , C, μ) is determinate if the 
partially identified set is completely identified, �fa

X (μ|C) = {μ}, otherwise it is indeterminate. 
Indeterminacy arises if the mapping μ �→ ϕC(μ) is many to one.

Carathéodory’s extension theorem tells us that observational models for countably additive 
probabilities are determinate. In the following example, observations are consistent with only 
one countably additive μ, and if μ is the true distribution, then it can be learned at a 

√
n rate 

in the iid model. By contrast, if we assume that μ is purely finitely additive, then observations 
cannot determine its support set.

Example 4. Suppose that X = [0, 1], that C is the field generated by the intervals {[0, r] : r ∈
[0, 1]}, that X = σ(C) is the usual Borel σ -field, and that μ([0, r]) = r for all r ∈ [0, 1]. If μ is 
countably additive, the learning model is determinate. By contrast, there are uncountably many 
disjoint, uncountable sets dense subsets of [0, 1], each containing uncountably many disjoint 
countable dense subsets supporting a purely finitely additive probability that agrees with μ on C.7

The advantage of the indeterminacy is that the set of probabilities consistent with μ can be 
used as a set of priors. The following shows how the non-atomicity of μ on the observable field 
C leads to arbitrary convex combinations of faces being in the descriptive range of �fa

X (μ|C).

Example 5. Suppose that f : X → W = {a, b, c} has the following properties: f : [0, β] →
{a, b}; f : (β, 1] → {b, c}; f −1(a) and f −1(b) are dense subsets of [0, β]; while f −1(b) and 
f −1(c) are dense subsets of (β, 1]. Using the claim in the previous Example, f (�

f a

X (μ|C)) is 
the convex combination of faces β�({a, b}) + (1 − β)�({b, c}).

4.3. Structural results

The determinacy of countably additive learning models is a restatement of Carathéodory’s ex-
tension theorem. The first structural result gives the extent to which the Carathéodory’s theorem 
depends on countable additivity — either the field C is equal to the σ -field X , or the diameter of 
�

f a

X (μ|C) is 1 for some μ ∈ �f a(X ). The second result gives a condition on C, essential sepa-

rability, that guarantees that for any purely finitely additive μ, �fa

X (μ|C) can be expressed as an 
integral of simplexes with uncountable, disjoint support sets. This guarantees that the diameter 
is 1 and leads directly to the descriptive range results.

4.3.1. The diameter dichotomy
The norm distance between ν, ν′ ∈ �f a(X ) is

‖ν − ν′‖ := supE∈X |ν(E) − ν′(E)|. (12)

7 The proof of this claim is in the appendix.
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Two probabilities are orthogonal if ν(E) = 1 and ν′(E) = 0 for some E ∈ X , and orthogonal 
probabilities are at norm distance 1 from each other.8 The diameter of a set of probabilities � is 
Diam(�) = sup{‖ν − ν′‖ : ν, ν′ ∈ �}. The Hahn–Banach extension theorem yields

Lemma 4 (The diameter dichotomy). If C ⊂ X is a field, then either C = X so that 
Diam(�

f a

X (μ|C)) = 0 for all μ ∈ �f a(X ), or for some μ ∈ �f a(X ), Diam(�
f a

X (μ|C)) = 1.

4.3.2. Essentially separable classes
It will matter that the countable class C′ in the following may depend on μ.

Definition 5. A class C is essentially separable if for any μ ∈ �f a(X ), there is a countable 
C′ ⊂ C such that �fa

X (μ|C′) = �
f a

X (μ|C).

The smallest field containing any countable collection of sets is countable, and any countable 
class of sets is essentially separable. For any class of sets E , F◦(E) denotes the smallest field 
of sets containing E . If I is the class of intervals (q, q ′), (q, q ′], [q, q ′) or [q, q ′], q , q ′ rational 
in R

�, then F◦(I) is essentially separable. If (X, d) is a metric space with a countable dense 
set, E, and E is the class of open balls with rational radius around points in E, then F◦(E) is 
essentially separable. There are also many uncountable, essentially separable sets.

If B is the class of open balls with finite radius in a separable Banach space or a separable 
Frechet space, then F◦(B) is essentially separable. These spaces cover those parts of continuous 
time stochastic process theory that use the Banach space C([0, 1]) with the sup norm topology 
or the Frechet space C([0, ∞)) with the topology of uniform convergence on compacta.

If G is the class of open sets with compact closure in a locally compact metric space, then 
F◦(G) is essentially separable. These spaces include Rk and the space of closed subsets of a 
compact metric space with the Hausdorff metric. One can also look for uniform compactness 
conditions on classes of sets that deliver essential separability. The following is one such condi-
tion.

Lemma 5. If C =F◦(V) and V is a VC class, then C is essentially separable.

In econometrics, VC classes of functions, or the closely related μ-Donsker classes, are of-
ten called uniformly equi-continuous classes (Andrews, 1994). VC classes have combinatorial 
and metric entropy characterizations that are often easier to verify, and the proof of Lemma 5
uses a basic metric entropy result for VC classes. Dudley et al. (1991, Proposition 11) show 
the equivalence between the VC class property and the uniform strong law of large numbers 
property. For example, the uncountable field F◦({(−∞, x] : x ∈ R

k}) is not a VC class (except 
in the finite case, no field of events can be a VC class), but it is essentially separable because 
multi-dimensional Glivenko–Cantelli theorem implies that the given class of intervals is a VC 
class.9

8 Countably additive ν, ν′ at norm distance 1 from each other are orthogonal by the Hahn decomposition theorem 
(Dunford and Schwartz, 1988, Theorem III.4.10). Finitely additive probabilities at norm distance 1 may not be orthogonal 
to each other, see Armstrong (1988) for a study of the implications.

9 Dudley’s monograph (Dudley, 1999) contains a systematic development of this and the associated uniform central 
limit theorems in empirical process theory.
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4.3.3. The descriptive range result
There are two differences between the next result and Theorem 1. First, because we are here 

using purely finitely additive probabilities, there is no extra difficulty in replacing finite spaces of 
consequences with general compact spaces. Second, we here need a condition on C. Recall the 
maintained assumption that W is a compact metric space.

Theorem 2. If μ is purely finitely additive and C is essentially separable, then every element 
of the descriptive range of �fa

X (μ|C) is a convex combination of faces in �(W), and if μ is 
non-atomic on C, then the descriptive range is the class of all convex combinations.

The proof uses properties of the Stone space for L∞, a construction that contains the essential 
intuition about the non-observability of the state space when the probability is purely finitely 
additive.

5. Comparisons

The parallels between the partially observed econometric models and the Savage–de Finetti 
extension set are immediate and direct: the indeterminacy arises because the value of a proba-
bility is only observed for the sets in a sub-field C with σ(C) a strict subset of X . We begin this 
section by showing that the finitely additive observational model has the same structure. We then 
turn to the relation between the representation results given here in the presence of non-atomicity 
and Dempster’s (1967) method of arriving at convex combinations of faces. We end this section 
with comparisons between the present approach and interval-valued probabilities and between 
countably and finitely additive stochastic search.

5.1. Domains for purely finitely additive probabilities

The examples of observational models with a purely finitely additive μ given here have had 
the property that they put mass 1 on observations that cannot arise from states in the carrier 
of μ. This is not an accident, and this sort of phenomenon has been long recognized. For an 
example, consider the following summary of the mathematics of finitely additive measures taken 
from Uhl’s (1984) review of Rao and Rao’s definitive monograph on finitely additive measures 
(Bhaskara Rao and Bhaskara Rao, 1983).

There are essentially three ways to prove theorems about finitely additive measures. The 
easiest is usually proof via the Stone representation theorem which allows a direct transfer 
of the finitely additive case to the countably additive case. . . . The second is Drewnowski’s 
principle . . . both show that a finitely additive measure is just a countably additive measure 
that was unfortunate enough to have been cheated on its domain. The third approach (fol-
lowed by Rao and Rao) is to prove everything directly with absolutely no reference to the 
countably additive case.

In many cases, having a probability that has been ‘cheated on its domain’ is a tremendously 
useful device, and here it delivers indeterminacy that can be used for modeling ambiguous choice 
problems. The proof of Theorem 2 replaces the state space (X, X , μ) with the mentioned Stone 
representation. A version of the Stone representation taken from Yosida and Hewitt (1952, §4)
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allows us to see how partial observability arises from a projection mapping, just as occurs in the 
partially observed econometrics models.10

(i) Let (Ŷ , ̂Y) be the product space {0, 1}X with the product topology and the associated Borel 
σ -field. Because events determine states, the mapping ψ(x) := (1E(x))E∈X is one-to-one. 
Identify each x ∈X with ψ(x) and identify X with ψ(X).

(ii) Define X̂ as the closure of ψ(X) in Ŷ so that X is dense in X̂, and let X̂ denote the Borel 
measurable subsets of the compact set X̂.

(iii) For any E ∈X and all x ∈ X, 1E(x) = projE(ψ(x)) where projE is the canonical projection 
map for the product space {0, 1}X . The topology on X̂ is defined by the requirement that 
these projections be continuous.

(iv) Every simple measurable h(·) = ∑
i βi1Ei

(·) on X has a unique continuous extension, 
ĥ(·) = ∑

i βi projEi
(·) on ̂X. Taking uniform limits delivers a sup norm isomorphism h ↔ ĥ

between the bounded measurable functions on X and the continuous functions on the com-
pact Hausdorff space X̂.

(v) Integration of measurable functions on X becomes integration of continuous functions on 
X̂, and this in turn induces a one-to-one, onto variation norm isometry between �fa(X )

and �ca(X̂ ) defined by 
∫
X

h dμ = ∫
X̂

ĥ dμ̂ for the bounded measurable h.
(vi) Finally, the observation mapping, ϕC(x) := (1C(x))C∈C , is the many-to-one projection from 

X̂⊂ {0, 1}X to {0, 1}C .

The corona of X is X̂ \ X. It is easy to show that μ is purely finitely additive if and only 
if μ̂ puts mass 1 on the corona.11 It is in this sense that μ has been ‘cheated on its domain,’ 
and this contains an intuition about the indeterminacy of observational models: learning requires 
observations, but pfa probabilities put their mass on the unobserved corona. In §1.3, all of the 
points in the corona led to the same observation point in S = {0, 1}C , and that point does not arise 
from any point in X. In Example 4, the points in the corona gave rise to observations just like 
those arising from a countably additive model even when the support sets in X are disjoint.

There is also a cardinality based intuition: there are at least 2c pfa point masses where c is 
the cardinality of R; every pfa μ is a convex combination of those point masses; when C is 
countable, the cardinality of the observation space, S = {0, 1}C , is the strictly smaller c. One 
cannot determine 2c points using an injection into a space having only c points.

5.2. Dempster’s compatible sets of probabilities

For simplicity, we consider only the there are only finitely many consequences, #W < ∞. 
Suppose that μ ∈ �f a(X ) is non-atomic and that � : X ⇒ W is a non-empty valued and mea-
surable correspondence. A measurable function f : X → W is an almost everywhere selection 
from � if μ({x : f (x) ∈ �(x)}) = 1.

10 The properties given below follow directly from known results, for completeness the arguments are sketched in the 
Appendix. When X = N and X = P(N), the X̂ constructed below is the Stone–Čech compactification of the integers, 
denoted βN. Maharam (1976) was an early study of properties of βN that made use of the isometry between finitely 
additive measures on N and the countably additive measures on βN given in (v) below.
11 Let hn = 1En where En ↓ ∅ and μ(En) ≡ 1. Because 

∫
hn dμ ≡ ∫

ĥn dμ̂, ̂μ is carried on the subset of the corona 
given by ∩N {̂x ∈ X̂ : ĥn(̂x) = 1}.
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With a non-atomic μ, Dempster’s (1967, §2) set of probabilities compatible with � is

�(μ) = {f (μ) : f is an almost everywhere selection from � }. (13)

Using the definition of the integral of a correspondence taking values in the convex set �(W), it 
is nearly immediate that �(μ) = ∑

F �(F)μ(� = F) where the sum is over non-empty F ⊂W.
The choice theory presented in this paper posits choices between f (�(μ)) and g(�(μ)), 

and in the presence of non-atomicity, these are choices between convex combinations of closed 
faces. The Dempster alternative is to model choices as being between �(μ) and �(μ) where �
and � are correspondences and μ is non-atomic. Once again, these are choices between convex 
combinations of faces.

5.3. Interval-valued probabilities

An interval-valued probability is a mapping E �→ P(E) = [rE, rE] ⊂ [0, 1]. In the early 
1900’s, Keynes (1988) derived interval-valued probabilities and their properties from epistemic 
considerations. They were systematically investigated by de Finetti (1975, Appendix §19.3) who 
assumed that the interval-valued probabilities contain a probability, that is, that there exists a 
probability μ : X → [0, 1] such that μ(E) ∈ P(E) for all E. Suppes and Zanotti (1989) give 
conditions under which de Finetti’s interval-valued probabilities contain at least one probability.

As noted by Savage and de Finetti in their discussion of how to choose a prior (de Finetti 
and Savage, 1962), Smith’s work (Smith, 1961) provides a decision theoretic foundation for 
interval-valued probabilities. Smith gives the following variant of the Ramsey and de Finetti 
derivation of subjective probabilities: suppose that the decision maker can specify for each event 
E and each r ∈ [0, 1], whether they would take the bet f r

E = 1E − r , take the other side of the bet, 
gr

E = r − 1E , or would prefer not to bet either way on the event E a the price r . Assuming that 
E is not null, we expect the decision maker to take 1E − r for sufficiently low r , to take the other 
side for sufficiently high r , and if decision maker prefers not to bet on E at a price r , then this 
should happen for all r in an interval [rE, rE]. The mapping E �→ [rE, rE] is the interval-valued 
probability.

Given an interval-valued probability, the set of probabilities that it contains is closed and 
convex. However, it need not belong to the closed convex hull of the faces (see Dempster, 1967, 
Fig. 1 for an example). The difference arises because Smith’s work delivers an interval of possible 
values for each event E ∈ X and asks for the set of μ compatible with those values, while the 
present approach focuses on the set of probabilities compatible with exact knowledge of μ(E)

of all E is a sub-field C ⊂X .

5.4. Recoupling learning and decisions

The objective foundation for a single prior given in §3.1 consists of a sequence of problems 
and a limit problem,

max
a∈A

∫
u(a, x) dPn(x) and max

a∈A

∫
u(a, x) dμ(x) (14)

where Pn converges to μ. This model captures the idea that the reward structure, u(·, ·), is known, 
but the stochastic structure, μ, is not known. There are two potential sources of information 
about μ: first, observing the stochastic sequence 1C(Yn) for all C ∈ F◦(C) where E 1C(Yn) =
μ(C); second, observing the random rewards, R(an), to taking an action an where the probability 
that R(an) ∈ [0, r] is equal to μ({x : u(an, x) ∈ [0, r]}) for r ∈ [0, 1].



M.B. Stinchcombe / Journal of Economic Theory 165 (2016) 263–291 281
The analysis so far has been decoupled from the second source of information. This section 
develops a condition on the interaction of the stochastic structure and the reward structure, which, 
if satisfied, guarantee that simple stochastic search makes the second source of information suffi-
cient to find the solution to the limit problem. An example failing the condition demonstrates that 
having both sources of information need not be sufficient to reduce ambiguity and re-inforces the 
domain intuitions about finitely additive priors.

From above, the limit problem is well-behaved if A is compact, 0 ≤ u(a, x) ≤ 1, for each 
x ∈ X the function u(·, x) is continuous on A, and for each a ∈ A, u(a, ·) is measurable on X. 
V 1

0 (A) denotes the set of continuous functions on A bounded between 0 and 1 with the sup norm, 
and V denotes its Borel σ -field. V 1

0 (A) is a Polish metric space, and it is compact if and only if 
A is finite.

A finitely additive probability p on the Borel σ -field of a Polish space M is tight if for every 
ε > 0, there exists a compact Kε such that for every continuous f : M → [0, 1] with f (x) =
1 for all x ∈ Kε , 

∫
f dp > (1 − ε). Finitely additive probabilities, p, q , on M are Prohorov 

equivalent if 
∫

f d(p −q) = 0 for all bounded continuous f . It can be shown that p is Prohorov 
equivalent to a countably additive probability if and only if it is tight, and when M is compact, 
all probabilities are Prohorov equivalent to a countably additive probability.

For a well-behaved u : A × X → [0, 1], we say that μ ∈ �f a(X ) is tight for u(·, ·) if the 
distribution p ∈ �f a(V) defined by p(E) = μ({x : u(·, x) ∈ E}), E ∈ V , is tight. Any countably 
additive μ is tight for all u(·, ·) because V 1

0 (A) is Polish and all countably additive probabilities 
on Polish spaces are tight. If A is finite, then V 1

0 (A) is compact, and every μ ∈ �f a(X ) is tight 
for all u(·, ·). If the set {u(·, x) : x ∈ X}, is equi-continuous, then every μ ∈ �f a(X ) is tight for 
u(·, ·) by the Arzelà–Ascoli theorem (e.g. Corbae et al., 2009, Thm. 6.2.61).

The most naive form of stochastic search takes repeated independent draws according to a 
single distribution. The next result shows that this can be effective in the presence of tightness. 
For a countably additive probability Q on A, Q∞ denotes the countable product measure on AN

having all marginals equal to Q. Recall that V (μ) := maxa∈A

∫
u(a, x) dμ(x).

Lemma 6. If μ ∈ �f a(X ) is tight for u(·, ·), then a �→ ∫
u(a, x) dμ(x) is continuous, and for 

any full support, countably additive Q on A and for any ε > 0,

Q∞(#{(an)n∈N : E R(an) > V (μ) − ε} = ∞) = 1. (15)

Thus, in the presence of tightness, naive stochastic search will, with probability 1, yield in-
finitely many observations with expected payoffs at least ε-close to the maximum achievable. 
In the following example, μ is not tight for u(·, ·) and knowing both the asymptotic results of a 
stochastic search and μ(C) for all C in a rich field C does not reduce the residual ambiguity.

Example 6. Let A = [0, 1]. We describe a class of probabilities on X that have the property 
that a �→ E R(a) is equal to 0 except for a single r ∈ [0, 1]. Unless Q({r}) > 0, naive stochastic 
search will, with probability 1 only see the realizations R(an) = 0.

Suppose that u(·, ·) satisfies the following richness condition — {u(·, x) : x ∈ X} = V 1
0 (A). 

For r ∈ [0, 1] and n ∈N, let vn ∈ V 1
0 (A) be the function max {0, 1 − n|r − a|}, and pick xn such 

that u(·, xn) = vn(·). For any pfa probability γ on the integers, define μγ (E) = γ ({n : xn ∈ E}). 
For a �= r , 

∫
u(a, x) dμγ (x) = 0 while 

∫
u(r, x) dμγ (x) = 1.

For each sup norm open ball, Bε(v) ⊂ V 1
0 (A), v ∈ V 1

0 (A) and ε < 1
2 , let Eε(v) = {x ∈ X :

u(·, x) ∈ Bε(v)}. Let C be the field generated by the class of sets {Eε(v) : ε < 1 , v ∈ V 1(A)}. 
2 0
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Because ε < 1
2 , μ(Eε(v)) = 0 for all v and ε < 1

2 , which implies that μ(C) = 0 or μ(C) = 1 for 
all C ∈ C.

This barely scratches the set of mappings a �→ E R(a) that arise from different μ ∈
�f a(X ). Using Kingman (1967, Thm. 2 and §4), one can show the following: if {u(·, x) :
x ∈ X} = V 1

0 (A), then for any g : A → [0, 1], measurable or not, there exists a non-empty, con-
vex set Pg ⊂ �f a(X ) having diameter 1 and having E R(a) ≡ g(a). Whether or not descriptive 
range of sets such as Pg have better properties than the decoupled sets investigated in this paper 
is an open question, but it seems reasonable to expect that their properties are the same.

6. Summary, extensions, and relations with the literature

This paper has analyzed three possible foundations for sets of priors useful in multiple prior 
theories of choice under ambiguity. The first, data-based approach involves the econometrics of 
partial observability, the second involves observational learning models where the data has a pfa 
distribution. The third approach is the Savage–de Finetti set of extensions of a subjective prior.

The three approaches have the same weakness, the indeterminate sets contain uncountably 
many non-atomic probabilities with mutually disjoint supports, and strength, if the distribution 
of observables or the prior to be extended is non-atomic, then all convex combinations of faces 
can be modeled in the space of distributions over consequences. The mutually disjoint support 
property makes the three sets unsuitable as models of diversity of opinion. The strength al-
lows a small, albeit interesting, class of ambiguous choice problems to be modeled, one that 
encompasses Dempster’s compatible sets, in particular, includes all two outcome upper-lower 
probability sets.

6.1. Generalizations

Interest centers on preferences between sets of distributions induced by different functions 
applied to a set of priors �. After choosing a function, say f , the rewards contain information 
about the induced distribution f (μ). It is easy to give conditions under which the descriptive 
range of the set of priors is unchanged after incorporating the extra information. Generalizations 
to the space of utility relevant consequences, W, are also available, as are generalizations to 
probabilities μ that are neither countably additive nor purely finitely additive.

6.1.1. Incorporating extra information
The analysis of learning models has decoupled decisions and observations. In §5.4, we have 

seen that for tight pfa probabilities, incorporating what is learned by making decisions reduces 
ambiguity, for decision purposes, to 0, and that without tightness, there may be no reduction. 
Here we look at the descriptive range after information from a simple decision is incorporated in 
the partially observable econometric models.

Let �ca
X (μ|C) be the partially identified set. Suppose that one has learned � and is repeatedly 

faced with the choice between the functions f = 1F and g = 1G, F , G measurable subsets of 
M1 × M2. Experimentation will soon give information on μ(F) and μ(G). Consider the new 
partially observed model where μ1, the marginal of μ on M1, and, say, μ(F) has been learned. 
One question of interest is the descriptive range of this new model.

For each x1 ∈ M1, let F(x1) be the corresponding slice of F , F(x1) = {x2 ∈ M2 :
(x1, x2) ∈ F }, and let F ′ ⊂ M1 be the set of x1 for which F(x1) is uncountable. If μ1(F

′) = 1
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or if μ(F ′) = μ(projM1
(F )), then the arguments for Theorem 1 can be applied to show that the 

descriptive range of the new partially observed model has the same properties as the original 
set (for the measurability of F ′, projM1

(F ), and the existence and measurability of the requisite 
selections from F , see e.g. Stinchcombe and White, 1992).

6.1.2. General spaces of utility relevant consequences
The descriptive range for the partially observable econometric models was given only for fi-

nite spaces of consequences. To generalize to compact metric spaces of consequences requires 
the use of compact-valued correspondences and some care with measurability and closure con-
siderations both in the statements and proofs of the results. However, the requisite techniques for 
this extension are well-known.

To generalize the descriptive range results to Polish spaces of consequences, e.g. W = R, 
requires yet more care. This is mostly because the pfa probabilities on non-compact spaces of 
consequences can be at arbitrary Prohorov distances from the set of countably additive probabili-
ties. Again, the requisite techniques are well-known, in this case they involve homeomorphically 
imbedding W as a Gδ subset of [0, 1]N.

6.1.3. General finitely additive probabilities
From the Yosida–Hewitt decomposition (Yosida and Hewitt, 1952, Theorem 1.23), any 

μ ∈ �f a(X ) has a unique expression as a convex combination of a purely finitely additive and 
a countably additive probability, μ = δμpf a + (1 − δ)μca . Taking En ↓ ∅ with μpf a(En) ≡ 1
delivers μ(En) ↓ δ. All results developed here for pfa and for countably additive probabilities 
can be combined using this decomposition. For example, if μ = δμpf a + (1 − δ)μca , then the 
orthogonality of the probabilities in asymptotic set for an observational learning model is cor-
respondingly modified, (1 − δ) of the mass is identified and δ of the mass is spread between 
uncountably many disjointly supported measures. The descriptive range becomes the class of 
sets of the form (1 − δ){p} + δA, p a countably additive probability on W and A an element of 
the closed convex hull of the set of faces.

6.2. Open questions

The are open questions about: the generality of the state space assumptions; the dependence of 
the asymptotic set on the class of learned events C; the existence of variants of learning or exten-
sion models with indeterminate sets having a more complete descriptive range; and completing 
the comparison with the cores of convex capacities.

6.2.1. General state space questions
The arguments for Theorem 2 used the assumption that events identify states, and used essen-

tial separability. The assumptions are weak for learning models, and cover the Savage–de Finetti 
extension sets when the class C need only be used in models with spaces where sequences are an 
adequate tool for studying continuity. Still, one might want a more general extension theory.

Let X ⊂ P(X) be a σ -field, let C ⊂ X be a subclass of sets, and let L(C) be the span of the 
indicators of sets belonging to F◦(C), the field generated by C. A satisfactory extension of the 
present work involves characterizing triples (X , C, μ) with the property that �fa

X (μ|C), viewed 
as the set of Hahn–Banach extensions from L(C) to the bounded measurable functions, has an 
integral representation as a convex combination of disjointly supported probability simplexes. 
This is a stronger property than the existence of a μ with the diameter of �fa

(μ|C) being 1, 
X
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a property characterized in Lemma 4 by the sup norm closure of L(C) not being the class of all 
bounded measurable functions.

6.2.2. Dependence on the class of learned events
For ambiguous problems, we replace the risky decision problems v(μ) = maxa∈A

∫
u(a,

x) dμ(x) by V (�ca
X (μ|C)) = maxa∈A U(a, �ca

X (μ|C)) where each U(a, ·) is an extension of ex-
pected utility preferences on singleton sets to non-singletons sets of probabilities (as in Dumav 
and Stinchcombe, 2015). The set �ca

X (μ|C) contains all probabilities consistent with knowing 
the probability of every event in the class F◦(C). Much is known about the continuity of value 
and the upperhemicontinuity of behavior in the risky problems as Cn → C (see Stinchcombe, 
1990 for a Bayesian approach). Similar information about the behavior of the value function and 
the best response sets for ambiguous problems would be a useful first step in studies of the ef-
fects of changing information in general equilibrium models and Nash equilibrium models with 
ambiguity.

6.2.3. Learning sets of priors with larger descriptive ranges
A non-atomic prior, μ, is descriptively complete in models of risky choice because any 

distribution over W can be modeled as a measurable function. As discussed above, this is a con-
sequence of Skorokhod’s representation theorem, for any p ∈ �(W), there exists a measurable 
fp :X → W such that fp(μ) is at Prohorov distance 0 from p. In a similar fashion, a (convex) set 
of priors, �, is descriptively complete if for every non-empty (convex) measurable A ⊂ �(W), 
there exists a measurable function, fA :X → W, such that fA(�) = A up to equivalence.

We have seen how small the class of closed faces is, and this can matter in substantive ways 
— one cannot model ambiguous choices over, say, the three outcomes W = {a, b, c} answering 
to the description “a is at least as likely as b but I have no information about the relative likeli-
hood of c.” Such limitations can be avoided. There are descriptively complete sets of countably 
additive priors, and their characterization (Dumav and Stinchcombe, 2016) shows that they must 
be an uncountable collection of non-atomic probabilities, must satisfy a measurable form of each 
probability having a support set disjoint from the support sets of all the other probabilities, and 
must have a rich class of unambiguous events. It seems difficult to construct a learning model 
for such a class of priors. However, if we replace learning the values of μ for every C ∈ C with 
learning an interval containing μ(C) as in Smith (1961), then we may increase the descriptive 
range in important ways.

6.2.4. Completing the comparisons with capacities
This paper has characterized the descriptive ranges of sets of priors arising from three different 

kinds of models. To finish the comparisons with the cores of convex capacities begun in §2
requires a characterization of those cores. The results in El Kaabouchi (1994) seem likely to be 
key, and it can be shown that no convex capacity has a core that is descriptively complete.

6.3. Literature

The ability to model two outcome upper/lower probability intervals is intimately related to the 
interval-valued probabilities introduced by Keynes (1988), given a decision theoretic foundation 
by Smith (1961), and studied by de Finetti (1975, Appendix §19.3). However, there seems to be 
no previous detailed examination of the properties Savage–de Finetti set of extensions. The key 
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is to show that the Savage–de Finetti set can be expressed as a convex combination/integral of 
disjointly supported probability simplexes.

Suppes and Zanotti (1989) give sufficient conditions for de Finetti’s interval valued probabil-
ities to contain a probability. In the present context, this is not an issue because we start with the 
probability μ. Rather, Theorem 2 contains an answer to a dual question: when will the interval 
valued probability E �→ {ν(E) : ν ∈ �

f a

X (μ|C)} provide a model for all upper/lower probability 
intervals over pairs of outcomes?

There are vast literatures on partially observable econometrics models and countably additive 
learning models. In graduate economics curricula, the partially observable models make their 
first appearance in the part of the econometrics sequence known affectionately as “The Linear 
Model with Diseases.” Much of the recent theoretical research in econometrics concerns the very 
hard problem of making inferences in the presence of different kinds of partial observability. 
This typically involves postulating some extra structure, hopefully minimal and having a sound 
theoretical basis, on the joint distribution of the observables and the unobservables and then 
deriving good estimators of the cæteris paribus quantities of interest.

The literature on countably additive learning models and the associated decision theory as 
well as the approximation of difficult problems by simpler, is comprehensively developed in Le 
Cam (1986) or Liese and Miescke (2008). There is also a well-developed theory of Bayesian 
statistical problems with pfa priors e.g. Jaynes (2003, Ch. 12, 15). There is nearly nothing about 
learning pfa probabilities, and still less about the interactions of learning and decision theory. 
Perhaps the present results and the difficulties of recoupling learning and observations given 
in §5.4 explains this lack. A notable exception is a study of purely finitely additive, decoupled 
observational learning models in Al-Najjar (2009) (AN below).

For the unit interval [0, 1], the class of intervals [0, a] are a VC class generating the Borel 
σ -field. AN notes that if (X, X ) is a Polish space, then it can be imbedded as a measurable 
subset of [0, 1], hence the inverse images of the [0, a] are a VC class in X that generates X . 
From this, AN’s Theorem 3 states that countably additive observational models are determinate. 
By contrast, AN’s Theorem 4 shows that for the state space (N, P(N)) and any VC class C, 
there exists a pfa μ with Diam(�

f a

X (μ|C)) ≥ 1
2 . AN argues (p. 1373) that his Theorem 3, the 

determinacy result for Polish spaces with VC classes indicates that “asymptotic learning is easy” 
for Polish spaces (p. 1383), and that this “is a consequence of implicit structural restrictions these 
(Polish) spaces impose.” He also argues that the indeterminacy in his Theorem 4 arises because 
the space (N, P(N)) “is free from any inductive biases involving notions of distance, ordering, 
or similarity.” These claims seem questionable and/or misleading on several levels. Recall that in 
observational learning models, X = σ(C).

◦ If X = σ(C), then AN’s Theorem 3, the determinacy of countably additive learning models, 
is Carathéodory’s extension theorem, a result that holds for all measure spaces, not just the 
Polish ones, and does not depend on C being a VC class.

◦ The state space (N, P(N)) used in AN’s Theorem 4 is also Polish, and the offered proof of 
the existence of a purely finitely additive μ on the integers for which Diam(�

f a

X (μ|C)) ≥ 1
2 , 

applies to all infinite measure spaces.
◦ If X = σ(C), then the only way to avoid the existence of a diameter 1 asymptotic set in a 

finitely additive observational model is to have F◦(C) equal to the class of all events, X , in 
which case there is no ambiguity in any asymptotic set.
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◦ The claim that asymptotic learning is “easy” in all Polish settings with countably additive 
probabilities is belied by the entire theory of non-parametric regression with Polish spaces 
of functions. The difficulties in this area cannot be solved by using the suggested wildly 
irregular inverse images of the intervals [0, a] in spaces of functions.

◦ Except in “emancipatory” mathematics (Sokal, 1996, p. 231), the correctness of mathemati-
cal arguments is independent of human inductive biases.

AN §4 describes three examples of multiple prior preferences: Bewley’s better than the status 
quo preferences (Bewley, 2002); the Gilboa–Schmeidler preferences (Gilboa and Schmeidler, 
1989), that is, the α-MEU preferences given above with α = 1; and “Bayesianism,” selecting 
and using as priors some sequence of probabilities from sets �n(μ) that have the property that 
Diam(∩n�n(μ)) = 1 (which implies that the selected sequence of μn ∈ �n(μ) can have disjoint 
carrier sets).

AN then makes the fascinating suggestion that the partial indeterminacy of at least one purely 
finitely additive asymptotic set with C being a VC class provides a learning justification for the 
sets of priors used in the first two classes of models. Unfortunately, AN contains no supporting 
arguments for this suggestion. Lemma 5 and Theorem 2 show that for purely finitely additive 
priors and VC classes, the indeterminacy is total, all diameters are 1. Further, Theorem 2 gives 
the class of problems that can be modeled using these asymptotic sets: if the observations support 
the hypothesis that μ is non-atomic, then the asymptotic set provides a model for the closed 
convex hull of the set of closed faces.

Appendix A. Proofs

Proof of Lemma 1. If μ has an atom of size q , then the minimum size of the atoms in an image 
measure, f (μ), is of size at least q . As W contains two or more points, the set of distributions 
with smaller mass points is non-empty, and all such probabilities are ruled out. Suppose now that 
μ is non-atomic. Construct h : X → [0, 1] such that μ(h−1((a, b])) = (b − a) for all 0 ≤ a ≤
b ≤ 1. By Skorokhod’s representation theorem, there exists gp : [0, 1] → W such that gp(λ) =
p where λ is the uniform distribution on [0, 1]. Set fp(x) = gp(h(x)). The verification that ∫
X

v(fp(x)) dμ(x) = ∫
W

v(w) dp(w) for continuous v is routine. �
Proof of Lemma 2. Because 

∣∣maxa∈A

∫
u(a, x) dPn(x) − maxb∈A

∫
u(b, x) dμ(x)

∣∣ is less than 
or equal to vn := maxa∈A

∣∣∫ u(a, x) dPn(x) − ∫
u(a, x) dμ(x)

∣∣, it is sufficient to show vn → 0. 
For this, it is in turn sufficient to show that every subsequence, vn′ has a further subsequence, 
vn′′ , with vn′′ → 0. Along the subsequence n′, let an′ maximize vn′ . Because A is compact, there 
exists an a∗ ∈ A and a further subsequence, an′′ → a∗. Relabeling the subsubsequence an′′ as am, 
we have am → a∗, and we must show that vm = | ∫ u(am, x) dPm(x) − ∫

u(am, x) dμ(x)| → 0.
Adding and subtracting 

∫
u(a∗, x) dPm(x) and 

∫
u(a∗, x) dμ(x) to vm, we have

vm =
∣∣∣∣
∫

u(am,x) dPm(x) −
∫

u(am,x) dμ(x)

∣∣∣∣ (16)

≤
∣∣∣∣
∫

u(am,x) dPm(x) −
∫

u(a∗, x) dPm(x)

∣∣∣∣ (17)

+
∣∣∣∣
∫

u(a∗, x) dPm(x) −
∫

u(a∗, x) dμ(x)

∣∣∣∣ (18)
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+
∣∣∣∣
∫

u(a∗, x) dμ(x) −
∫

u(am,x) dμ(x)

∣∣∣∣ . (19)

The term in (18) goes to 0 because x �→ u(a∗, x) is measurable and bounded and Pn(E) →
μ(E) for all E ∈ X . The term in (19) goes to 0 by Lebesgue’s dominated convergence theorem. 
The term in (16) can be integrated separately over any set E and its complement, which yields∣∣∣∣∣∣

∫
E

u(am,x) dPm(x) −
∫
E

u(a∗, x) dPm(x)

∣∣∣∣∣∣+ (20)

∣∣∣∣∣∣
∫
Ec

u(am,x) dPm(x) −
∫
Ec

u(a∗, x) dPm(x)

∣∣∣∣∣∣ . (21)

Because u(am, ·) → u(a∗, ·) pointwise, there exists a set E an integer M1 with μ(E) > 1 − (ε/2)

and |u(am, x) − u(a∗, x)| < ε for all x ∈ E, and |Pm(E) − μ(E)| < ε/2 for m ≥ M1. Thus, for 
m ≥ M1, the term in (20) is less than ε. Taking f = 1Ec , we can pick M2 such that for all 
m ≥ M2, | ∫ 1Ec dPm − ∫

1Ec dμ| < ε. Because 0 ≤ u(a, x) ≤ 1 for all a and x and μ(Ec) < ε, 
we have the following bounds in equation (21),∣∣∣∣∣∣

∫
Ec

u(am,x) dPm(x) −
∫
Ec

u(a∗, x) dPm(x)

∣∣∣∣∣∣ (22)

≤
∣∣∣∣∣∣
∫
Ec

u(am,x) dPm(x)

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫
Ec

u(a∗, x) dPm(x)

∣∣∣∣∣∣ (23)

≤
∣∣∣∣∣∣
∫
Ec

1dPm(x)

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫
Ec

1dPm(x)

∣∣∣∣∣∣ < 2 · ε + 2 · ε. (24)

Thus, for all m ≥ max{M1, M2}, the term in (16) is less than 5 · ε. �
Proof of Theorem 1. From the theory of regular conditional probabilities for standard measure 
spaces (e.g. Dellacherie and Meyer, 1978, III.72-4), ν belongs to the partially identified set if and 
only if there is a measurable x1 �→ qx1 ∈ �(M2) such that ν(E1 × E2) =

∫
E1

qx1(E2) dμ1(x1). 
By the definition of the descriptive range, if B ∈ R(�ca

X (μ|C)), then there exists a measurable 
f : M1 × M2 → W such that B = f (�ca

X (μ|C)). Define Fx1 = f (x1, M2) and note that B =∫
�(Fx1) dμ1(x1). For given measurable, non-empty valued x1 �→ Fx1 ⊂W, let f : M1 ×M2 →

W be any measurable function with f (x1, M2) = Fx1 . �
Proof of Claims in Example 4. For 0 < s ≤ s′ < 1, let Is,s′ be the set of x ∈ [0, 1] with the 
lim inf of the frequency of 1’s in their binary expansions equal to s and the lim sup equal to s′. If 
μ is countably additive, then by Borel’s normal number theorem (Billingsley, 1995, Ch. 1, §1), 
μ(I 1

2 , 1
2
) = 1.

For each non-empty, open G ⊂ [0, 1] and each Is,s′ , G ∩ Is,s′ is uncountable. Therefore, each 
Is,s′ contains uncountably many countable disjoint, dense sets. For any countable dense D ⊂
[0, 1] and 0 ≤ a < b ≤ 1, define a ν satisfying ν(D) = 1 by ν(D ∩ (a, b]) = (b − a). By the 
Hahn–Banach extension theorem, ν has a pfa extension to the class of all subsets of [0, 1]. �
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Proof of Lemma 3. Suppose that there is no sum γ that is everywhere negative. Taking γ (x) =
1E(x) − rE shows that rE ≤ 1, taking γ (x) = r − 1E(x) shows that 0 ≤ rE . Combining, each rE
belongs to the interval [0, 1]. For disjoint E and E′, the sum of three bets, γ = (1E∪E′ −rE∪E′) +
(rE − 1E) + (rE′ − 1E′), is everywhere negative if rE∪E′ > rE + rE′ . The sum of the other side 
of the three bets is everywhere negative if rE∪E′ < rE + rE′ . Combining, rE∪E′ = rE + rE′ for 
disjoint sets.

Suppose now that rE = μ(E) for some probability μ and let Eμ(·) be the expectation operator 
for μ. We have Eμ(1E − rE) = Eμ(rE − 1E) = 0 for all E so that Eμ

∑
E hE = 0. No mean 0

finite sum of simple functions can be everywhere negative. �
Proof of Lemma 4. The field C is a strict subset of X iff the closure of MS(C), the class of 
simple C-measurable functions, is a strict subset of Mb(X ), the class of X -measurable, bounded 
functions. By the Hahn–Banach theorem, there exists a non-zero φ in the dual space of Mb(X ), 
the finite signed measures on X (Dunford and Schwartz, 1988, Theorem IV.5.1), such that ∫

f dφ = 0 for all f ∈ MS(C). The Jordan decomposition for finitely additive signed measures 
(Dunford and Schwartz, 1988, Theorem III.1.8) expresses φ as the sum φ = rν − sν ′ where 
ν, ν′ ∈ �f a(X ) are probabilities at norm distance 1 from each other and r, s ≥ 0. Because MS(C)

contains the constant functions, r = s, because φ is non-zero, r, s > 0. Rescaling r and s to 1 and 
setting μ = ν yields Diam(�

f a

X (μ|C)) = 1. �
Sketches for the properties of (̂X, ̂X ). The class of cylinder sets in Ŷ are the product field, 
Y◦, every cylinder set is compact, so Fn ↓ ∅ in Y◦ implies that FN = ∅ for some N , hence 
Carathéodory’s extension theorem implies that any probability on Y◦ has a unique continuous 
extension to the product σ -field, and the extension to the Borel σ -field is routine e.g. Sikorski
(1964, p. 202). The existence of continuous extensions follows from the proof of Dugundji (1966, 
Theorem 8.2(1)). (v) arises from the previous point and the bijective representation of elements 
of �f a(X ) as elements of the dual space of the class of bounded measurable functions (Dunford 
and Schwartz, 1988, Theorem IV.5.1) and the bijective representation of countably additive prob-
abilities on X̂ as elements of the dual space of the continuous functions on X̂ (Dunford and 
Schwartz, 1988, Theorem IV.6.3).

Proof of Theorem 2. We use the construction of X̂ and X̂ given in §5.1. A ν ∈ �f a(X ) is a
point mass if for all E ∈ X , ν(E) is either equal to 0 or to 1. Point masses can be identified with 
the ultrafilters {E ∈X : ν(E) = 1} and pfa point masses can be identified with the free ultrafilters, 
that is, with point masses on the corona, X̂ \X. There are at least 22ω

pfa point masses where ω
is the cardinality of N (Comfort and Negrepontis, 1974, Cor. 7.4).

Suppose first that μ is a pfa point mass. Without loss, assume that C is a countably infinite 
field of sets. Let ̂x ∈ X̂ be the support point for the of countably additive point mass ̂μ, and define 
xS = projC (̂x) ∈ S where S is the observation space {0, 1}C . Because proj−1

C (xS) is a compact 
subset of the corona of X, it is sufficient to show that proj−1

C (xS) has cardinality at least 22ω

where ω is the cardinality of N. Enumerate C1 = {C ∈ C : μ(C) = 1} as {Cn : n ∈ N}. Let En be 
a sequence in X with En ↓ ∅ and μ(En) ≡ 1. Define Dn = En ∩ ⋂n

m=1 Cm so that Dn ↓ ∅ and 
μ(Dn) ≡ 1. Define D̂ = ∩nD̂n, and note that D̂ is a subset of proj−1

C (xS). We now show that 
there are 22ω

different point masses supported on the compact set D̂.
Define F0 = Dc

1, F1 = D1 \ D2, . . ., Fn = Dn \ Dn+1. Renumbering if necessary, there is no 
loss in assuming that each Fn is non-empty. Let G = σ(C, {Fn : n ∈N}). For each pfa point mass 



M.B. Stinchcombe / Journal of Economic Theory 165 (2016) 263–291 289
γ on the integers, define νγ ∈ �f a(G) by νγ (G) = γ ({n ∈ N : Fn ⊂ G}). Each νγ is pfa and 
agrees with μ on the class C. Each νγ has a non-empty, compact, convex set of Hahn–Banach 
extensions to X , all of them necessarily pfa, and all of them agreeing with μ on C. By the 
Krein–Milman theorem (Dunford and Schwartz, 1988, Theorem V.8.4), the set of extensions is 
the closed convex hull of its extreme points. The extreme points are again point masses, hence 
each νγ has a point mass extension, also denoted νγ . By construction, ̂νγ is point mass on a point 
in D̂. Since the pfa point masses on the integers correspond to points βN \ N where βN is the 
Stone–Čech compactification of the integers, there are 22ω

of them.
Now pick arbitrary pfa μ, assume (again without loss) that C is a countably infinite field of 

sets, and let μS = projC(μ̂). By the Choquet–Bishop–de Leeuw theorem for countably additive 
probabilities on compact non-metrizable spaces (e.g. Phelps, 2001, §4), any pfa ̂ν has a unique 
expression as an integral of point masses on the corona of X. Since �fa

X (μ|C) = {ν ∈ �f a(X ) :
projC (̂ν) = μS}, the result for point masses implies that

�
f a

X (μ|C) =
∫
S

�(proj−1
C (xs)) dμS(xs) (25)

where �(proj−1
C (xs)) is the set of probabilities on the compact set proj−1

C (xs). Finally, 
proj−1(μS) is non-atomic if μS is. �

The essential fact about VC classes is that they are simultaneously totally bounded for a wide 
range of metrics. Recall that totally bounded and complete subsets of metric spaces are compact. 
Thus, VC classes are, up to completion, compact in a variety of metrics.

Proof of Lemma 5. We use notation from the proof of Theorem 2. For a pseudo-metric space 
(S, d) and ε > 0, define D(ε, S, d) as the maximum number of points in S that are all more than 
ε apart. For a probability Q and measurable sets E, F , we have the pseudo-metric d2,Q(E, F) =
Q(E�F)1/2 = (∫

(1E1 − 1E2)
2 dQ

)1/2
where E�F is the symmetric difference of E and F . For 

a class of sets C, D(2)(ε, C) is defined as the supremum of D(ε, C, d2,Q) where the supremum 
is taken over finitely supported Q. From Dudley (1999, Theorem 10.1.7), if C is a VC class, we 
have the following metric entropy result,

logD(2)(ε,C) = O(ε−2) as ε ↓ 0. (26)

We now show the following.

1. C satisfies (26) iff Ĉ satisfies (26) where Ĉ = {Ĉ : C ∈ C}.
2. The supremum in D(2)(ε, ̂C) can be taken over all countably additive probabilities on X̂ .
3. The previous implies that for any purely finitely additive μ, C is totally bounded in the 

dμ(C1, C2) := μ(C1�C2)
1/2 pseudo-metric; and

4. if C0 is a countable dμ-dense subset of C, then �(μ|C0, X ) = �
f a

X (μ|C).

To show that C satisfies (26) iff Ĉ satisfies (26), it is sufficient to show that supp D(ε, C, d2,p) =
supq D(ε, ̂C, d2,q ) where the first supremum is taken over finitely supported probabilities in X
and the second is taken over finitely supported probabilities in ̂X. This follows from the openness 
of each Ĉ in X̂ and denseness of X in X̂.
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From the usual weak∗ approximation of all countably additive probabilities on a compact 
Hausdorff space by finitely supported probabilities on dense subsets, this means that the supre-
mum supQ D(ε, ̂C, d2,Q) is, without loss, taken over all Q ∈ �ca(X̂ ). Therefore, for any pfa μ, 
we know that

logD(ε, Ĉ, d2,μ̂) = logD(ε,C, d2,μ) ≤ O(ε−2) as ε ↓ 0. (27)

Since ̂μ(Ĉ) = μ(C) for all C ∈ C, this means that C is totally bounded in the pseudo-metric d2,μ. 
Let C0 be a countable dμ-dense subset of C. It is immediate that for any countable, dμ-dense 
C0 ⊂ C, �(μ̂|Ĉ0

, X̂ ) = �(μ̂|Ĉ, X̂ ). �
Proof of Lemma 6. If a �→ E R(a) is continuous, then the set of a such that E R(a) > s − ε

is non-empty and open. Since Q is full support, it puts strictly positive mass on this set, and the 
Borel–Cantelli lemma delivers Q∞(Aε) = 1.

To show continuity, pick arbitrary ε > 0. Note that the evaluation mapping e : A × V 1
0 (A) →

[0, 1] defined by e(a, v) = v(a), is jointly continuous, hence uniformly continuous on A ×K for 
any compact K ⊂ V 1

0 (A). Since μ is tight for u(·, ·), there exists a countably additive probability 
p ∈ �(V) at Prohorov distance 0 from the distribution p′ := u(·, μ). For every ε > 0, there exists 
a compact Kε ⊂ V 1

0 (A) such that p(Kε) > (1 −ε). Because Kε is compact, it is equi-continuous. 
Therefore, there exists δ > 0 such that d(a, a′) < δ implies that |v(a) − v(a′)| < ε for all v ∈ Kε . 
Since p is at Prohorov distance 0 from p′, 

∫
e(a, v) dp(v) = ∫

e(a, v) dp′(v) for all a ∈ A. For 
d(a, a′) < δ, | ∫ e(a, v) dp(v) − ∫

e(a′, v) dp(v)| < 2ε. �
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