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Do Low Levels of Blood Lead Reduce Children’s Future 
Test Scores?†

By Anna Aizer, Janet Currie, Peter Simon, and Patrick Vivier*

We construct a unique individual-level dataset linking preschool 
blood lead levels with third grade test scores for Rhode Island chil-
dren born 1997–2005. Using two identification strategies, we show 
for the first time that reductions of lead from even historically low 
levels have significant positive effects. A one-unit decrease in aver-
age blood lead levels reduces the probability of being substantially 
below proficient in reading (math) by 0.96 (0.79) percentage points 
on a baseline of 12 (16) percent. Since disadvantaged children have 
greater exposure to lead, lead poisoning may be one of the causes 
of continuing disparities in test scores. (JEL I12, I14, I18, I21, I24, 
J13)

With recent findings of high levels of lead in the drinking water in Flint, MI 
and in schools in several urban districts, attention has focused once again on 

the dangers of lead poisoning. While child blood lead levels have declined dramat-
ically over the past 30 years, current estimates suggest that 4.5 million households 
in the United States are exposed to high levels of lead and that half a million pre-
school aged children have elevated blood lead levels (BLLs). The US Public Health 
Service recently included the elimination of elevated blood lead levels as a goal in 
Healthy People 2020, the ten-year national objectives for improving the health of 
all Americans.

There is strong neurobiological and epidemiological evidence of a relationship 
between early exposure to lead and future negative cognitive and noncognitive out-
comes. However, the epidemiological evidence is correlational, and almost all of it 
is based on studies of children with much higher blood lead levels than are common 
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today. The CDC lowered the threshold for children to receive case-management 
services from 10 to 5 ug/dl in 2012 (CDC 2013). It is unclear to what extent chil-
dren with blood levels that are detectable but below this threshold are being harmed. 
These children form the majority of children in our sample who have detectable 
blood lead levels.

One reason for the lack of evidence on this point is that it is rare to have longitu-
dinal data linking preschool BLLs with future test scores. An additional difficulty 
for identifying the effects of lead is that even with such data, at least some of the 
measured correlation between blood lead levels and outcomes could reflect omitted 
characteristics of households that are independently correlated with negative child 
outcomes. Confounding arises from the fact that children with higher lead levels are 
more disadvantaged. They are more likely to come from minority groups, to be poor, 
to live in single parent homes, and to have less educated mothers. Such a bias would 
tend to cause researchers to overstate the dangers of small amounts of lead.

A second problem is that blood lead levels are imperfectly measured and it may 
be necessary to measure frequently in order to capture harmful exposures since lead 
does not remain in blood but is deposited in hair, bones, and other body organs. 
Measurement issues of this type add random noise to lead measures that could lead 
to underestimates of the effects of lead exposure.

Our study addresses these weaknesses in the literature using a unique dataset that 
we constructed for the state of Rhode Island. We start with all children who were 
born between January 1997 and September 2005 whose BLL was measured at least 
once before age six. Rhode Island had a particularly aggressive program of testing 
for lead, and 80 percent of all three-year-old children in the state have at least one 
BLL measurement. Most have repeated lead measures (an average of three tests per 
child). We are able to match information on preschool blood lead levels from the 
Rhode Island Department of Health (RIDOH) with the child’s test scores from the 
Rhode Island Department of Education (RIDE) in order to examine the effects of 
preschool blood lead levels on third grade math and reading test scores.

We are able to control for many possible confounders associated with neigh-
borhoods and schools by including census tract fixed effects as well as measures 
of average test scores in the child’s own school and grade. In order to deal with 
residual confounding as well as errors in measured lead exposure, we develop two 
instrumental variables methods. The first exploits the fact that for most children we 
observe multiple measures of blood lead. If we regard each as a noisy measure of the 
child’s true lead exposure and assume that the measurement errors are uncorrelated, 
then we can instrument one measure with another in order to develop an estimate 
that is purged of measurement error.

The second strategy is based on policies implemented in Rhode Island in 1997 
that required landlords to ensure that rental homes were free of lead hazards. These 
policies were adopted following statements from the Centers for Disease Control in 
1997 urging states to prioritize lead testing and remediation that targets children at 
the highest risk (Jones et al. 2009). Neighborhoods with a greater share of old hous-
ing (one of the primary sources of lead paint in Rhode Island), and with higher initial 
child lead levels (as measured in 1997), witnessed the biggest gains in the number 
of lead-safe certificates issued, and the biggest reductions in child lead levels. These 
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neighborhoods were also predominantly African American and poor and remained so 
after the lead clean-up.

Since the policies were rolled out in a targeted way, we construct instruments by 
modeling the probability that a child’s home was certified at the time of birth as a 
function of the number of certificates that had been issued in their census tract as 
of their year of birth, as well as family characteristics, and tract, year, and month of 
birth fixed effects. We then use these models to predict the probability that a child’s 
home was certified at the time of birth, and use this predicted probability as an 
instrument for a child’s lead level. By using the predicted certification measure we 
use all of the available information about certification in the census tract, abstract 
from the individual family’s decision to take up the certificate program (which may 
be endogenous), and base our estimates on the availability of the program in their 
census tract. We also demonstrate that the program successfully targeted poor and 
minority areas and that it did not result in gentrification of these areas.

Both IV strategies yield estimates that are considerably larger than OLS, sug-
gesting that measurement error is a real concern. The first IV strategy suggests a 
one unit increase in a child’s average blood lead level leads to a 0.96 percentage 
point increase in the probability of being “substantially below proficient” in reading 
on a baseline of 12 percent.1 The comparable figures for mathematics scores are a 
0.79 percentage point reduction on a baseline of 16 percent. The estimates from the 
second IV strategy are considerably larger but also noisier so that we cannot reject 
the null that confidence intervals encompass both the OLS and first set of IV esti-
mates. However larger point estimates are consistent with the fact that the certificate 
programs targeted poor and minority children who were most at risk of harm from 
lead exposure.

The rest of this paper is organized as follows. We first provide an overview of 
some of the previous research about the prevalence and effects of lead poisoning and 
background information about lead remediation in Rhode Island. This is followed 
by an overview of our data and estimation strategy, and then by the main results and 
conclusions.

I.  Background

A. Lead Poisoning and the Measurement of Lead in US Children

Lead has no biological value and is toxic to the human body, regardless of 
the pathway of exposure (ingestion or inhalation). Lead is toxic because of its 
ability to inhibit or mimic the actions of calcium, thereby affecting all calcium- 
dependent biological processes. Many body systems including the renal, endocrine, 
and cardiovascular systems are affected by lead exposure, but the nervous system 
appears to be the most sensitive target. Within the brain, exposure leads to brain 
damage in the prefrontal cerebral cortex, hippocampus and cerebellum (Finkelstein, 
Markowitz, and Rosen 1998). Neurodevelopmental studies show that infants, 

1 Throughout, mean refers to the geometric mean that is typically used in this literature because it reduces the 
influence of outlier values. 
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children, and the developing fetus are at the greatest risk of toxicity (National 
Research Council 1993). This sensitivity is due to the fact that young children are 
more likely to ingest lead, and ingested lead is more likely to be absorbed from 
the gastrointestinal tract of children. Moreover, conditional on absorption, lead is 
more likely to affect the developing nervous system than the mature brain because 
the so-called “blood-brain” barrier is less effective in young children than in adults 
(Lidsky and Schneider 2003).

The negative health effects of lead ingestion have been known since at least 
Roman times. But until the mid-twentieth century, health officials considered only 
severe cases of lead poisoning to be harmful. In the 1960s, medical profession-
als recognized that less acute lead exposure also had harmful effects and began 
characterizing lead poisoning as epidemic (Berney 1993). In 1970, the US Surgeon 
General issued his first formal statement on lead poisoning, naming it a national 
health problem (US Deptartment of Health, Education and Welfare 1971). Since 
then, American children’s exposure to lead has declined dramatically, due largely 
to two major regulatory changes involving the elimination of lead from gasoline 
and from household paint.2 Coincident with this decline, the share of preschool age 
American children with blood lead levels in excess of 10 micrograms per deciliter 
(ug/dl) has likewise declined from 8.6 to 1.4 percent over the period 1988 to 2004, 
with declines across all groups, but especially for historically high-risk groups of 
children (Jones et al. 2009). Note that since 10 ug/dl was the “threshold for con-
cern” over much of this period, lower levels of exposure were not tracked and we 
therefore know little about trends at the low end of the distribution of exposure.

Despite substantial progress, lead has remained a significant hazard especially 
in urban areas due to geographic concentrations of lead paint in deteriorating older 
homes, residual lead in soil at former industrial sites, and residual lead in soil near 
high traffic areas (Lanphear et al. 1998; Levin et al. 2008). Even conditional on 
living in an urban setting, there may be important differences in exposure to lead 
by socio-economic status, which could potentially confound the estimated effects 
of lead exposure. For example, the hazards associated with lead-based paint can be 
reduced by painting over old paint and ensuring that living areas are free of paint 
chips and dust. To the extent that more educated or wealthier families are more 
likely to take these precautions, similar exposures to old housing within an urban 
area are more likely to more negatively affect the most disadvantaged.

For both these reasons, disparities in child BLLs by race and income remain, with 
African American and poor children two to three times as likely to have elevated 
lead levels, defined as above 5 ug/dl (CDC 2013).3 As we will see below, disadvan-
taged children are also more likely to have detectable lead levels that fall below the 
5 threshold. And conditional on exposure, more disadvantaged children may receive 
less effective remediation both at home and at school. Thus, the impact of the same 
exposure could well be different for different children.

2 The key regulations and legislation that reduced exposure to lead included the 1970 Lead Paint Poisoning 
Prevention Act, the Clean Air Act, and Environmental Protection Agency rules regarding leaded gasoline. 

3 Based on analysis of the 1999–2002 NHANES, the CDC reported that the average blood level for children 
aged 1–5 was 1.9 ug/dL, but for African American children this figure was 50 percent higher (2.8 ug/dL) and 
30 percent higher for low-income households (2.5 ug/dL) (CDC 2005). 

10_APP20160404_101.indd   4 10/3/17   12:33 PM



Vol. 10 No. 1� 5
Aizer et al.: Do Low Levels of Blood Lead Reduce Children’s Future 

Test Scores?

How many children suffer from low but detectable levels of lead exposure, and 
how much such exposure has affected their outcomes is not easy to determine. 
The best national data on exposure comes from the National Health and Nutrition 
Examination Survey (NHANES), which draws venous blood from a nationally rep-
resentative cross-sectional sample of children. Unfortunately, the cross-sectional 
nature of this dataset does not allow an examination of the relationship between 
preschool blood lead levels and later child outcomes. A difficulty with having only 
a single measure of blood lead (as in the NHANES) is that the half-life of lead in 
blood is relatively short (36 days). As such, BLLs only capture very recent exposure 
and will not necessarily capture the amount of lead that has settled in body organs 
and bone.4 Hence, a single blood lead measure may be an unreliable indicator of 
lead exposure.

A second measurement issue making multiple measures per child useful is that 
error can arise from contamination of the blood sample especially when the sample 
is a capillary sample (also known as a finger prick). Capillary samples are common 
due to their lower expense and degree of discomfort to the child. Even without 
contamination, there is significant error in measurement, with greater error charac-
terizing capillary measures. According to the CDC, the “ratio of imprecision to mea-
surement value, particularly at BLLs <10ug/dL, is relatively high” (CDC 2002).5 
Measurement error can lead to considerable attenuation bias in the estimated effect 
of lead, as we demonstrate below. These considerations mean that having repeated 
measures for most children is a signal advantage for our study.6

Our study contributes to a large literature on effects of lead, much of which is 
correlational, and almost all of which focuses on children with relatively high lev-
els of blood lead. Chandramouli, Ellis, and Emond (2009); Canfield et al. (2003); 
Lanphear et al. (2005); Nigg et al. (2010); and Wasserman et al. (1997) all document 
a significant correlation between lead levels less than 10 milograms per deciliter 
(ug/ml) during childhood and cognitive and behavioral outcomes including ADHD 
and hyperactivity. McLaine et al. (2013) analyzes the Rhode Island data used here 
and shows an inverse relationship between blood lead levels and school readiness. 
Among children with BLLs below 5, 68 percent scored above the benchmark lev-
els, while among children with a BLL of at least 10, only 49 percent exceeded the 
benchmark. However, among the children with BLLs below 5 (the majority of the 
sample with detectable BLLs), to date we have little idea of the correlation between 
lead and outcomes.

There are several studies by economists examining the causal relationship 
between lead and outcomes. Rao, Reyes, and Urzúa (2015) estimate the impact of 

4 “Deleterious health effects of lead resulting from long-term lead exposure will only be correlated with current 
blood-lead levels if lead exposure has been relatively constant over a long period of time, up to the time of sam-
pling.” Moreover, “Physiologically, the measurement of lead in blood is not a direct assessment of target organ dose, 
since the red cell is not a critical target for lead toxicity. Kinetically, blood is not a good analog for critical targets, 
such as soft tissue, because of the relatively short half-life of lead in blood as compared to target organs or bone.” 
Mount Sinai School of Medicine. Accessed on 12/16/2014: http://research.mssm.edu/xrf/why.html. 

5 According to the CDC guidelines “Federal regulations allow laboratories that perform blood lead testing to 
operate with a total allowable error of ± 4 ug/dL or ±10 percent whichever is greater” (CDC 2007). 

6 We believe that mismeasurement of blood lead levels is generally random and uncorrelated with test scores, 
and so should lead to attenuation bias. 
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a child’s proximity to a toxic waste site contaminated with lead on future academic 
achievement in Chile. Some of the best known studies examining the effects of high 
lead levels are based on cohort-level analyses of historical data. For example, Ferrie, 
Rolf, and Troesken (2012) exploit variation in the use of lead water pipes across 
time and place in the early part of the twentieth century to estimate a negative rela-
tionship between exposure to leaded water and later intelligence test scores among 
World War II (WWII) army enlistees. Other studies use a similar research design to 
link declining lead levels in US children in the 1970s and 1980s after the de-leading 
of gasoline to the dramatic declines in crime witnessed since the mid-1990s (see 
Masters, Hone, and Doshi 1998; Reyes 2015a; Nevin 2000 and 2007; Mielke and 
Zahran 2012; and Grönqvist, Nilsson, and Robling 2014). Reyes (2015b) also links 
these declines to increases in test scores.

Billings and Schnepel (2015) take advantage of the measurement error in blood 
lead levels and a similarly comprehensive dataset in order to evaluate the effects of 
intensive intervention among children who were lead poisoned in North Carolina. 
Children with two consecutive BLLs over 10 micrograms per deciliter were eligible 
for the intervention program, whereas children with levels just below these cutoffs 
were not. The mean BLLs for children in their treatment group were 17.9 compared 
to 12.09 for their control group. Nevertheless, the children in the treatment group 
experienced large declines in antisocial behavior relative to the control group. They 
also experienced large, but only marginally statistically significant gains in an index 
of educational performance. Baseline reading (math) test scores in the lead poisoned 
groups were about two-thirds (half) of a standard deviation below normal levels.

As we will show below, the mean lead levels in the Billings and Schnepel study 
are far above the mean lead levels found in Rhode Island children. This is typical 
of the literature, which has focused (understandably) on the most severely affected 
children. We know almost nothing about how the relatively low levels of lead that 
are still found in many young children’s blood affect their outcomes. Answering this 
question is a primary goal of this study.

B. Lead Mitigation Policies in Rhode Island

Rhode Island, and particularly its urban areas, is characterized by old housing, 
with much of it (43 percent) built prior to WWII, and therefore containing high 
concentrations of lead paint. As a result, many of the state’s children are exposed 
to lead through deteriorating lead-based paint, with minority and low-income chil-
dren disproportionately exposed.7 As is the case nationally, this disproportionate 
exposure is due largely to the residential segregation of the poor, and especially 
of African Americans, in the four core urban areas of the state located within 
Providence County (Appendix Table 1). US census data reveals that 81 percent of 
the homes in Providence County were built prior to 1978 and 49 percent before 
WWII. Comparable numbers for the rest of the state are 68 and 27 percent.

7 Within Rhode Island, children living in high (top quintile) poverty neighborhoods are nearly four times more 
likely to have elevated BLLs than those in low (bottom quintile) poverty neighborhoods (Vivier et al. 2011). 
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In an effort to reduce childhood exposure to lead, in 1997 Rhode Island estab-
lished two programs to encourage mitigation of lead hazards in old homes. The first 
required all owners of homes in which an elevated lead level was found to mitigate 
such hazards. Once the home was mitigated, an inspection would be performed, and 
the Department of Health (DOH) would issue a certificate. Noncompliant landlords 
were referred to the state Attorney General for prosecution. The second program 
was administered by the Rhode Island Housing Resources Commission (HRC) and 
required all landlords to mitigate lead hazards in the homes they rented—regardless 
of whether an elevated lead level had been reported. It is important to note that the 
standards of the HRC certifications were considerably lower than those of the DOH. 
When confirmation of mitigation was received, a lead-safe certificate was issued.

The state provided landlords with training in the importance of lead hazard mit-
igation, information, and training on how to reduce lead hazards in the homes in 
the least costly manner, and even provided low interest loans to landlords to help 
them comply. The state targeted this outreach to the communities with the oldest 
housing stock and the highest child blood lead levels. These areas were often those 
in which the families were the most disadvantaged. Few resources were devoted to 
enforcement and though noncompliance was illegal, landlords were typically not 
penalized for noncompliance. However, landlords who did not have a lead-safe cer-
tificate could be sued in civil court if children living in their homes were found to 
have elevated lead levels.

Over the period 1997 to 2010, the total number of lead-safe certificates issued to 
landlords increased from 333 to 47,734 (Appendix Table 2). Of these, 31,104 were 
HRC certificates indicating a regulatory approach that was, in practice, far more 
likely to involve carrots (e.g., training and assistance to landlords to help them to 
comply in addition to protection against civil suits) than sticks in the form of poten-
tial prosecution by the state Attorney General.

Individual blood lead levels generally declined in a household after a certificate 
has been issued (Rogers et al. 2014). The program was relatively inexpensive with 
annual government spending of approximately a half a million dollars for FY2014. 
If we assume the same level for each year of the program (which is an overestimate 
given the program ramp up in the early years), the total cost to government would 
be about $4 million.

Figure 1 plots the number of certificates issued in each census tract by 2010 as a 
share of the pre-1978 housing stock. The figure demonstrates the uneven distribution 
of certificates across the state. The program did successfully target neighborhoods 
at highest risk of lead poisoning. The census tracts that experienced the greatest 
increase in certificates issued per capita were characterized by older housing stock, 
a greater share of children with high lead levels in 1997, a greater share of poor fam-
ilies, and a higher share of African-American families, as shown in Figure 2, which 
plots the number of certificates per capita in 2010 against these characteristics of 
census tracts as measured in 1997.8

8 Certificates in Figure 2 are scaled by 100. The fitted line and 95 percent confidence interval shown in the figure 
is derived from a regression of the number of certificates per capita in 2010 on characteristics of the tract in 1997 
with each observation representing a tract. No additional controls are included. 
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Similarly, Figure 3A examines pre-trends in important variables prior to the start 
of the certificate program. The figure shows that there was no relationship between 
the number of certificates received by 2010 and changes in the share of the cen-
sus tract that was African American or the share of the census tract that was poor 
between 1990 and 2000. The third panel of the figure shows that tracts that received 
many certificates were actually more likely to have had declining income in the 
pre-period, a trend that would have been expected to be associated with lower test 
scores, other things being equal.

Neighborhoods with a greater increase in certificates per capita did not appear to 
gentrify after the program, as evidenced by similar trends across neighborhoods in 
the share black and the share poor, as well as in median house prices (Figure 3B). 
The decline in median income witnessed in the pretreatment period persisted after 

0.007–0.04
0.04–0.08
0.08–0.14
0.14–0.33
0.33–0.81

Figure 1. Total Certifications per Pre-1979 Unit
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the certificate program was introduced.9 The lack of gentrification is not surprising. 
The majority of certificates issued during our time period were from the Housing 
Authority (not the Department of Health) and rarely required large renovations.

9 Housing price data by zip code comes from Zillow. Housing price data by zip code is not available prior to 
1997. 
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II.  Data and Trends

A. Sources of Data

Our sample consists of all children born in the state of Rhode Island between 
January 1997 and September 2005, who have data on at least one BLL measure 
before the age of six, and who are enrolled in any Rhode Island public school. Note 
that BLL is not generally measured in children over six. The data on BLLs comes 
from the Rhode Island Department of Health (RIDOH) and includes the age at each 
test, the test method (capillary or venous), the census tract where the child lived 
at the time of the test, and the BLL. Educational outcomes come from the Rhode 
Island Department of Education (RIDE) and include NECAP10 scaled test scores in 
third grade, gender, race, ethnicity, and school lunch (free or reduced) status. The 
third source of data are birth certificates of children born in Rhode Island, which 
we have for 85 percent of our sample (the remainder moved to the state as young 
children.) We impute data for the children with missing birth certificate data in our 
main results, and also show results excluding these observations as a robustness 
check. These data include maternal education, marital status at birth, and the child’s 
birth order and birth weight. Since confidential versions of these data contained 
information about the child’s address at each blood test, we were able to merge these 

10 NECAP stands for the New England Common Assessment Program. It is a series of exams developed collab-
oratively by the New Hampshire, Rhode Island, and Vermont departments of education, with assistance from the 
National Center for the Improvement of Educational Assessments. The NECAP tests measure students’ academic 
knowledge and skills relative to Grade Expectations which were created by teachers from the three states. 
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No additional controls are included. All values on the x-axis come from census data except housing values which 
come from Zillow.
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data with data collected on whether and when a lead-safe certificate was issued for 
a given dwelling.11

The final sample includes roughly 71,000 Rhode Island children born between 
January 1997 and September 2005 with linked BLL and educational test score data. 
Details on construction of the sample can be found in Appendix Table 3.12 Compared 
with a national lead screening rate of only 25 percent, 80 percent of all children with 
a Rhode Island birth certificate are screened at least once, and the screening rate 
remained constant throughout the study period, suggesting that the demographics of 
children screened also likely remained constant. Figure 4 shows that increases in the 
number of certificates issued were not accompanied by increases in lead screening 
rates.

Using vital statistics data to compare the maternal characteristics (race, educa-
tion, and marital status) of children with a blood lead level (80 percent) to those 
without a blood lead level (20 percent), we find that those with at least one lead 
screen are slightly more disadvantaged along most measures, with the exception of 
birth weight, which is the same for the two groups. Appendix Table 3 also shows that 
among those with a lead level, those matched with RIDE data are slightly more dis-
advantaged than those who we were not found in RIDE data (presumably because 
they attended private school). However, children with matched lead-RIDE data are 
representative of all children in the RIDE data (that is of all public school students).

Table 1 provides an overview of our data, for the whole sample and for various 
subsamples. Children have on average 2.7 BLL measures over the first 72 months of 

11 This merge was performed by the Providence Plan. We were provided with a de-identified analysis file that 
excluded child name and address. 

12 In addition, we drop approximately 7,000 children with matched birth, BLL, and test score data because they 
are missing census tract-level measures that we use as controls in our estimation models. 
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Figure 4. Certificates per 1,000 and the Ratio of Children Screened by Tract for Birth Cohorts 
2005/1997

Notes: Each observation is a census tract. The x-axis represents the ratio of the number of children born in 2005 with 
a lead screen to the number of children born in 1997 with a lead screen.
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life, after which they are typically not tested.13 Minority and disadvantaged children 
receive more tests, suggesting that they may be more likely to have high BLLs that 
call for further monitoring. In some of our analyses, we construct a single measure 
of BLLs using the geometric mean, reducing the influence of outliers. This proce-
dure is consistent with the existing literature.

The mean BLL is 3.1, which is well below the CDCs threshold for medical inter-
vention of 5 micrograms per deciliter. African American and Hispanic children 
both have higher mean levels, as do children who always receive free school lunch 
(4.2, 3.6, and 3.9, respectively).14 Minority children are also more likely to have 
high mean scores, with 30 percent of African American, 23 percent of Hispanic, 
and 27 percent of always free lunch children having levels above 5 (compared to 
14 percent of white children). The corresponding numbers for mean levels above 
10 micrograms per deciliter are 5, 3, and 4 percent, respectively. Note that it is not 
at all unusual in Rhode Island for a child to have a single BLL above 5 or even 
above 10 micrograms per deciliter—overall, 40 percent of children have at least one 

13 When there is a capillary and venous sample available for the same month, we drop the capillary measure 
because the venous one is likely to be more accurate. 

14 Of course there is considerable overlap in minority and free lunch status with 56 percent of African American 
children and 61 percent of Hispanic children being always eligible for free lunch. 

Table 1—Summary Statistics for Sample 

 

All White

White/
Asian/ 
other Black Hispanic

Never
 free 
lunch

Always 
free 

lunch

Preschool lead levels
  Number of tests 2.7 2.5 2.5 3.1 3.3 2.4 3.2
  Number of venous tests 1.9 1.5 1.6 2.4 2.8 1.4 2.5
  Lead (geometric mean) 3.12 2.80 2.80 4.20 3.60 2.40 3.90
  Share geom. mean ≥ 5 0.17 0.14 0.14 0.30 0.23 0.09 0.27
  Share geom. mean ≥ 10 0.02 0.01 0.01 0.05 0.03 0.01 0.04
  Share any BLL ≥ 5 0.40 0.33 0.34 0.57 0.54 0.26 0.57
  Share any BLL ≥ 10 0.09 0.06 0.06 0.17 0.13 0.03 0.15

Test scores
  Third grade reading 45.5 48.1 47.90 40.6 39.2 50.8 39.7
  Not reading proficient 0.12 0.08 0.08 0.19 0.22 0.04 0.21
  Third grade math 42.2 44.8 44.6 36.3 36.1 47.2 36.5
  Not math proficient 0.16 0.10 0.11 0.29 0.29 0.06 0.28

Lead certificates
  Ever certificate in home 0.17 0.10 0.10 0.31 0.35 0.05 0.32
  Certificate in home at birth 0.03 0.003 0.01 0.08 0.08 0.003 0.08

Characteristics at Birth
  Birth weight (kg) 3.30 3.40 3.40 3.30 3.30 3.40 3.30
  Mother < high school 0.15 0.08 0.09 0.24 0.33 0.02 0.33
  Mother high school 0.30 0.29 0.29 0.34 0.29 0.21 0.34
  Mother college 0.26 0.35 0.33 0.09 0.06 0.48 0.05
  Male 0.51 0.51 0.51 0.51 0.51 0.51 0.50

Observations 70,678 47,668 50,037 6,967 13,674 30,970 19,060

Notes: BLL referes to blood lead level. Data on preschool lead levels comes from the RI Dept of Health; data on 
reading and math test scores come from the RI Dept of Education; Data on characteristics at birth come from RI 
vital statistics data; Data on certificates comes from the RI Departments of Health and Housing.
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measure above 5 and 9 percent have a measure above 10. The discrepancy between 
single measures and mean measures likely reflects considerable measurement error 
in the tests.

Academic test scores range from 0 to 80, with an average score of 45.5 for read-
ing (standard deviation of 13) and 42.2 for math (standard deviation of 13). In addi-
tion to the average scores, it is helpful to think about whether children are meeting 
minimum levels of proficiency in these academic subjects. Focusing on the lower 
tail of the distribution can also help to reveal heterogeneous impacts of lead expo-
sure, with possibly greater effects on the children who are more likely to have low 
test scores to begin with. Twelve percent of children were “substantially below pro-
ficient” (defined as a score less than 30) in reading, and 16 percent in mathemat-
ics. Again, there is considerable variation by race, ethnicity, and free lunch status 
with, for example, the fraction of children who are substantially below proficient in 
reading reaching 19 percent for African Americans, 22 percent for Hispanics, and 
21 percent for children who were always eligible for free lunch.

Seventeen percent of the children live in a home that received a lead-safe certif-
icate at some point during our sample. (We consider all of the certificates together 
here and below unless otherwise specified). This fraction is much higher for poor 
and minority children at 31 percent for African Americans, 35 percent for Hispanics, 
and 32 percent for children who were always eligible for free lunch. These numbers 
suggest that the certificate program had significant penetration and that it was in fact 
targeted at the areas with the highest initial lead burden. The number of children 
whose homes had received a lead safe certificate at the time of their birth is smaller, 
reflecting the fact that the first birth cohorts in our data had almost no exposure to 
the certification program.

The rest of Table 1 summarizes characteristics drawn from the birth certificate 
data and shows that in addition to having higher BLLs, poor and minority children 
had lower birth weight, and mothers with less education. Since both of these factors 
have been independently shown to be associated with lower children’s test scores, 
the table shows the potential for confounding of the relationship between BLLs and 
children’s test scores.

Table 1 provides a static picture. There were, however, dramatic reductions in 
blood lead levels in a very short period of time. Figure 5 shows the distribution of 
a child’s average BLLs for the cohorts born in 1997 and 2005. Clearly, the whole 
distribution shifted to the left, with a virtual collapse in the part of the distribution 
above 5 milligrams per deciliter. This shift is laudable but makes it more urgent to 
understand the burden of low lead levels.

Table 2 therefore focuses on changes in BLLs, exposure to the housing certificate 
program, and test scores between the first and last birth cohorts in our data. The first 
two columns indicate that blood lead levels declined by 42 percent relative to base 
levels in eight years. This is a very rapid decline, which we attribute in part to the 
introduction of the lead-safe certificate program. Consistent with this interpretation, 
the next two columns show that the fraction of children with a certificate in place 
at the time of the birth increased dramatically among children in the most disad-
vantaged groups. For example, in the 1997 birth cohort only 2 percent of sample 
African American children lived in a home that had been certified lead-safe at the 
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time of their birth; by 2005, 12 percent of sample African American children lived 
in a home that had been certified as lead safe from the time of their birth.

Third grade test scores rose across birth cohorts in all demographic groups, while 
the fraction scoring substantially below proficient declined. However, the gains 
were greatest in the groups that were most affected by the certificate program and 
showed the greatest declines in BLLs. For instance, among children who never par-
ticipated in the free lunch program, reading test scores rose by 5.9 percent and the 
percent who were not proficient in reading fell from 6 to 4 percent. Among children 
who were always eligible for the free lunch program, reading test scores rose by 
11.2 percent, and the percent who were substantially below proficient in reading 
fell from 27 to 18 percent, a remarkable improvement. Of course these gains might 
have been caused by other changes targeted at poor and minority children; the most 
likely alternative candidate is targeted educational policies. Hence, in our models 
we will also show estimates controlling for third grade reading scores in the child’s 
school and cohort, which should capture other efforts targeting children in these 
neighborhoods and schools.

III.  Estimation Strategy

A. Lead Levels and Future Child Cognitive Achievement—OLS Estimates

We wish to estimate the impact of preschool lead levels on future academic 
achievement as measured by test scores. We begin with estimates of the following 
equation:

(1)	​​ Y​i​​​ = ​​β​0​​​ + ​​β​1​​​​​Lead​i​​​ + ​​β​2​​​ ​​X​ i​ 
c​​ + ​​β​3​​​ ​​X​ i​ 

m​​ + ​​β​4​​​​​ X​ nt​ 
n ​​ + ​​τ​n​​​ + ​​τ​t​​​ + ​​ε​i​​​,

where ​​Y​i​​​ is the scaled reading or math test score in grade 3, or an indicator equal 
to one if the child was substantially below proficient in one of these subjects. The 
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Figure 5. Distribution of Average Lead by Birth Cohort

Note: Kernel = Epanechnikov, bandwidth = 0.3378.
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variable ​​Lead​i​​​ is the geometric mean of the multiple BLLs taken for each child. The 
vector ​​X​​ c​​ includes the child’s race (indicators for white, black, Hispanic, Asian, and 
other), birth weight, gender, and a measure of the child’s free/reduced lunch status 
(always free lunch, sometimes free lunch, never free lunch). The vector ​​X​​ m​​ includes 
maternal educational attainment (indicators for less than high schoool, high school, 

Table 2—Lead Levels, Lead Certificates, and Test Score Results by Birth Cohort and Child 
Characteristic 

Geometric mean  
lead levels

  Certificate  
at birth

  Mean third  
grade reading

  1997 2005   1997 2005   1997 2005

Panel A
Child characteristic
  Race
    White 3.49 2.02 0.00 0.02 46.20 49.30
    White/Asian/other 3.54 2.07 0.00 0.02 46.10 48.80
    Black 5.77 2.95 0.02 0.12 37.80 41.54
    Hispanic 4.91 2.52 0.01 0.13 36.20 40.47
    Asian 4.42 2.64 0.02 0.09 44.40 47.40

Free lunch
  Always free lunch 5.25 2.85 0.02 0.11 36.75 40.87
  Sometimes free lunch 4.32 2.38 0.01 0.07 41.25 43.49
  Never free lunch 3.04 1.79 0.00 0.01 48.94 51.84

Maternal education
  ≥ HS 3.73 2.18 0.01 0.04 45.03 48.73
  < HS 5.12 2.82 0.01 0.12 36.67 38.27

Marital status at birth
  Single 4.87 2.68 0.01 0.11 38.79 41.93
  Married 3.55 2.05   0.00 0.03   45.87 48.87

Substantially below 
reading proficient 

  Mean third 
grade math

  Substantially below 
math proficient 

  1997 2005   1997 2005   1997 2005

Panel B
Child characteristic
  Race
    White 0.10 0.07 43.00 44.40 0.12 0.11
    White/Asian/other 0.10 0.08 42.90 44.00 0.13 0.12
    Black 0.23 0.17 34.60 36.20 0.31 0.29
    Hispanic 0.30 0.21 33.90 36.40 0.35 0.29
    Asian 0.09 0.07 40.50 42.20 0.21 0.14

Free lunch
  Always free lunch 0.27 0.18 34.58 36.24 0.33 0.28
  Sometimes free lunch 0.17 0.17 38.53 39.26 0.21 0.22
  Never free lunch 0.06 0.04 45.32 46.66 0.08 0.07

Maternal education
  ≥ HS  0.12 0.09 41.88 42.84 0.15 0.14
  < HS 0.28 0.27 34.51 34.00 0.35 0.37

Marital status at birth
  Single 0.22 0.18 36.22 37.23 0.28 0.26
  Married 0.11 0.08   42.68 44.01   0.14 0.12

Notes: The row subheadings refer to birth cohort. Because only data through August is available for birth cohort 
2005, the sample used in this table includes all children born between January and August of the respective years.
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and some college or more), and marital status at birth.15 The vector ​​X​​ n​​ includes 
time-varying neighborhood (census tract) characteristics from census data including 
the share poor, median family income, and the share of housing units built post-
1978.16 All variants of this model include ​​τ​t​​​, a vector of year of birth and month of 
birth fixed effects. We estimate versions of this model with and without ​​τ​n​​​, a vector 
of census tract fixed effects. As we will see below, adding the census tract fixed 
effects has little impact on the estimated effects of lead once individual-level vari-
ables are included in the model suggesting that there may actually be little residual 
confounding due to omitted variables bias in this instance.

B. Instrumental Variables Strategies

As discussed above, estimation is complicated by the fact that there may be con-
siderable measurement error in blood lead levels. In order to explore the importance 
of this feature of the data, we follow Ashenfelter and Krueger (1994) and Chalfin 
and McCrary (forthcoming), who have multiple measures of their variables of inter-
est and use one measure as an instrument for another in order to estimate the degree 
of measurement error and the extent of downward attenuation bias in OLS estimates 
of education on earnings and police on crime, respectively.

In our context, there are multiple ways in which this strategy can be implemented. 
For example, we can estimate models using the subset of children who have both 
venous (less noisy) and capillary (more noisy) measures, and using the former as 
instruments for the later. We also estimate models in which we instrument a ran-
domly chosen test result for each child using the mean of the other available tests. 
Although our multiple measures of child lead exposure were taken at different times 
and may capture differences in the child’s underlying lead levels, each measure can 
still be interpreted as an (imperfect) measure of the underlying level of lead exposure 
during early childhood. And because the source of the measurement error is the inex-
actitude of the tests, and the plausibly random variation in the length of time between 
an exposure and a test, we believe it likely that measurement errors in subsequent 
tests for the same child will be largely uncorrelated. The results of these estimations 
suggest that measurement error is a considerable problem and that it tends to lead to 
significant attenuation in the estimated effect of lead exposure on test scores.

As discussed above, we also pursue a second instrumental variables strategy. For 
each child we know whether their place of residence during their preschool years 
had received a lead-safe certificate as of their birth date.17 Issuance of a certifi-
cate indicates that any lead hazard in the home had been mitigated, so it should be 

15 Because children who were not born in Rhode Island do not have data from birth certificates (birth weight and 
maternal education), we impute the average birth weight and maternal education for these individuals and include 
indicators for imputation. 

16 We use linear interpolations between census years for other years. 
17 We have the address (and date) at each blood test. We do not know for certain where the child was living 

between each of these dates. We use the address as of the first test, rather than the address at each test in order to 
avoid biases due to endogenous mobility. In the robustness section below, we discuss estimates in which we try to 
impute lead exposure based on each address. In practice, this measure of lead exposure is highly correlated with the 
one based on address of first test, which is not surprising since 57 percent of the sample do not move between tests 
and those who do move apparently tend to move to places with similar lead hazards.
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associated with lower BLLs. However, whether a particular residence receives a cer-
tificate or not is at least partly endogenous. We measure the presence of a certificate 
in the home as of the date of birth of the child so that certificate status cannot be a 
function of the child’s preschool lead level (i.e., parents with a child with an elevated 
lead level might seek out a home with a certificate and we want to rule that out), it 
might still be the case, for example, that among otherwise similar parents, those who 
seek out lead testing and lead mitigation are also more likely to have children with 
higher test scores.

Hence, rather than using the actual measure of whether there was a certificate or 
not in the child’s home as an instrument, we construct a predicted certificate mea-
sure based on census-tract level measures of the number of certificates issues in the 
tract in the last five years and observable characteristics of the child and family. By 
using the “predicted certificate,” we purge the instrument of any potential endoge-
neity associated with the take-up decision. The prediction equation takes the form:

(2)   ​​ Certificate@Birth​i​​​ = ​​α​0​​​ + ​​α​1​​​ ​​Certificates​nt−5​​​ + ​​α​2​​​ ​​EverCertificate​i​​​ 

	 + ​​α​3​​​ ​​X​ i​ 
c​​ + ​​α​4​​​ ​​X​ i​ 

m​​ + ​​α​5​​​ ​​X​ tn​ 
n ​​ + ​​γ​n​​​ + ​​γ​t​​​ + ​​µ​i​​​.

Here ​​Certificate@Birth​i​​​ indicates that the child lived in a house that had been certi-
fied lead-safe as of the time of the child’s birth and ​​Certificates​nt−5​​​ is a vector of cen-
sus tract-level measures of the availability of the certificate programs as of the child’s 
year of birth (as measured by the number of certificates issued in the past five years 
divided by the number of old homes in the census tract, excluding the focal child’s). 
The variable ​​EverCertificate​i​​​ is an indicator equal to one if the child’s home ever 
received a certificate. We include this indicator in order to control for the fact that 
some homes require lead remediation while others do not, and given that it is a proxy 
for low quality housing, it is included in the second stage as well. By including this 
variable, we are focusing on the timing of the certificate intervention—conditional on 
the house needing and eventually receiving remediation, was the remediation done 
in time for this particular child to benefit? The other variables are as defined above 
and include child, mother, and census tract characteristics as well as year, month, and 
census tract fixed effects. Importantly, the instrument, predicted certificate, is not a 
function of ​​µ​i​​​, the unobservable characteristics of the child or family that influence 
certificate take-up and that might also be correlated with test scores.

Having constructed the predicted certificate instrument, we proceed with instru-
mental variables estimation. The first stage is given by

(3) ​​ Lead​i​​​ = ​​α​0​​​ + ​​α​1​​​​​Certificate@Birth​ i​ 
⁎​​ + ​​α​2​​​ ​​EverCertificate​i​​​ + ​​α​3​​​ ​​X​ i​ 

c​​

	 + ​​α​4​​​ ​​X​ i​ 
m​​ + ​​α​5​​​ ​​X​ tn​ 

n ​​ + ​​γ​n​​​ + ​​γ​t​​​ + ​​µ​i​​​,

where ​​Certificate@Birth​ i​ 
⁎​​ is the predicted value of ​​Certificate@Birth​i​​​ generated by 

equation (2). In addition to the overall first stage, we show estimates of this equation 
separately for racial groups and by free lunch status in order to demonstrate that the 
certificate program had larger effects on disadvantaged children.
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Finally, we estimate an instrumental variables version of equation (1) in which 
Lea​​d​i​​​ is replaced with the predicted geometric mean BLL from (3):

(4) ​​ Y​i​​​ = ​​β​0​​​ + ​​β​1​​​ ​​Lead​ i​ 
⁎​​ + ​​β​2​​​ ​​EverCertificate​i​​​ + ​​β​3​​​ ​​X​ i​ 

c​​ + ​​β​4​​​ ​​X​ i​ 
m​​ + ​​β​5​​​ ​​X​ tn​ 

n ​​ 

	 + ​​τ​n​​​ + ​​τ​t​​​ + ​​ε​i​​​.

To address concern that the areas of the state that received more certificates are 
the most disadvantaged and that schooling inputs in these neighborhoods may have 
increased over this period, we also show estimates that include a control for the 
average third grade reading test scores in the child’s school (calculated as the leave 
out mean, i.e., leaving out the index child in each case, for all children with third 
grade test scores in the same school and cohort). To address concerns that these 
unobserved improvements occurred not within the school but in the neighborhood, 
we also estimate models including a linear trend for each initial 1997 census tract 
reading score. This control is intended to capture the idea that tracts that started 
with the lowest scores may have improved the fastest because of other unobserved 
investments targeted to these tracts.

IV.  Results: Effects of BLLs on Third Grade Test Scores

OLS estimates of the effect of preschool BLLs on third grade test scores are 
shown in Table 3A (for reading) and Table 3B (for math). The first column shows 
estimates that control only for gender, race and free/reduced lunch status (that is, 
the information available from the Rhode Island Department of Education). The 
second column adds information obtained from the birth certificate, as well as time 
varying census tract characteristics. These additions reduce the estimated effects of 
lead from −0.456 per unit of lead to −0.326 for reading and from −0.348 to −0.216 
for math, suggesting that confounding could be a concern in studies with inadequate 
controls for family background.

Columns 3, 4, and 5 add census tract fixed effects as well as school- and grade- 
level measures (column 4) and linear trends in the 1997 census tract test scores. 
These additions have relatively little impact on the coefficient estimates, providing 
some reassurance that bias due to omitted confounders may be small in models with 
this rich set of controls.18 This finding is consistent with a meta-analysis of eight 
studies conducted by epidemiologists in which they reported that adding more fam-
ily controls to a relatively parsimonious set (maternal schooling and IQ, the HOME 
score, birth weight, and city) did little to alter the relationship between lead and IQ 
in children (Rothenberg and Rothenberg 2005).

The estimated effects of lead in these models are strongly statistically significant 
but relatively small. The column 3 estimates suggest that a 1 point increase in mean 
BLLs is estimated to reduce reading scores by −0.335, and math scores by −0.220. 
The finding of larger effect sizes for reading relative to math is consistent with some 

18 These results suggest that peer effects may not be large, though this setting is not optimal to assess peer 
effects. 

10_APP20160404_101.indd   18 10/3/17   12:33 PM



Vol. 10 No. 1� 19
Aizer et al.: Do Low Levels of Blood Lead Reduce Children’s Future 

Test Scores?

Table 3A—OLS and Neighborhood FE Estimates: Preschool Lead and Third Grade Reading Scores

  (1) (2) (3) (4) (5)

Geometric mean of lead −0.456 −0.326 −0.335 −0.306 −0.326
[0.0256] [0.0241] [0.0228] [0.0225] [0.0230]

Avg. third grade reading score in school × grade 0.421
[0.0140]

Tract 1997 reading score × year −0.0252
[0.00501]

African American 1.029 1.580 1.618 1.819 1.748
[0.959] [0.939] [0.933] [0.898] [0.942]

White 3.910 3.210 3.263 2.810 3.420
[0.997] [0.957] [0.950] [0.910] [0.958]

Hispanic −0.178 0.777 0.795 1.155 0.966
[0.984] [0.943] [0.927] [0.896] [0.935]

Asian 4.276 4.915 4.980 4.868 5.140
[1.049] [1.010] [1.009] [0.979] [1.017]

Always free/reduced lunch −8.224 −4.806 −4.687 −3.834 −4.705
[0.197] [0.177] [0.179] [0.179] [0.180]

Sometimes free/reduced lunch −6.163 −3.759 −3.664 −3.206 −3.653
[0.188] [0.151] [0.149] [0.141] [0.149]

Male −3.162 −3.333 −3.320 −3.287 −3.323
[0.0820] [0.0814] [0.0813] [0.0804] [0.0813]

Birth weight in kg 1.195 1.179 1.164 1.176
[0.0846] [0.0842] [0.0842] [0.0842]

Mother < high school −3.590 −3.546 −3.204 −3.550
[0.186] [0.188] [0.183] [0.188]

Mother high school graduate −1.475 −1.444 −1.344 −1.450
[0.153] [0.152] [0.149] [0.152]

Mother college + 1.750 1.664 1.578 1.676
[0.155] [0.156] [0.155] [0.156]

Married at birth 0.521 0.531 0.472 0.531
[0.129] [0.127] [0.129] [0.127]

Birth order −0.670 −0.671 −0.641 −0.671
[0.0491] [0.0496] [0.0495] [0.0497]

Birth weight missing—imputed 0.721 0.703 0.617 0.739
[0.310] [0.305] [0.299] [0.307]

Maternal education—imputed −1.588 −1.624 −1.390 −1.631
[0.328] [0.327] [0.316] [0.329]

Families with income in 2010 below poverty −0.947 2.755 3.482 4.896
[1.071] [5.220] [4.533] [5.768]

Median family income (in $1,000 (2010)) 5.41e−05 −5.32e−05 −2.97e−05 1.29e−05
[5.18e−06] [3.84e−05] [3.25e−05] [3.95e−05]

Share of housing built post-1978 −2.900 4.783 2.212 11.14
[0.695] [4.028] [3.450] [4.342]

Observations 70,678 70,678 70,678 70,635 70,658
R2 0.187 0.215 0.223 0.237 0.224
Fixed effect none none census tract census tract census tract
Number of fixed effects     233 233 230

Notes: Standard errors clustered on tract shown are in brackets. Estimates from a regression of a child’s third grade 
reading test score on the child’s average preschool blood lead level. All regressions also include year and month 
of birth FE.
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Table 3B—OLS and Neighborhood FE Estimates: Preschool Lead and Third Grade Math Scores

  (1) (2) (3) (4) (5)

Geometric mean of lead −0.348 −0.216 −0.220 −0.193 −0.210
[0.0245] [0.0224] [0.0218] [0.0215] [0.0216]

Average third grade math score for 0.489
  school × grade [0.0134]
Tract 1997 math score × year −0.0294

[0.00585]
African American 0.605 1.198 1.181 1.372 1.326

[1.020] [0.995] [0.975] [0.922] [0.982]
White 4.764 4.049 3.824 3.232 3.997

[1.001] [0.958] [0.941] [0.879] [0.948]
Hispanic 0.550 1.507 1.533 1.844 1.718

[0.989] [0.952] [0.943] [0.891] [0.949]
Asian 4.788 5.434 5.555 5.409 5.731

[1.033] [1.009] [0.996] [0.940] [1.005]
Always free/reduced lunch −7.632 −4.152 −4.136 −3.239 −4.154

[0.199] [0.170] [0.167] [0.163] [0.167]
Sometimes free/reduced lunch −5.992 −3.465 −3.410 −2.925 −3.401

[0.185] [0.133] [0.129] [0.121] [0.129]
Male 0.0668 −0.132 −0.123 −0.0909 −0.129

[0.0826] [0.0813] [0.0814] [0.0796] [0.0812]
Birth weight in kg 1.501 1.489 1.487 1.487

[0.0792] [0.0782] [0.0774] [0.0782]
Mother < high school −3.196 −3.214 −2.821 −3.220

[0.188] [0.191] [0.185] [0.191]
Mother high school graduate −1.300 −1.320 −1.196 −1.326

[0.151] [0.150] [0.148] [0.151]
Mother college+ 1.931 1.851 1.723 1.859

[0.146] [0.147] [0.143] [0.147]
Married at birth 0.706 0.764 0.690 0.763

[0.117] [0.115] [0.113] [0.115]
Birth order −0.403 −0.418 −0.384 −0.420

[0.0436] [0.0438] [0.0430] [0.0438]
Birth weight missing—imputed 0.637 0.450 0.379 0.484

[0.296] [0.284] [0.282] [0.287]
Maternal education—imputed −1.344 −1.405 −1.159 −1.409

[0.282] [0.276] [0.271] [0.278]
Families with income in 2010 below poverty −0.257 6.687 7.552 8.855

[1.043] [6.420] [5.000] [6.779]
Median family income (in $1,000 (2010)) 5.78e−05 −2.97e−05 −1.01e−05 5.26e−05

[5.06e−06] [4.49e−05] [3.19e−05] [4.18e−05]
Share of housing built post 1978 −1.753 8.404 4.572 15.13

[0.912] [4.531] [3.378] [4.850]
Observations 70,625 70,625 70,625 70,584 70,605
R2 0.181 0.213 0.225 0.246 0.225
Fixed effect none none census tract census tract census tract
Number of fixed effects     233 233 230

Notes: Standard errors clustered on tract are shown in brackets. Estimates from a regression of a child’s third grade 
math test score on the child’s average preschool blood lead level. All regressions also include year and month of 
birth FE.
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epidemiological studies that have also documented stronger relationships between 
lead and verbal functioning (e.g., see Bellinger, Stiles, and Needleman 1992 as an 
example and CDC 2004 for a review of estimated effects of lead on verbal IQ and 
performance IQ). However, as discussed above, results for both reading and math 
may well be underestimates of the true effect given the difficulties of properly mea-
suring lead exposures from BLLs.

Table 4 explores the issue of measurement error in these data. The first two col-
umns focus on the subset of 12,002 children who had both capillary and venous 
tests. Venous tests are known to be far more accurate than capillary (finger prick) 
tests. Consistent with this, we see that estimating the effects of lead using the aver-
age of all capillary tests (column 1) produces a much lower estimate of the effect of 
lead than using the average of all venous tests (column 2).

Columns 3 and 4 demonstrate this measurement error issue in another way, using the 
subsample of 54,491 children who had more than one test. Column 3 shows estimates 
based on a single randomly drawn test. Column 4 shows estimates based on the average 
of all other tests. The latter are somewhat larger in absolute value than those in col-
umn 3 consistent with averaging reducing the effects of random measurement errors.19

19 These results are consistent with an epidemiological study comparing the relationship between more noisy 
(blood lead) and less noisy (bone lead) measures of child lead exposure and child IQ, which found a stronger rela-
tionship for the latter (Wasserman et al. 2003). 

Table 4—Exploring Effects of Measurement Error in Lead Levels

OLS
(1)

OLS
(2)

OLS
(3)

OLS
(4)

Panel A. Outcome = third grade reading score
Average of all capillary tests −0.141

[0.0310]
Average of all venous tests −0.313

[0.0470]
Single random draw of blood lead levels −0.186

[0.0188]
Average all other blood lead levels −0.278

[0.0238]

Observations 12,012 12,012 54,491 54,491
R2 0.226 0.229 0.233 0.234

Panel B. Outcome = third grade math score
Average of all capillary tests −0.102

[0.0320]
Average of all venous tests −0.201

[0.0477]
Single random draw of blood lead levels −0.124

[0.0171]
Average all other blood lead levels −0.189

[0.0212]

Observations 12,002 12,002 54,449 54,449
R2 0.221 0.223 0.232 0.233

Notes: Standard errors clustered on census tract are shown in brackets. Sample for columns 1–2 is limited to chil-
dren from whom there are both capillary and venous measures of blood lead levels. Sample for columns 3–4 limited 
to children with at least two blood lead tests. All models include census tract, year of birth and month of birth FE, 
as well as all other covariates listed in Table 3, column 3.
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Given two noisy measures of the same underlying concept, and assuming that the 
measurement errors in the two tests are independent, we can use one set of tests as 
an instrument for the other set of tests, as is done Table 5. Here, we focus on instru-
menting one random lead measurement with the average of the remaining estimates. 
The first column of Table 5 shows OLS estimates based on the same specification 
as column 3 of Tables 3A and 3B, but using the smaller sample of children with at 
least two tests. In addition to showing estimates using the continuous test scores as 
dependent variables, we also examine the probability that the child is below the pro-
ficiency standard in reading or math. The point estimates in this sample are smaller 
than those shown in the full sample and based on the geometric mean (Tables 3A 
and 3B), consistent with an average being less noisy than a single measure.

The IV estimates shown in Table 5, column 2 are much larger than the OLS esti-
mates. For reading the estimated coefficient rises from −0.186 to −0.442; for math 
the value rises from −0.124 to −0.305. The estimated increase in the probability 
of being less than proficient rises from 0.47 percentage points to 0.96 percentage 
points in reading. The corresponding increase for math is from 0.38 to 0.79. These 

Table 5—OLS and IV Estimates of Lead and Third Grade  
Scores Instrument Is the Remaing Blood Lead Levels

  OLS
(1)

IV
(2)

IV
(3)

Dependent variable: Below proficient in reading      
Single random draw of blood lead levels 0.00465 0.00961 0.00873

[0.000600] [0.00121] [0.00120]
Observations 54,491 54,491 54,458

R2 0.093 0.037 0.047

Dependent variable: Reading score      
Single random draw of blood lead levels −0.186 −0.442 −0.396

[0.0188] [0.0372] [0.0372]
Observations 54,491 54,491 54,458

R2 0.233 0.107 0.123

Dependent variable: Below proficient in math      
Single random draw of blood lead levels 0.00383 0.00792 0.00682

[0.000656] [0.00119] [0.00119]
Observations  54,449 54,449 54,416

R2 0.105 0.034 0.049

Dependent variable: Math score      
Single random draw of blood lead levels −0.124 −0.305 −0.266

[0.0171] [0.0351] [0.0347]
Observations 54,449 54,449 54,416

R2 0.232    

Additional controls
Census tract, year of birth, month of birth fixed effects Yes Yes Yes
Average score in grade × school (leave-out mean) Yes
Percent below proficient in grade × school (leave-out mean) Yes
Race specific linear time trend Yes
Free lunch specific linear time trend     Yes

Notes: Standard errors clustered on census tract are in brackets. Instrument for child’s lead level is the average of 
the child’s other blood lead levels. All covariates in Table 3, column 3 also included.
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are relatively large effects compared to the baseline rates of 12 and 16 percent below 
proficiency in these subjects.

Column 3 probes the robustness of these estimates to the inclusion of additional 
controls. We add the average score in the grade and school (leaving out the index 
child’s score); the percentage of children who were below proficiency in the grade 
and school (again leaving out the index child), a race-specific linear time-trend and a 
free lunch-specific linear time trend (to account for changes in education policy that 
might have had a differential effect by race or income). These additions attenuate 
our estimates only slightly.

As discussed above, our second instrumental variables strategy relies on the intro-
duction of the lead-free certificate programs. Whereas the first strategy estimates the 
average effect of lead in all children with multiple lead measures, an instrument 
based on the certificate program will estimate the effect of lead on the children most 
likely to be impacted by the program. The same “dose” of lead could have larger 
effects on these poor and minority children if their families and schools are less 
likely to be able to remediate the effects of lead.

Table 6 shows three different models of whether the child’s preschool home had 
a lead safe certificate at the time of the child’s birth (estimates of equation  (2)). 
Column 1 has the total number of certificates, and the number of certificates squared. 
Column 2 includes interactions of the total number of certificates with the character-
istics of the household, allowing for the fact that different types of households might 
be more likely to receive certificates within a census tract. Column 3 differentiates 
between the two types of certificates.

All three specifications show that census tract-level measures of certificate pro-
gram activity are strongly predictive of whether there was a certificate in the child’s 
preschool home as of the child’s birth. The interactions in column 2 further suggest 
that the total number of certificates in the tract was more highly predictive of having 
a certificate in the child’s home if the child was African American or Hispanic, or 
always eligible for free lunch. That is, the interactions demonstrate that these chil-
dren were more likely to be affected by the program even within census tract. Of 
course, whether the home ever received a certificate over the course of our sample 
period is also highly predictive as are some of the census tract-level variables such 
as median family income and the share of newer housing, both of which are nega-
tively associated with having a certificate in the home.

Table 7 shows the results of using a predicted certificate measure based on the 
model in column 3 of Table 6 in the first-stage equation (3). The overall estimated 
effect of a predicted certificate on blood lead levels is strongly negative, and is much 
more strongly negative for the groups with high initial BLLs consistent with these 
groups being the most impacted by the new lead mitigation policies enacted in 1997. 
Among white children in the 2005 birth cohort, 2 percent lived in a house where a 
certificate had been issued as of the time of birth. Thus, the overall coefficient of 
−8.388 suggests that a certificate reduced blood lead levels by only 0.17 micro-
grams per deciliter. In contrast, among African Americans in the 2005 birth cohort, 
Table 2 shows that 12 percent of children lived in homes that had been certified 
by the time of the child’s birth. The coefficient of −15.49 for African Americans 
suggests that blood lead levels would be reduced by almost two micrograms per 
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Table 6—Predicting Certificate in Own Housing Unit at Time of First Lead Test 

  (1) (2) (3)

Certificates in tract at birth 0.898 0.469
[0.0544] [0.0615]

Certificates in tract at birth squared −1.400 −1.276
[0.136] [0.137]

Certificates × free lunch 0.264
[0.0374]

Certificates × black 0.292  
[0.0386]

Certificates × Hispanic 0.297
[0.0329]

HRC Certificates at birth 0.707
[0.0706]

HRC Certificates at birth squared −1.178
[0.288]

DOH Certificates at birth 1.166
[0.0911]

DOH Certificates at birth squared −2.528
[0.214]

African American 0.0153 −0.00356 0.0175
[0.0131] [0.0133] [0.0131]

White 0.00305 −0.00599 0.00570
[0.0130] [0.0130] [0.0130]

Hispanic 0.00997 −0.00977 0.0128
[0.0130] [0.0132] [0.0130]

Asian 0.000413 −0.00419 0.00338
[0.0134] [0.0134] [0.0134]

Always free/reduced lunch 0.00627 0.00137 0.00627
[0.00217] [0.00228] [0.00217]

Sometimes free/reduced lunch −0.00278 −0.00662 −0.00277
[0.00178] [0.00187] [0.00178]

Male −0.000470 −0.000508 −0.000487
[0.00123] [0.00122] [0.00122]

Birth weight in kg 3.15e-05 −9.31e-05 2.27e-05
[0.00113] [0.00113] [0.00113]

Mother < high school 0.00566 0.00551 0.00556
[0.00264] [0.00264] [0.00264]

Mother high school graduate −0.000103 −0.000193 −0.000114
[0.00220] [0.00220] [0.00220]

Mother college+ −0.00122 −0.00118 −0.00118
[0.00226] [0.00226] [0.00226]

Married at birth −0.00910 −0.00923 −0.00917
[0.00169] [0.00169] [0.00169]

Birth order 0.00181 0.00186 0.00180
[0.000651] [0.000650] [0.000650]

Birth weight missing—imputed −0.0168 −0.0156 −0.0160
[0.00391] [0.00391] [0.00391]

Maternal education—imputed 0.00999 0.00937 0.00946
[0.00397] [0.00396] [0.00396]

Families: Income in 2012 below poverty −0.00255 0.0229 0.0788
[0.0687] [0.0686] [0.0692]

Median family income (in $1,000 (2010)) −1.07e-06 −1.05e-06 −9.26e-07
[4.08e-07] [4.08e-07] [4.08e-07]

Share of housing built post 1978 −0.340 −0.243 −0.304
[0.0486] [0.0489] [0.0486]

Home ever had a certificate 0.105 0.105 0.105
[0.00177] [0.00177] [0.00177]

Observations 70,678 70,678 70,678
R2 0.139 0.142 0.140

Notes: Standard errors clustered on census tract are in brackets. Outcome is an indicator for whether the child lived 
in a house with a certificate as of the date of the first blood test for the child. Certificates in tract is the number of 
certificates in the census tract of the child’s home (at the first lead test of the child). In columns 1 and 2, “certificates 
in tract” refers to the total number of certificates (DOH and HRC, combined). In column 3, we estimate the effects 
of the two different certificate types (DOH and HRC) separately.

10_APP20160404_101.indd   24 10/3/17   12:33 PM



Vol. 10 No. 1� 25
Aizer et al.: Do Low Levels of Blood Lead Reduce Children’s Future 

Test Scores?

deciliter in these certified homes. This number can be compared to the coefficient of 
1.958 on the indicator for whether the “home ever had a certificate.” This compari-
son suggests that black children in homes that had not yet received a certificate had 
BLLs two micrograms per deciliter higher than other black children and that this 
gap was reduced to zero when a certificate was obtained.

Table 8 presents IV estimates based on this second instrumental variables strat-
egy. The format is the same as in Table 5. The first column shows OLS, the second 
the baseline IV estimate, and the third column probes the robustness of the estimates 
to the addition of an even richer set of controls.

The second column of Table 8 shows that for reading, the IV estimates are statis-
tically significant and roughly three times as large as the OLS estimates in the first 
column. They are also about double the size of the corresponding IV estimates in 
Table 5. For mathematics, the estimates are unfortunately imprecise, and for both 
math and reading the confidence intervals encompass both the OLS estimates and 
the corresponding IV estimates from Table 5. Thus, we must be cautious in inter-
preting the large estimated effects for reading scores, though it is possible that the 
large estimates reflect the larger impact of the certificate program on the individuals 
most likely to be “treated” by the certificate program.

Hausman tests of the equality of the OLS and the two IV estimates suggest that 
while estimates based on the first instrument (alternative measures for the same 
child) differ significantly from the OLS estimates, the confidence intervals are wide 
enough that the IV estimates based on the certificate program instrument do not 
differ significantly from the OLS estimates (Appendix Table 4). 20

Table 9 probes the robustness of the third grade reading test score results to sev-
eral changes in sample and specification. About 15 percent of our sample are miss-
ing birth information, primarily because they were born outside of Rhode Island. 
Column 1 of Table 9 shows OLS and the two sets of IV estimates from a sample that 

20 Appendix Table 4 estimates all three models using the smaller sample of children with more than one lead 
test. 

Table 7—First-Stage Estimates 

 
All
(1)

White
(2)

White/Asian/ 
other
(3)

Black
(4)

Hispanic
(5)

Paid 
lunch
(6)

Free 
lunch
(7)

Predicted certificate in home −8.388 −4.619 −5.302 −15.49 −3.389 −3.490 −7.199
  at time of birth [0.904] [1.401] [1.207] [2.219] [1.211] [1.402] [1.027]
Home ever had a certificate 1.165 0.653 0.756 1.958 0.729 0.516 1.063

[0.106] [0.157] [0.134] [0.245] [0.143] [0.164] [0.117]

Observations 70,678 47,668 50,035 6,967 13,674 30,970 39,708
R2 0.200 0.185 0.186 0.210 0.149 0.135 0.155

Notes: Dependent variable is the average blood lead level of the child. Standard errors clustered at the census tract 
shown are in brackets. The predicted certificate is the instrument for the child’s average blood lead level. Whether 
the child lived in a home that ever receives a certificate is not an instrument as it is also included in the second stage. 
The predicted certificate is based on the results presented in Table 5 in which whether a child lives in a home with 
a certificate is predicted as a function of the child’s family characteristics and the number of certificates issues in 
the census tract of residence as of the date of the child’s first blood lead test. All covariates listed in Table 3, col-
umn 3 included.
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excludes these observations. The OLS and first set of IV estimates are quite similar 
to those reported above. The predicted certificate IV specification is still larger that 
the first IV specification, but is no longer statistically significant.

The second column exploits the fact that for some addresses we observe multiple 
children over time. Focusing on this subsample reduces the sample size to 26,131 
children. Column 2 shows estimates using this subsample and including address 
fixed effects. Again, the results are remarkably similar to those presented above, 
although now the IV specification based on predicted certificates is somewhat larger 
than before.

Column 3 of Table 9 shows estimates using a measure that imputes total lead 
exposure over the child’s preschool years using the lead measures that we have. 
In order to create this measure we interpolate lead measures for each month of the 
sample using the nearest adjacent measures to the month in question.21 While this 

21 To construct this measure, we impute each month before the first test to be equal to the value at the first lead 
test. Similarly, we impute all months after the last test to be equal to the value at the last lead test. For months 

Table 8—OLS and IV Estimates of Lead and Third Grade Scores Instrument Is Predicted Certificate

OLS
(1)

IV
(2)

IV
(3)

Dependent variable: Below proficient in reading
Geometric mean of lead 0.0075 0.0352 0.0270

[0.0005] [0.00938] [0.0144]
Observations 70,678 70,678 70,637

R2 0.090

Dependent variable: Reading score
Geometric mean of lead −0.332 −0.936 −0.931

[0.0199] [0.340] [0.516]
Observations 70,678 70,678 70,637

R2 0.223

Dependent variable: Below proficient in math
Geometric mean of lead 0.0056 0.0143 0.00999

[0.0006] [0.0104] [0.0157]
Observations 70,625 70,625 70,584

R2 0.103

Dependent variable: Math score
Geometric mean of lead −0.217 −0.149 −0.431

[0.0187] [0.317] [0.471]
Observations 70,625 70,625 70,584

R2 0.225

Additional controls:
Census tract, year of birth, month of birth fixed effects Yes Yes Yes
Average score in grade × school (leave-out mean) Yes
Percent below proficient in grade × school (leave-out mean) Yes
Race specific linear time trend Yes
Free lunch specific linear time trend Yes

Notes: Standard errors clustered on census tract are shown in brackets. Instrument for child’s lead level is whether 
the child is predicted to live in a home with a lead certificate at the time they were first tested, based on the regres-
sion presented in Table 5, column 2. All other covariates in Table 3, column 3 also included.
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measure should better reflect duration of lead exposure, in practice the measure is 
very similar to the simple geometric mean (correlation of 0.96). Given this high 
degree of correlation in the measures, it is not surprising that the OLS estimate 
based on these imputed values shown in panel A is quite similar to the estimate 
shown in Table 3A. Since now we have only one imputed measure, this method does 
not lend itself to our first IV strategy, but the estimate using the predicted certificate 
instrument is also quite similar to that shown in Table 5.

between two tests, we impute the value as the average as the two tests. Constructed as such, this measure better 
reflects duration of lead exposure. 

Table 9—Lead and Reading Test Scores—Robustness

Drop obs. with 
imputed natality 

(1)

Include  
address FE

(2)

Impute all pre-
school lead

(3)

Weight earlier 
exposure more

(4)

Panel A. Ordinary least squares
Single random draw of blood lead levels −0.295 −0.262

[0.0252] [0.0657]
Geometric mean of lead (imputed) −0.296

[0.0230]
Geometric mean of lead (weighted) −0.320

[0.0345]
Observations 59,877 26,131 70,678 70,678

R2 0.224 0.640 0.223 0.221

Fixed effect Tract Address Tract Tract

Number of fixed effects 233 10,157 233 233

Panel B. IV with first random draw as dependent variable and average of other draws as instrument
Single random draw of blood lead levels −0.373 −0.340

[0.0328] [0.0791]
Observations 47,603 20,521

Fixed effect Tract Address

Number of fixed effects 233 10,157

Panel C. IV with geometric mean of lead as dependent variable and predicted certificate as instrument
Geometric mean of lead −0.600 −1.390

[0.415] [0.643]
Geometric mean of lead (imputed) −1.097

[0.390]
Geometric mean of lead (weighted) −2.470

[0.898]
Observations 59,877 26,131 70,678 70,678

R2 0.224 0.640

Fixed effect Tract Address Tract Tract

Number of fixed effects 233 11,298 233 233

Notes: Standard errors clustered at the tract level are shown in brackets. Fifteen percent of the children in our sam-
ple were not born in RI and therefore there is no natality data available for them. They are dropped in columns 1 
and 5. Columns 2 and 6 show estimates for the sample of addresses with more than one child and including address 
fixed effects. Columns 3 and 7 use an alternative measure of lead exposure: We impute lead levels for months with 
no lead test based on an average of the two nearest months with measured lead levels. Columns 4 and 8 show esti-
mates based on an imputed lead measure where we give greater weight to measures taken at younger ages (see text 
for more detail on imputation and weighting methods).

AQ3
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In column 4, we experiment with an imputed measure of lead exposure over the 
child’s lifetime, which weights earlier exposure more heavily than later exposure.22 
The OLS estimate is again quite similar to that discussed above, while the IV based 
on the predicted certificate is much larger than any of the previous estimates. This 
could indicate that exposure in early life is more harmful than later exposure or it 
could simply reflect the fact that the instrument is calculated based on the address at 
the first blood test and thus is more predictive of early BLLs.

The same set of robustness exercises were performed for the third grade math scores 
and shown in Appendix Table 6. The OLS and instrumental variable estimates based 
on multiple measures of lead are roughly similar to, though in some cases smaller 
than, the main set of estimates presented in Tables 3B and 5. However, the IV results 
based on the certificate program, which were already quite imprecise, are generally 
not robust to the above described modifications to sample or measurement of lead.

With regard to our second instrumental variables strategy, it could be argued that 
since all the variation in the certificate program is at the census tract level, we could 
perform the same estimation aggregating the data to that level. This estimation is 
shown for reading test scores in Appendix Table 5. The estimated effects are similar 
but slightly larger than those described in Table 8. A one unit increase in BLLs is 
estimated to reduce reading scores by −1.251. However, the effects for math (not 
shown) are small and imprecisely estimated.

V.  Conclusions

Our study contributes to an evolving understanding of the hazards of low levels of 
lead exposure among young children. It is to our knowledge the first study to utilize 
a dataset that links preschool blood lead levels in a representative group of all public 
school children in a state to their future school test scores, and to develop a research 
design aimed at overcoming threats to inference posed by confounding and mea-
surement error. While the issues associated with confounding have been understood, 
the literature to date has largely ignored the measurement error problem.

In order to address these issues, we develop two instrumental variables strategies. 
The first exploits the fact that there are multiple measures of blood lead levels for most 
of the children in our data. Using this instrument increases the estimated impact of 
a unit of blood lead on reading (math) from −0.188 (−0.124) to −0.436 (−0.305). 
These figures suggest that for the average public school child, eliminating lead (by 
reducing lead levels from 2.7 to zero micrograms per deciliter) increased mean read-
ing and math scores by 1.18 and 0.82 points, respectively, corresponding to 9 and 
6 percent of a standard deviation. These are relatively modest gains. However, the 
effects are larger at the tails of the distribution. The same reduction in lead reduced the 
probability of being below proficiency in reading by 2.6 percentage points, or 22 per-
cent. For math the comparable figure is 2.1 percentage points or 13 percent. These 
estimates seem generally consistent with estimates in the epidemiological literature, 

22 Weights are the inverse of the number of months from birth. A lead test taken at birth receives a weight of 1 
whereas a test taken at 72 months receives a weight of 1/72. All measures are then adjusted so that the average value 
of the weighted measure is equal to the average value of the unweighted measure. 
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though direct comparisons are difficult because of differences in methods, adjustments 
for measurement error, and the higher lead levels examined in previous work.23

Table 2 showed that African Americans and children eligible for free lunch expe-
rienced greater average reductions in blood lead levels over the period we examine. 
This may be in part because as Table 7 shows, the lead-safe certificate program had a 
disproportionate impact on these children. Our second IV method focused on using 
the certificate program as an instrument, and therefore measures the impact of lead 
reductions on the vulnerable children targeted by that program. Although these esti-
mates are imprecise, they are substantially larger than those generated by our first IV 
method, which perhaps provides some preliminary evidence for heterogeneity in the 
impact of lead. Disadvantaged children may suffer double jeopardy in the sense that 
they are both exposed to greater levels of lead and experience greater impacts of the 
same exposure. This question is an important topic for future research.

Appendix

23 Meta-analyses (Lanphear et al. 2005 and CDC 2004) conclude that reducing lead levels from 15 to 5 is 
associated with a 1 to 6 point increase in verbal IQ (with an average around 3 points). There is some evidence of a 
non-linear effect, with larger effects at lower levels of lead. 

Appendix Table 1—Age of Housing and Child Characteristics 

Panel A. Concentration of children by race and income living in old housing in the United States and Rhode Island

US share in housing built RI share in housing built

Pre 1978 Pre 1945 Pre 1978 Pre 1945

Black 0.72 0.22 0.83 0.52
White 0.63 0.22 0.74 0.37
Hispanic 0.68 0.2 0.83 0.53
≤100% FPL 0.81 0.43
≥200% FPL 0.76 0.4
<200% FPL and Black 0.83 0.5
<200% FPL and White 0.84 0.48

Black
2010 0.58 0.18 0.82 0.58
2000 0.7 0.21 0.85 0.47
1990 0.81 0.26 0.82 0.52

White
2010 0.5 0.18 0.62 0.41
2000 0.59 0.21 0.71 0.34
1990 0.73 0.25 0.8 0.32

Panel B. Concentration of children by race and income living in Providence, RI
Providence Rest of RI

Share housing built pre 1978 0.81 0.68
Share housing built pre 1945 0.49 0.27

Share black population living in: 0.86 0.14
Share white population living in: 0.51 0.49

Share population < 100% FPL living in: 0.77 0.23
Share population > 100% FPL living in: 0.55 0.45

Share population < 100% FPL and black living in: 0.89 0.11
Share population < 100% FPL and white living in: 0.6 0.4    

Notes: Calculations from US census IPUMS data for 1990, 2000, and 2010. Sample includes all children ten and 
under.
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Appendix Table 3—Sample Construction

RIDE (n = 122,786)
RIDE-Lead (w/test score)  

(n = 77,777)

No lead  
(n = 30,795)

Lead (n = 91,991)
  No test score 

(n = 14,214)
Test score 

(n = 77,777)
  No VS 

(n = 12,008)
VS

(n = 65,769)
RIDE w/test  

scores (n = 91,456)
From RIDE or VS:
Black 0.15 0.1 0.1 0.11 0.09 0.1
White 0.5 0.67 0.68 0.55 0.71 0.69
Hispanic 0.23 0.19 0.19 0.27 0.17 0.19
Asian 0.06 0.04 0.03 0.05 0.03 0.03
Never free lunch 0.4 0.45 0.44 0.4 0.45 0.43
Always free lunch 0.39 0.27 0.27 0.31 0.26 0.27

From VS:
Maternal education 13.2 13.2 13.2 13.2
Married at birth 0.57 0.61 0.61 0.61
Maternal age at birth 28.1 28.6 28.6 28.6
Birth order 1.9 1.9 1.9 1.9
Birth weight 3,311 3,341 3,341 3,340

From RIDOH:
Lead—average 3.1 3.1 3.25 3.1 3.1

Third grade 
  reading scores

45.6 46.2 45.7 45.2

Notes: For column 1 (education data but no lead test) we do not present means for vital statistics data because there 
are few observations with such data. The sample used for analysis is shown in column 3 and includes imputations 
of some variables drawn from the vital statistics data. Columns 4 and 5 show means for the non-imputed sample.

Appendix Table 2—Certificates Granted by End of 2010 by County 

Panel A. Total certificates

Certificates   Certificates per old housing unit

Population Old housing   Total DOH HRC   Total DOH HRC

Bristol  49,875  8,602 634 0 634  0.07 —  0.07 
Kent  166,155  22,249 4,336 3,122 1,214  0.19  0.14  0.05 
Newport  75,400  13,514 3,204 707 2,497  0.24  0.05  0.18 
Providence  626,667  128,225 37,059 11,452 25,607  0.29  0.09  0.20 
Washington  118,269  13,265   1,501 349 1,152    0.11  0.03  0.09 

Panel B. Certificates in past 5 years

Bristol 597 0 426 0.24 — 0.17 
Kent 3,661 2,427 936 0.13 0.09 0.03 
Newport 2,943 577 2,372 0.52 0.10 0.42 
Providence 24,724 7,421 17,483 0.06 0.02 0.04 
Washington   1,072 254 823   0.08 0.02 0.06 

Notes: Data on population and housing age from ACS data; data on certificates based on authors calculations of data 
from the RI Dept of Health and Housing.
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Appendix Table 4—Hausman Tests for the Equivalence of OLS and IV Estimates 

OLS
(1)

IV1
(2)

IV2
(3)

Single random draw of blood lead levels −0.186 −0.442 −0.924
[0.0188] [0.0372] [0.426]

Observations 54,491 54,491 54,491

R2 0.233

Instrument None Average of other BLLs Predicted certificate

Hausman test (chi squared) comparing OLS and IV estimates 12.1 0.53

Notes: Sample restricted to children with at least two BLLs. Also included are all covariates listed in Table 3A, col-
umn 3, whether the home has/will ever receive a certificate, year of birth and month of birth, and census tract FE. 
The null hypothesis for the Hausman test is that the difference in the coefficients is not systematic. The test statistics 
indicate that the IV1 and OLS coefficients are different, but that the IV2 and OLS coefficients are not.

Appendix Table 5—Estimates of Lead and Reading Scores Based on Aggregate Means 

Outcome = reading score Outcome = average  
lead level
first stageOLS weighted IV

(1) (2) (3)

Geometric mean of lead −0.408 −1.251
[0.148] [0.422]

African American 11.82 13.67 0.922
[6.567] [5.673] [1.042]

White 13.04 15.09 1.001
[6.373] [5.655] [1.051]

Hispanic 11.28 13.03 0.457
[6.428] [5.540] [1.026]

Asian 15.16 16.83 0.548
[6.660] [5.847] [1.079]

Always free/reduced lunch −5.477 −5.344 0.250
[1.045] [0.995] [0.204]

Sometimes free/reduced lunch −4.329 −4.032 0.289
[0.857] [0.814] [0.172]

Male −3.335 −3.291 0.0499
[0.605] [0.569] [0.0980]

Birth weight in kg 1.703 1.553 −0.158
[0.546] [0.527] [0.113]

Mother < high school −4.603 −4.385 0.266
[1.258] [1.265] [0.283]

Mother high school grad −2.476 −2.828 −0.239
[0.937] [1.014] [0.184]

Mother college+ 1.163 1.172 −0.0619
[1.012] [1.005] [0.193]

Married at birth −1.178 −1.571 −0.475
[0.920] [0.841] [0.165]

Birth order −0.615 −0.498 0.154
[0.369] [0.330] [0.0690]

Birth weight missing—imputed 2.358 3.163 0.425
[1.909] [1.860] [0.385]

Maternal education −3.558 −3.879 −0.159
[1.835] [1.838] [0.373]

(continued )
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Appendix Table 6—Lead and Math Test Scores—Robustness

Drop obs. with 
imputed natality 

(5)

Include  
address FE

(6)

Impute all  
preschool lead

(7)

Weight earlier 
exposure more

(8)

Panel A. Ordinary least squares
Single random draw of blood lead levels −0.111 −0.0737

[0.0158] [0.0390]
Geometric mean of lead (imputed) −0.188

[0.0218]
Geometric mean of lead (weighted) −0.175

[0.0327]
Observations 59,834 26,112 70,625 70,625

R2 0.227 0.659 0.225 0.224

Fixed effect Tract Address Tract Tract

Number of fixed effects 233 10,157 233 233

Panel B. IV With first random draw as dependent variable and average of other draws as instrument
Single random draw of blood lead levels −0.264 −0.177

[0.0306] [0.0704]
Observations 47,566 18,310

Fixed effect Tract Address

Number of fixed effects 233 10,157

(continued )

Outcome = reading score Outcome = average  
lead level
first stageOLS weighted IV

(1) (2) (3)

Families: Income in 2012 below poverty level 2.703 3.707 0.497
[5.647] [5.216] [1.563]

Median family income −4.59e-05 −2.51e-05 1.25e-05
  (in 2010 inflation adjusted dollars) [4.15e-05] [3.21e-05] [9.18e-06]
Share of housing built post 1978 4.704 8.252 3.891

[4.350] [4.112] [1.260]
HRC certificates at birth −8.275

[1.760]
HRC certificates at birth squared 20.38

[8.086]
DOH certificates at birth −8.308

[2.245]
DOH certificates at birth squared 17.57

[4.889]
Share of housing to ever receive a certificate −0.993 −0.765 0.235

[0.870] [0.911] [0.207]

Observations 1,989 1,989 1,989
R2 0.865     0.885

Notes: Each observation is a birth year × census tract cell. All variables represent the average for that year of birth 
and census tract. For example, the outcome (reading test scores) is the average third grade reading test score of all 
children born in a given year living in a given tract as of the first lead test. All covariates similarly defined (i.e., lead 
is the average lead level for these children; African American is the share African American in that year of birth and 
census tract). All regression weighted by the number of children in each cell.

Appendix Table 5—Estimates of Lead and Reading Scores Based on Aggregate Means (continued )

AQ4
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