
Lecture Outlines for Prob-Stats

Maxwell B. Stinchcombe

Fall Semester, 2018





Contents

Chapter I. Why We’re Doing This . . . . . . . . . . . . . . . . . . . . . . . 5
A. The Basic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
B. The Two Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

B.1. Parametric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
B.2. Empirical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

C. The Conditional Problem . . . . . . . . . . . . . . . . . . . . . . . . . 6
C.1. Parametric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
C.2. Empirical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

D. Partial Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
E. Causality and Useful Information . . . . . . . . . . . . . . . . . . . . . 7
F. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter II. Measure Theoretic Probability . . . . . . . . . . . . . . . . . . . 9
A. Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A.1. Probability spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 9
A.2. Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . 9
A.3. Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
A.4. Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
A.5. Limit Constructions . . . . . . . . . . . . . . . . . . . . . . . . . 9
A.6. The Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B. Some Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
B.1. Weak Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
B.2. Borel-Cantelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
B.3. Dominated Convergence . . . . . . . . . . . . . . . . . . . . . . 9
B.4. Fatou’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
B.5. The Strong Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
B.6. Two 0-1 Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter III. Conditional Expectations . . . . . . . . . . . . . . . . . . . . . 11
A. Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A.1. Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
A.2. Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
A.3. Exchangeability . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

B. Choice Theory Under Risk . . . . . . . . . . . . . . . . . . . . . . . . 11
B.1. Expected Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
B.2. Curvature of u(·) . . . . . . . . . . . . . . . . . . . . . . . . . . 11
B.3. Optimal Action . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
B.4. The Value of Information . . . . . . . . . . . . . . . . . . . . . . 11

C. Basic Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . 11
C.1. Search Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



Chapter IV. Classes of Distributions . . . . . . . . . . . . . . . . . . . . . . 13
A. Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A.1. Moment Generating Functions . . . . . . . . . . . . . . . . . . . 13
A.2. Characteristic Functions . . . . . . . . . . . . . . . . . . . . . . 13

B. The Two Basic Limit Distributions . . . . . . . . . . . . . . . . . . . . 13
C. Infinite Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

C.1. Exponential Classes . . . . . . . . . . . . . . . . . . . . . . . . . 13
D. Statistics and Estimators . . . . . . . . . . . . . . . . . . . . . . . . . 13
E. Decisions with Estimation Uncertainty . . . . . . . . . . . . . . . . . . 13

Chapter V. Non-Random Samples . . . . . . . . . . . . . . . . . . . . . . . 15
A. Duration Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
B. Selection Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C. Set Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C.2. Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2



Preface

This course will start with an introduction to measure theoretic probability. We
will first use this for a set of limit theorems, and for decision problems, both static
and dynamic, in the face of uncertainty. We will then spend time on parametric
classes of probability distributions and the properties of estimators, including: bias
and expected squared error; sufficiency, completeness, minimality and the Cramer-
Rao lower bound. This leads directly to hypothesis testing, the main language used
in communicating statistical results both within and across fields. We will then give
some of the introductory results for non-random samples — especially those arising
from selection biases — that are now the focus much of current econometric and
applied research. We will end the course with the beginnings of decision theory for
such problems.

We will use the following sources. There is overlap between them, and you may
use whichever you want when there are multiple coverages.

C&B is

G. Casella and R. L. Berger. Statistical Inference. The Wadsworth
& Brooks/Cole Statistics/Probability Series. Wadsworth &
Brooks/Cole Advanced Books & Software, Pacific Grove, CA,
second edition, 2002.

HB is

H. J. Bierens. Topics in Advanced Econometrics. Cambridge Uni-
versity Press, Cambridge, 1994. Estimation, testing, and spec-
ification of cross-section and time series models.

CSZ is

D. Corbae, M. B. Stinchcombe, and J. Zeman. An Introduction
to Mathematical Analysis for Economic Theory and Econo-
metrics. Princeton University Press, Princeton, NJ, 2009.

We will also use a variety of papers through the semester, they are listed below
and I will e-mail them as they become relevant.
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CHAPTER I

Why We’re Doing This

A. The Basic Problem

A random number (vector, object) X will happen in the future, say at time
t = n + 1. Before it happens, now at time n, we must choose an action a ∈ A.
Preferences are such that we wish to maximize E u(a,X), that is, to solve the
problem in

(I.1) V (µ) := maxa∈A
∫
u(a, x) dµ(x)

where µ is the distribution of X. We have seen previous realizations of X, aka the
data, X1, . . . , Xn. For now assume that Xt, t = 1, . . . , n+ 1, take values in R. The
distribution of X is a point µ in ∆(R), which denotes the set of distributions on R.

B. The Two Approaches

There are two main approaches. Both are variants of the idea that the past is
predictive of the future.

B.1. Parametric. Assume/guess/intuit/have a vision telling you thatX1, . . . , Xn

are independent and identically distributed (iid) with distribution Pθ for some θ ∈ Θ

where Θ ⊂ Rk is a set of parameters. For the best estimate θ̂n = θ̂(X1, . . . , Xn)
and then choose the a that solves

(I.2) V (Pθ̂n) = maxa∈A
∫
u(a, x) dPθ̂n(x).

The statistical model is {Pθ : θ ∈ Θ}. It is correctly specified if there

exists a “true” θ◦ ∈ Θ such that the Xt, t = 1, . . . , n+ 1 are iid Pθ◦ and θ̂n → θ◦,

then for n large enough that θ̂n is close to θ◦, we can hope that V (Pθ◦) is close to
V (Pθ̂n).

To study: properties of {Pθ : θ ∈ Θ}; θ̂n → θ◦; V (Pθ◦) → V (Pθ̂n); and, most
crucially for economics, what can we say if the statistical model is wrong, that is,
mis-specified?

One of the common ways that the model can be wrong is that for large n (aka
the long-run distribution of the data), 1

n

∑n
t=1 1E(Xn) ' Pθ◦(E), but Xt is not

independent of Xt+1. Since the average correlation of times series of US data is
more than 0.9, this is a frequent occurence.

B.2. Empirical. Assume/guess/intuit/have a vision telling you thatX1, . . . , Xn

are independent and identically distributed (iid) with distribution µ ∈ ∆(R). Form
the empirical estimator µ̂n(E) := 1

n

∑n
t=1 1E(Xn) and then chose the a that

solves

(I.3) V (µ̂n) = maxa∈A
∫
u(a, x) dµn(x) = 1

n

∑n
t=1 u(a,Xn).
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To study: µ̂n → µ; V (µ̂n)→ V (µ); comparison with the parametric approach;
time series issues.

Weighted rolling averages are a common solution to the time series issues, but
that means that the questions now include, at a minimum, both “What set of
weights?” and “How do we detect if the time series structure has changed?”

C. The Conditional Problem

Now suppose Yn+1 is the random variable that will enter in the problem

(I.4) maxa∈A E(u, Yn+1)

that the data is (X0, Y1), . . . , (Xn−1, Yn), Xn, and that Xt−1 has predictive value
for Yt.

C.1. Parametric. Assume that (Xt−1, Yt) is iid Pθ, θ ∈ Θ, estimate θ̂n, cal-
culate the conditional distribution of Yn+1 given Xn and Pθ̂n(·|Xn), then solve

(I.5) V (Pθ̂n(·|Xn) = maxa∈A
∫

(u, y) d Pθ̂n(y|Xn).

We have the same issues here, but in a more complicated format: convergence
of the estimator; correctness of specification; times series problems.

C.2. Empirical. Assume enough to guarantee that the function x 7→ a∗(x)
that solves

(I.6) maxa∈A E (E (u(a(x), Y )|X = x))

is well-enough behaved to be approximated by some numerical procedure that you
know about.

Typical: find a sequence of classes of functions An, possibly data determined,
with the property that d(a∗,An) → 0; let µ̂n be the empirical distribution of
(Xt−1, Yt), t = 1, . . . , n), solve the problem

(I.7) max
a(·)∈An

∫
u(a(x), y) dµ̂n(x, y),

and use the solution â∗n at the observation Xn to calculate the optimal action
â∗n(Xn).

D. Partial Information

In the following examples, it seems likely that observational data will not,
indeed cannot, reveal the information we care about. The essential problem is that
people with different and unobservable characteristics make different choices, and
their characteristics are correlated with, or even causal, for the outcomes we care
about.

• Evaluating the effectiveness of a job training program that people must
volunteer themselves into is confounded by the observation that the char-
acteristics of the people who choose to enter the program are different
than those who choose not to enter the program.
• Evaluating school or teacher effectiveness is confounded by the observa-

tion that better schools and teachers are chosen by families that put more
emphasis on their childrens’ academic performance. And the other re-
sources that these families provide to their children also have long-run
benefits.
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• Evaluating the value of a college degree is confounded by the observation
that the people choosing to go to college are different than those who do
not choose. Some of these differences involve some notion of ‘raw ability,’
but in the US, other differences involve the cultural habits of the upper
middle class.

• Evaluating the value of mosquito netting in malarial regions has found the
paradoxical result that exposure to the disease (as measured by a quick
and cheap blood test) is correlated with a lower willingness to pay for
mosquito netting. The initally unobserved variable was history of family
income, which was lower, often dangerously lower, for families stricken by
the disease.

• Evaluating religion-based rehabilitation programs in prisons is confounded
by the observation that the people choosing to enter them have unobserv-
ably different motivations and previous life experiences.

• Evaluating the effects of lead exposure on academic performance in ele-
mentary school children has to deal with an errors in variables problem,
the blood tests for lead exposure were sporadic and lead leaves the blood
stream (a half life of 2 or 3 months), to settle into fat, especially the fat
in the nervous system.

This class of problems, those with unobservables confounding the estimation,
is central to much of modern econometrics and applied economic research.

E. Causality and Useful Information

Sources

D. Deutsch. The Beginning of Infinity: Explanations that Trans-
form the World. Penguin Books, New York, 2011.

E. Durkheim. Suicide: A Study in Sociology. Routledge, 2005.

Deutsch provides a lovely coverage of what goes into a “good” explanation, a
causal explanation. There are two basic parts. Minimality — one cannot change
any part of the explanation and have it be true, and reach — the explanation gives
solutions beyond those that it was invented to solve.

Durkheim believed that social forces, such as anomie, had as much reality as
the entities that physicists study, e.g. gravity and light. One key difference that
tells you that the social sciences are very different is that theories in the social
sciences do not give functional forms, e.g. the inverse square laws for gravity and
light.

There are no explanations of why things happen in economics that are “good”
in Deutsch’s sense. There is a big difference between failing to be “good” and
failing to be useful. Consider logistic regressions and the study of e.g. bus rider-
ship/opposition to the death penalty/suicide.

Consider the logistic cdf Φ(x) = ex

1+ex . Logistic regression supposes that the
probability that something happens, e.g. that someone takes the bus to work, or is
against the death penality, or that someone commits suicide, is a function of their
characteristics, given in a vector x ∈ Rk. The logistic enters in that the function is
assumed to take the form

(I.8) f(x; θ) = Φ(β0 + β′x),
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θ = (β0, β) ∈ R1+k.
After observing many people, i = 1, . . . , n, with measured characteristics xi,

and behavior Yi = 1 if bus/opposition to death penalty/suicied, Yi = 0 otherwise,

one estimates θ̂ by solving

(I.9) minθ∈R1+k

∑n
i=1(Yi − f(xi; θ))

2.

Even though we are certain that the causality does not take the form given in (I.8),

the resulting θ̂ is useful if f(·; θ̂) is a good predictor of Yi. If it is a good predictor,
then: for bus systems, it can help design routes and schedules; for political adver-
tising it can help avoid sending policy platform points that would cause voters to
vote against the candidate; for suicide prevention efforts, it can help identify who
should receive help.

One easy extension of this idea comes from thinking about e.g. opposition to
the death penalty. One might suppose that there is a positive fraction, ρ, of the
population that finds the death penalty so morally objectionable that they will not
support it in any circumstances. To capture this, change the functional form to

(I.10) f(x; θ, ρ) = (1− ρ)Φ(β0 + β′x),

and estimate both ρ̂ and θ̂ as before.

F. Summary

What we need is a systematic way to talk about random variables, about distri-
butions, conditional probabilities, and sequences of optimal choices. The essential
model of randomness in all of the models/theories in economics is due to Kol-
mogorov. It goes by the name of measure theoretic probability.
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CHAPTER II

Measure Theoretic Probability

Possible sources for this material are C&B, Ch. 1, HB, Ch. 1 and 2, and CSZ,
Ch. 7.

A. Basics

A.1. Probability spaces. (Ω,F , P ), Ω 6= ∅, F a σ-field (read “sigma-field”),
P : F → [0, 1] a countably additive probability.

A.2. Random variables. X : Ω → R with X−1((a, b]) ∈ F , −∞ ≤ a < b <
∞.

A.3. Distributions. CDF for X defined by FX(x) = P (X ∈ (−∞, x]).

A.4. Interpretation. Three interpretations of probability: long-run frequency;
subjective; fair bets.

A.5. Limit Constructions. Sums and products, almost always, infinitely
often, convergence sets for sequences of random variables.

A.6. The Integral. For simple functions, then for limits.

B. Some Limit Theorems

B.1. Weak Law. Weak Law of Large Numbers

B.2. Borel-Cantelli. The Borel-Cantelli Lemma.

B.3. Dominated Convergence. Lebesgue’s dominated convergence theo-
rem.

B.4. Fatou’s Lemma. Fatou’s Lemma.

B.5. The Strong Law. The strong law of large numbers (SLLN).

B.6. Two 0-1 Laws. The Kolmogorov 0-1 law and the Hewitt-Savage 0-1
law.
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CHAPTER III

Conditional Expectations

Sources, HBCh. 3, C&BCh. 1, CSZCh. 8.1.

A. Basics

A.1. Predictors. Mean squared loss best predictors.

A.2. Beliefs.

A.3. Exchangeability. Urns and hysteresis. Exchangeable sequences and de
Finetti’s exchangeability Theorem.

B. Choice Theory Under Risk

B.1. Expected Utility. Prefer rv X to Y if E u(X) > E u(Y ).

B.2. Curvature of u(·). Source

L. Eeckhoudt and H. Schlesinger. Putting risk in its proper place.
American Economic Review, 96(1):280–289, 2006.

Risk aversion, prudence, temperance.

B.3. Optimal Action. a∗(µ) = arg maxa∈A
∫
u(a, x) dµ(x).

Vu(µ) := maxa∈A
∫
u(a, x) dµ(x).

B.4. The Value of Information. Source CSZCh. 8.12 and

D. Blackwell. Equivalent comparisons of experiments. Ann. Math.
Statistics, 24:265–272, 1953.

D. Blackwell. Comparison of experiments. In Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and
Probability, 1950, pages 93–102, Berkeley and Los Angeles,
1951. University of California Press.

The Blackwell ordering on information structures.

C. Basic Dynamic Programming

C.1. Search Models. Some comparative statics of search.
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CHAPTER IV

Classes of Distributions

Source, C&BCh. 2 and 3

A. Transformations

X has cdf FX(·), the cdf of Y := g(X) is given by FY (r) = P (X ∈ g−1((−∞, r]).
When g is monotonic increasing or decreasing, or has a small number of regions in
which it is monotonic, can go directly to FY (·).

A.1. Moment Generating Functions. Stone-Weierstrass theorem.

A.2. Characteristic Functions. Stone-Weierstrass theorem and inversion.

B. The Two Basic Limit Distributions

The Gaussian and the Poisson parts of the Central Limit Theorem (CLT).

C. Infinite Divisibility

Cauchy, Poisson sums.

C.1. Exponential Classes. A tour of some of your worst memories from
integral calculus.

D. Statistics and Estimators

Bias.
Mean squared error.
Cramer-Rao lower bound, see especially

R. R. Bahadur. On fisher’s bound for asymptotic variances. The
Annals of Mathematical Statistics, 35(4):1545–1552, 1964.

Sufficiency, minimality, completeness.

E. Decisions with Estimation Uncertainty

Source

R. W. Klein, L. C. Rafsky, D. S. Sibley, and R. D. Willig. Deci-
sions with estimation uncertainty. Econometrica: Journal of
the Econometric Society, pages 1363–1387, 1978.
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CHAPTER V

Non-Random Samples

A. Duration Estimators

Source,

S. W. Salant. Search theory and duration data: a theory of sorts.
The Quarterly Journal of Economics, 91(1):39–57, 1977.

Memoryless.
Hazard rates.
Population diversity.

B. Selection Bias

Source, Chapter 1 in

C. F. Manski. Identification for prediction and decision. Harvard
University Press, 2009.

Treatment effects.
Manski bounds.
Tighter bounds.

C. Set Identification

C.1. Definition. θ ∈ An(X1, . . . , Xn) ⊂ Θ, An → A, and A is not a singleton
set.

C.2. Decision Theory. Decision theory for set-identified distributions.
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