Assignment #2 for Mathematics for Economists Fall 2018

Due date: Monday, Oct 15, 2018

Topics: Compactness and continuity; convexity and concavity; FOCs for concave functions; maximization of concave functions over convex sets; the separating hyperplane theorem and the Kuhn-Tucker theorem; differentiable comparative statics.

Readings: CSZ, Ch. 4.4-9, 4.11, Ch. 5.1-8, Ch. 6.1-2.

Handout with Ben-Porath's proof of the Kuhn-Tucker theorem.

- A. CSZ, Exercise 4.8.4.
- B. CSZ, Exercise 4.8.17.
- C. The boundary of a set E in a metric space (M, d) is defined by $\partial(E) = cl(E) \cap$ $\operatorname{cl}(E^c).$
 - 1. Give $\partial B_r(x)$.
 - 2. Give $\partial(E)$ if both E and E^c are dense in M.
 - 3. Show that $E \cup \partial(E) = \operatorname{cl}(E)$.
 - 4. Show that $x \in \partial(E)$ if and only if it is an accumulation point of both E and E^c .
 - 5. Show that if $E \subset \mathbb{R}^n$ is convex, then so is cl(E).

 - 6. If $E = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 \leq 1\}$, give $\partial(E)$. 7. If $E = \{(x_1, x_2, 0) \in \mathbb{R}^3 : x_1^2 + x_2^2 \leq 1\}$, give $\partial(E)$. [The answer is different than the previous one.
 - 8. CSZ, Exercise 5.5.7.
- D. Let $d(\cdot, \cdot)$ and $\rho(\cdot, \cdot)$ be two metrics on M. The metrics are equivalent if $[d(x_n, x) \rightarrow$ $0] \Leftrightarrow [\rho(x_n, x) \to 0].$
 - 1. Let $d(\cdot, \cdot)$ be a metric on M and define $\rho(x, y) = \frac{d(x, y)}{1 + d(x, y)}$. Show that $\rho(\cdot, \cdot)$ is a metric and that it is equivalent to $d(\cdot, \cdot)$.
 - 2. Generalize the previous to show that if $h : \mathbb{R}_+ \to \mathbb{R}_+$ is strictly increasing and concave, then $\rho(x,y) := h(d(x,y))$ is a metric equivalent to $d(\cdot, \cdot)$. To what extent can you remove the adjective "strictly" and still have this result be true?
 - 3. For $M = \mathbb{R}$, define $e(x, y) = |\Phi(x) \Phi(y)|$ where $\Phi(r) = \frac{e^r}{1 + e^r}$. Show that $e(\cdot, \cdot)$ is a metric and that it is equivalent to d(x, y) = |x - y|.
 - 4. In the previous problem, characterize the e-Cauchy sequences and prove that your characterization is correct.
- E. Compactness is a very thorough form of completeness: show that (K, d) is compact if and only if (K, ρ) is a complete metric space for every metric $\rho(\cdot, \cdot)$ that is equivalent to $d(\cdot, \cdot)$.
- F. Compactness in \mathbb{R} and \mathbb{R}^k .
 - 1. If $r_n \to r$ is a sequence in \mathbb{R} , then there exists a monotone subsequence r_{n_k} .
 - 2. Using the previous, show that if r_n is a bounded sequence in \mathbb{R} , then there exists a convergent subsequence.
 - 3. Using the previous, show that if \mathbf{r}_n is a bounded sequence in \mathbb{R}^k , then there exists a convergent subsequence.

- 4. Using the previous, show that $K \subset \mathbb{R}^k$ is compact if and only if it is closed and bounded.
- 5. Using the previous, show that $K \subset \mathbb{R}^k$ is compact if and only if every continuous $f: K \to \mathbb{R}$ achieves its maximum on K.
- 6. The previous statement is true for all metric spaces. Find its proof in CSZ and figure out what makes it more difficult to prove. [There is nothing to hand in for this problem.]
- G. Suppose that K is a compact set of possible decisions and allocations that a society consisting of individuals i = 1, ..., I could make, and that each i has preferences that can be represented by a continuous $u_i : K \to \mathbb{R}$. A point $x^* \in K$ is **weakly Pareto optimal** if there is no $y \in K$ such that $u_i(y) > u_i(x^*)$ for each i. Let WP denote the set of weakly Pareto optimal x^* in K.
 - 1. Let $x^*(\Lambda) = \operatorname{argmax}_{x \in K} \sum_i \lambda_i u_i(x)$ where $\Lambda = (\lambda_i)_{i=1}^I > 0$ (i.e. is weakly positive in each component and is not equal to 0). Show that each $x^*(\Lambda)$ is a non-empty subset of WP.
 - 2. Give an example in which WP contains elements that are not of the form $x^*(\Lambda)$ for any Λ . [It is sufficient to give the set of possible utility levels for this.]
 - 3. For each i, let $\varphi_i : \mathbb{R} \to \mathbb{R}$ be a continuous, strictly increasing function and define $u_i^{\circ}(x) = \varphi_i(u_i(x))$. Show that WP does not change with these new utility functions. Give an example in which the union of the set of $x^*(\Lambda)$ changes after this kind of monotonic transformation of the utility functions.
 - 4. For a vector $v \in \mathbb{R}^{I}$ and $\Lambda > 0$, define $U(x; v, \Lambda) = \min_{i} \lambda_{i}(u_{i}(x) v_{i})$ and $x^{*}(v, \lambda) = \operatorname{argmax}_{x \in K} U(x; v, \Lambda)$. Show that WP is the union of the $x^{*}(v, \Lambda)$.
 - 5. Show that replacing the $u_i(\cdot)$ by the monotonic transformations $u_i^\circ = \varphi_i(u_i(\cdot))$ does not change the union of the $x^*(v, \Lambda)$. [There is a hard way to do this, and an easy way.]
- H. Suppose that (K, d) is a compact metric space and that $f : K \to K$ is strictly **non-expansive**, that is, suppose that f satisfies d(f(x), f(y)) < d(x, y) for all $x, y \in K$.
 - 1. Show that the function $(x, y) \mapsto d(f(x), f(x))$ from $K \times K$ to \mathbb{R}_+ is continuous (i.e. show that if $x_n \to x$ and $y_n \to y$, then $d(f(x_n), f(y_n)) \to d(f(x), f(y))$).
 - 2. Show that f has a unique fixed point in K.
 - 3. Let M be the non-compact metric space \mathbb{R}_+ with the usual metric and define $f: M \to M$ by $f(x) = x + 1/e^{x^2}$.
 - a. Show that f is strictly non-expansive.
 - b. Show that f has no fixed point.
 - c. Define x° to be a numerical fixed point if $|x^{\circ} f^{t}(x^{\circ})| < 1/1,000,000$ for all $t \in \{1, \ldots, T\}$. If T = 10, how many steps will the numerical procedure with $x_{0} = 1$ and $x_{t+1} = f(x_{t})$ take to reach a numerical fixed point?
- I. For a metric space (M, d), $C_b(M)$ denotes the set of continuous and bounded functions $f: M \to \mathbb{R}$. The distance between functions $f, g \in C_b(M)$ is given by $d(f,g) = \sup_{x \in M} |f(x) - g(x)|$. This problem asks you to show that $C_b(M)$ is a complete metric space, i.e. that every Cauchy sequence of functions in $C_b(M)$ has a limit that also belongs to $C_b(M)$.

- 1. Show that $d(\cdot, \cdot)$ is a metric.
- 2. Show that if f_n is a Cauchy sequence in $C_b(M)$, then for each $x \in M$, $f_n(x)$ is a Cauchy sequence in \mathbb{R} . Let f(x) denote $\lim_n f_n(x)$.
- 3. Show that $f \in C_b(M)$, that is, show that f is both bounded and continuous.
- 4. Show that $d(f_n, f) \to 0$.
- J. Problems related to the Theorem of the Maximum.
 - 1. CSZ, Exercise 4.10.4.
 - 2. CSZ, Exercise 4.10.5.
 - 3. CSZ, Exercise 4.10.25.
- K. More problems related to the Theorem of the Maximum.
 - 1. CSZ, Exercise 6.1.19.
 - 2. CSZ, Exercise 6.1.20
- L. CSZ, Exercises 5.1.18 and 5.1.19.
- M. CSZ, Exercise 5.1.40.
- N. CSZ, Exercise 5.4.9.
- O. CSZ, Exercise 5.4.24.
- P. [A primitive version of the Kuhn-Tucker theorem] Suppose that: K is a compact convex subset of an open $G \subset \mathbb{R}^{\ell}$; K has a non-empty interior; $f : G \to \mathbb{R}$ is concave and has continuous first derivatives. Let \mathbf{x}^* solve the problem $\max_{\mathbf{x} \in K} f(\mathbf{x})$. Show the following.
 - 1. If \mathbf{x}^* is in the interior of K, then $Df(\mathbf{x}^*) = 0$.
 - 2. If \mathbf{x}' is in the interior of K and $Df(\mathbf{x}') = 0$, then \mathbf{x}' solves $\max_{\mathbf{x} \in K} f(\mathbf{x})$.
 - 3. If $\mathbf{x}^* \in \partial(K)$, then for all $\mathbf{x} \in K$, $(\mathbf{x} \mathbf{x}^*) \cdot Df(\mathbf{x}^*) \leq 0$.
 - 4. Suppose now that $K = \{\mathbf{x} : g_m(\mathbf{x}) \leq b_m, m = 1, ..., M\}$ where each $g_m(\cdot)$ is a continuously differentiable, convex function. Show that $Df(\mathbf{x}^*) = \sum_m \lambda_m Dg_m(\mathbf{x}^*)$ for a non-negative set of numbers $\lambda_m, m = 1, ..., M$.