
Assignment #1 for Mathematics for Economists
Fall 2017

Due date: Mon. Sept. 18.

Readings: CSZ, Ch. 2.8, Ch. 5.6, 5.8, 5.9, and 5.10.

Monotone Comparative Statics Problems

Definition 1. For X ⊂ R and T ⊂ R, a function f : X × T → R has increasing
differences or is supermodular if for all x′ > x and all t′ > t,

(1) f(x′, t′)− f(x, t′) ≥ f(x′, t)− f(x, t),

and it is strictly supermodular if for all x′ > x and all t′ > t,

(2) f(x′, t′)− f(x, t′) > f(x′, t)− f(x, t).

For submodularity/decreasing differences, and strictly submodular/decreasing
differences functions, reverse the inequalities.

For T ⊂ R, the correspondence t 7→ S(t) = [g(t), h(t)], g(t) ≤ h(t) for all t ∈ T , is
non-decreasing if for all t′ > t ∈ T , g(t′) ≥ g(t) and h(t′) ≥ h(t). Under study are
problems of the form

(3) V (t) := max
x∈S(t)

f(x, t), x∗(t) := {x ∈ S(t) : f(x, t) = V (t)}.

Many of the problems below will use the following result.

Theorem 1 (Topkis). If f : X × T → R is supermodular and t 7→ S(t) is non-
decreasing, then for all t′ > t,

max{x ∈ x∗(t′)} ≥ max{x ∈ x∗(t)} and min{x ∈ x∗(t′)} ≥ min{x ∈ x∗(t)}.

The first three problems give results that make the Topkis theorem easier to apply.

A. One can sometimes use the Topkis result is to compare the argmax for problems

maxx∈S(t) g(x) and maxx∈S(t) h(x).

The device is to define f(x, t) = g(x) + t[h(x) − g(x)] and set T = {0, 1}. Show
that f(x, t) is strictly supermodular if [h(x)−g(x)] is a strictly increasing function,
and supermodular if it is non-decreasing.

B. On cancellation: show that if f(x, t) = g(x, t) + h(x) + m(t), then f(·, ·) is super-
modular if and only if g(·, ·) is supermodular.

C. A biotech firm spends x ≥ 0 looking for a cure for a rare disease (think of the
Orphan Drug Act). Its expected benefits are b1(x), social benefits not captured by
the firm are given by b2(x), an increasing function.
1. Show that the socially optimal level of x is larger than the firm’s profit maxi-

mizing level.
2. Show that allowing the firm to capture some portion of b2(x) increases the firm’s

spending.
D. Firms that provide training to their employees often lose their employees, and all

of their skills, to competitors. Show that this leads to suboptimal levels of training.
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E. For x, t ∈ [1200, 2000], let f(x, t) = xt. Show that f(·, ·) is strictly supermodu-
lar, that g(x, t) := log(f(x, t)) is both supermodular and submodular, and that
h(x, t) := log(g(x, t)) is strictly submodular. Give x∗(t) for the problems

max
x∈[1200,2000]

f(x, t), max
x∈[1200,2000]

g(x, t), and max
x∈[1200,2000]

h(x, t).

How are your results not a contradiction to the Topkis result given above?
F. This problem contains more information relevant to the previous problem. A func-

tion f : X × T → R is quasi-supermodular if for all x′ > x and all t′ > t,

f(x′, t)− f(x, t) > 0 implies f(x′, t′)− f(x, t′) > 0, and

f(x′, t)− f(x, t) ≥ 0 implies f(x′, t′)− f(x, t′) ≥ 0.

1. Show that a supermodular function is quasi-supermodular.
2. The previous problem showed that an increasing function of a supermodular

function need not be supermodular. Show that an increasing function of a
quasi-supermodular function is quasi-supermodular.

3. Give a function that is quasi-supermodular but not supermodular.
4. Prove the Topkis result given above replacing “supermodular” with “quasi-

supermodular.”
G. [Forestry/renewable resource problems] For this problem, we suppose that for

t > 0 (interpreted as time since planting), B(t) > 0 (interpreted as a societal
benefit to harvesting), that S > 0 is a “scrap value,” that A(t) > 0 is a flow value
(of other societal benefits from having the forest growing), and that r > 0 is the
social interest rate.
1. Compare, if possible, the solutions to the problems

maxt≥0 e
−rtB(t) and

maxt≥0 e
−rt(B(t) + S).

If there is a difference, give the economic intuition for it.
2. Compare, if possible, the solutions to the problems

maxt≥0 e
−rtB(t) and

maxt≥0 e
−rtB(t) +

∫ t

0

e−rxA(x) dx.

If there is a difference, give the economic intuition for it.
3. Compare, if possible, the solutions to the problems

maxt≥0 e
−rtB(t) and

maxt≥0 e
−rtB(t) + e−r·2tB(t) + e−r·3tB(t) + · · · .

Here the idea is that after harvesting at t, one can replant the forest and start
the cycle anew. If there is a difference, give the economic intuition for it.

H. For this problem, we again suppose that for t > 0, B(t) > 0, that S > 0 is a “scrap
value,” that A(t) > 0 is a flow value. Now we have two interest rates, r′ > r > 0.
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1. Compare, if possible, the solutions to the problems

maxt≥0 e
−rtB(t) and

maxt≥0 e
−r′tB(t).

If there is a difference, give the economic intuition for it.
2. Compare, if possible, the solutions to the problems

maxt≥0 e
−rtB(t) +

∫ t

0

e−rxA(x) dx and

maxt≥0 e
−r′tB(t) +

∫ t

0

e−r
′xA(x) dx.

If there is a difference, give the economic intuition for it.
3. Compare, if possible, the solutions to the problems

maxt≥0 e
−rtB(t) + e−r·2tB(t) + e−r·3tB(t) + · · · and

maxt≥0 e
−r′tB(t) + e−r

′·2tB(t) + e−r
′·3tB(t) + · · · and

If there is a difference, give the economic intuition for it.
I. Suppliers who have only one buyer, e.g. the workers in a company town or the

makers of fighter jet engines, are at a disadvantage in the market because there is
market power on the other side of the market. When there is unbalanced market
power, there is almost always inefficiency. Suppose that the supply curve is the
strictly positive, increasing function p(q), that is, for a supply of q to be forth-
coming, the buyer must offer p(q) and for q′ > q, p(q′) > p(q). The supplier
surplus at q is S(q) :=

∫ q
0

[p(q) − p(x)] dx. If the buyer orders q, their profits are
Π(q) = R(q)− q · p(q) where R(q) is their revenue as a function of q.
1. Give S ′(q) and show that it is positive.
2. Show that the single buyer buys less than the socially optimal quantity.

J. The value to starting next period, t = 1, with capital k1 is V (k1) where V (·) is an
increasing function. We discount this to the present, t = 0, as having value βV (k1).
You have capital k0 now, will receive w1 at the beginning of next period, and can
save at a rate of return r. Thus, saving s from present capital yields consumption
c0 = (k0 − s) now and c1 = (w1 + (1 + r)s) in the next period. The two period
problem is

maxs∈[0,k0] [u(k0 − s) + βV (w1 + (1 + r)s)].

At various points in the following, you may want to invoke the assumption
that u(·) and V (·) are twice continuously differentiable with strictly positive first
derivatives and strictly negative second derivatives. Be explicit about when you
do not need to invoke these assumptions.
1. What happens to optimal savings if r increases to r′ > r?
2. What happens to optimal savings if k0 increases to k′0 > k0?
3. What happens to optimal savings if w1 increases to w′1 > w1?
4. What happens to optimal savings if β increases to β′ > β?
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Constrained Optimization Problems

We begin with some calculus, geometry and linear algebra, and then turn to maxi-
mization problems that use Lagrangean functions and the Kuhn-Tucker theorem.

K. Suppose that f : Rn → R is continuously differentiable and for t ∈ R, define

h(t) = f(x◦ + t(x− x◦)).

1. In terms of the gradient Df(x◦), give h′(0). Geometrically, what does h′(0) > 0
mean about f(·) in a neighborhood of x◦? What about h′(0) = 0? What about
h′(0) < 0?

2. For x,y ∈ Rn, show that x · y = 〈x,y〉 > 0 if and only if the angle between x
and y is acute. What about 〈x,y〉 = 0? What about 〈x,y〉 < 0? Relate this to
the previous.

3. What is the direction of fastest increase of f(·) at x◦?
L. Read up on and absorb the geometry of convex sets.

M. For an open, convex C ⊂ Rn, a continuously differentiable f : C → R is concave if
it lies everywhere below its tangent planes, that is, if for all x◦ ∈ C and all x ∈ C,

f(x◦) +Df(x◦) · (x− x◦) ≥ f(x).

1. Show that f(x) = x · y is concave.
2. When M is a symmetric n× n matrix, the function

f(x) = c0 + x · y +
1

2
(x− v)′M(x− v)

is called a quadratic. Give the conditions under which the quadratic function
f : Rn → R is concave.

3. Let C = R2
++. Show that the function f(x1, x2) = α log(x1)+β log(x2), α, β > 0,

is concave.
4. For Σ a positive definite, n× n matrix and µ ∈ Rn, show that the function

f(x;µ,Σ) = κe−
1
2

(x−µ)′Σ(x−µ)

is quasi-concave in x, κ > 0. What is the shape of its upper contour sets?
N. Suppose that C ⊂ Rn is a closed, convex set and f : Rn → R is a continuously

differentiable concave function.
1. Show that if x∗ ∈ C solves maxx∈C f(x), then for all x ∈ C, Df(x∗)(x−x∗) ≤ 0.
2. Show that if for all x ∈ C, Df(x∗)(x− x∗) ≤ 0, then x∗ solves maxx∈C f(x).

O. CSZ (Corbae et al.) problems 5.8.1, 2, 3, and 4.
P. CSZ problem 5.8.8.
Q. CSZ problem 5.8.9.
R. CSZ problem 5.8.13.
S. CSZ problem 5.8.16.
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