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Abstract

Describing the population characteristics in a large game with a
non-atomic, purely finitely additive probability p means that
ε-equilibria may not exist.

This happens because a mass of agents
and their characteristics seem to belong to ∅. This paper uses p to
characterize the mislaid agents and their characteristics. Restoring
them to the model yields equilibrium existence and a well-behaved
equilibrium correspondence.
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Fighting the Tide

From de Finetti’s Theory of Probability (p. 555), wrote of
Kingman’s “Additive set functions and the theory of probability,”
Proc. Cambridge Philosophical Society (1967),

The basic idea is the possibility of stretching the
interpretation in such a way as to be able to attribute the
‘missing’ probability in the partition to new fictitious
entities in order that everything adds up properly. In some
cases, in order to salvage countable additivity, it is even
claimed that the new entities are not fictitious, but real.
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A Game

From Khan, Qiao, Rao, and Sun (KQRS).

Population/types: (T = [10,∞),B, µ), µ a non-atomic
probability.

Utility for t depends action a ∈ {0, 1} and
ν := µ({t ∈ T : a(t) = 1}), given by G(t)(a, t) = a · u(t, ν)
where

u(t, ν) =


1 if ν ∈ [0, 12 ],

1− t(ν − 1
2) if ν ∈ (12 ,

1
2 + 2

t ], and

−1 if ν ∈ (12 + 2
t , 1].

(1)
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Equilibria

A measurable t 7→ a(t) is an ε-equilibrium if

µ({t : G(t)(a(t), νa) ≥ max
b∈A
G(t)(b, νa)− ε}) ≥ (1− ε), (2)

and is an equilibrium if it is a 0-equilibrium.

Do the obvious if t 7→ a(t) ∈ ∆({0, 1}) is a mixed strategy.
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Equilibrium Strategies: Countably Additive Case

Utility is a · u(t, ν) where

u(t, ν) =


1 if ν ∈ [0, 12 ],

1− t(ν − 1
2) if ν ∈ (12 ,

1
2 + 2

t ], and

−1 if ν ∈ (12 + 2
t , 1].

(3)

Equilibrium strategies: a∗(t) = 1{t≤t◦} where cutoff t◦ satisfies

Fµ(t◦) = 1
2 + 1

t◦ for the cdf Fµ(t) = µ((−∞, t]).
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Equilibrium Utilities: Countably Additive Case

Utility is a · u(t, ν) where

u(t, ν) =


1 if ν ∈ [0, 12 ],

1− t(ν − 1
2) if ν ∈ (12 ,

1
2 + 2

t ], and

−1 if ν ∈ (12 + 2
t , 1].

(4)

a∗(t) = 1{t≤t◦}.

Equilibrium distribution of utility: u(t) ≡ 0 for t > t◦, for t ≤ t◦,
utility is 1− t/t◦. Letting P(Y ∈ A) = µ(A|(−∞, t◦]) and
X = 1− Y /t◦, L(X ) is the conditional distribution of utilities for
the approximately half of the population receiving positive utility.
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Equilibrium Utilities: Countably Additive Case

The shape of Fµ(·) on [10, t◦) determines equilibrium distribution
of utilities.

Details of µ/p matter.
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NO Approximate Equilibria: PFA

([10,∞),B, µ), assume µ([n,∞)) ≡ 1 even though [n,∞) ↓ ∅.
Utility functions

u(t, ν) =


1 if ν ∈ [0, 12 ],

1− t(ν − 1
2) if ν ∈ (12 ,

1
2 + 2

t ], and

−1 if ν ∈ (12 + 2
t , 1].

(5)

Fix a(·), let νa =
∫
T a(t)({1}) dµ(t) ≤ 1

2 .

[νa ≤ 1
2 ]⇒ (∀t)[Br(t) = {1}], utility loss of a = 0 is 1, hence

ε-best responses must put mass at least 1− ε on a = 1.

If νa ≤ 1
2 is an ε-equilibrium distribution, then∫

a(t)({1}) dµ(t) ≥ (1− ε)2, hence νa ≥ (1− ε)2. Ooops.
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NO Approximate Equilibria: PFA

Utility of a for t is a · u(t, ν) where
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Fix a(·), let νa =
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2 .

for νa >
1
2 , µ({t : 1

2 + 2
t < ν}) = 1, a mass 1 set of players

loses utility of 1 by playing a = 1, and ε-best responses must
put mass at least 1− ε on a = 0.

If νa >
1
2 is an ε-equilibrium distribution, then νa ≤ ε(1− ε).
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What Went Wrong?

µ and the measurable t 7→ G(t) ∈ C (A× [0, 1]) induce a
probability, p, on the unit ball, U ⊂ C (A× [0, 1])).

(a) p is conditionally tight (c-tight) if for every measurable
E ⊂ U and for every ε > 0, there exists a compact K ⊂ E
such that p(K ) ≥ (1− ε)p(E ).

(b) p is tight if for every ε > 0, there exists a compact K ⊂ U
such that p(K ) > (1− ε).

(c) p is neighborhood tight (n-tight) if for every ε > 0, there
exists a compact K such that for all δ > 0, p(K δ) > (1− ε).

Implications: c-tight ⇒ tight ⇒ n-tight, none reverse.
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Summary of Results

C-tight iff countably additive, hence c-tight games are
well-behaved.

If n-tight: then ε-equilibria exists for all ε > 0; but equilibria may
not exist (a different KQRS example); and the limit of εn ↓ 0
equilibrium utilities/outcomes is a well-behaved correspondence.

If not n-tight: approximate equilibria may not exist (KQRS
example above); though they may; restoring mislaid agents and
their characteristics to the game restores countable additivity.
Equilibria depend on details of p.
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Detour: It’s p, NOT Π(p)

De Finetti: a probability, p, on a field/σ-field has a set of
extensions, Π(p), to larger field/σ-field (e.g. the class of all
subsets);

with Savage, argued that this is a virtue, there is a
“separate state of epistemic uncertainty” in which the probability
of an event is only known to be in an interval.

Suppes and Zanotti (1989), “Conditions on upper and lower
probabilities to imply probabilities,” Erkenntnis fixed de Finetti’s
treatment of upper/lower probabilities, Stinchcombe (2016),
“Objective and Subjective Foundations for Multiple Priors,”
Journal of Economic Theory showed that Π(p), as a set of priors,
models a small but sometimes interesting class of problems.
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treatment of upper/lower probabilities, Stinchcombe (2016),
“Objective and Subjective Foundations for Multiple Priors,”
Journal of Economic Theory showed that Π(p), as a set of priors,
models a small but sometimes interesting class of problems.
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Failing N-Tightness

N-tightness (mass p(K δ) > (1− ε) for all δ > 0) fails,

u(t, ν) =


1 if ν ≤ 1

2 ,

1− t(ν − 1
2) if 1

2 ≤ ν ≤
1
2 + 2

t , and

−1 if 1
2 + 2

t ≤ ν.
(7)

Arzelà-Ascoli: compact subsets of U are equi-continuous. For
t ∈ (12 ,

1
2 + 1

t ), |slope| is t, and µ({t : t ≥ n}) ≡ 1, the pfa p fails
n-tightness (does not put any mass on the ball with radius 1/4
around any compact set of continuous functions).
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What is to be Done?

Kingman (1967): there exist pfa p’s on the set polynomial time
paths on [0,∞), P, that have the finite dimensional distributions of
a non-degenerate Poisson process.

Observation: the nonstandard version of p, ∗p, puts mass 1 on the
parts of ∗P that look, at all standard points in ∗[0,∞), like pure
jump process paths. Really steep on (t − ε, t) for ε ' 0.

Splits difference between Kingman and de Finetti. Pragmatically,
it’s useful.
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Reminder 1

A probability p is purely finitely additive (pfa) if there exists
En ↓ ∅ with p(En) ≡ 1.

Lemma. For a probability p, the following are equivalent.

(a) p is pfa.

(b) There is a countable partition {Fn : n ∈ N} ⊂ X with
p(Fn) ≡ 0.

(c) There exists a strictly positive g ∈ Mb(X ) with
∫
g dp = 0.
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Reminder 1′

From Yosida and Hewitt (1952), “Finitely additive measures,”
Transaction of the A.M.S., a pfa probability p on (X ,X ) has a
unique extension p̂ to the compact Stone space (X̂ , X̂ ), and p ↔ p̂
is one-to-one and onto.

p̂ puts mass 1 on the penumbra, X̂ \ X .

From Anderson (1982), “Star-finite representations of measure
spaces,’ Transactions of the A.M.S. and Anderson and Rashid
(1978), “A nonstandard characterization of weak convergence,”
Proceedings of the A.M.S., it’s easier to use ∗p on (∗X , ∗X ), and ∗p
will put mass 1 on points in ∗X that are not nearstandard.

proj : (∗X \ X )→ (X̂ \ X ) is onto and many-to-one.
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Reminder 2

For a set X , the definition of ∗X is a two-step process.

Define x ∼µ y in XN if µ({n ∈ N : xn = yn}) = 1 where µ is a
purely finitely additive probability on the integers with
µ(E ) = 0 or µ(E ) = 1 for all E ⊂ N.

Define ∗X = XN/ ∼µ.
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Reminder 2′

X = R+, 〈xn〉 denote the ∼µ equivalence class of the sequence
n 7→ xn, r > 0,

r = 〈r , r , r , r , . . .〉, (8)

dt = 〈1, 1/2, 1/3, 1/4, . . .〉, (9)

(dt)2 = 〈1, 1/4, 1/9, 1/16, . . .〉, (10)

0 = 〈0, 0, 0, 0, . . .〉. (11)

µ({n ∈ N : 0 < (1/n)2 < (1/n) < r}) = 1, so for any usual r > 0,

0∗ < (dt)2∗ < dt∗ < r , more simply, 0 < (dt)2 < dt < r . (12)

For x ∈ ∗R: x ' 0 if |x | < r for all r ∈ R++, and y = st(x) if
|y − x | = 〈|y − x1|, |y − x2|, |y − x3|, |y − x4|, . . .〉 ' 0.
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A Plan

For p : U → [0, 1], form ∗p : ∗U → ∗[0, 1], and

Loebify — ∗U is not
a σ-field on ∗U, but pL := st(∗p) : σ(∗U)→ [0, 1] is a countably
additive probability on (∗U, σ(∗U)).

The mislaid agent characteristics are in ∗U \ U; analyze the game
using pL (or µL); interpret the elements of ∗U \ U. Can also
compactify U and work with Û \ U.

Maxwell B. Stinchcombe ∅ Marks the Spot



A Plan

For p : U → [0, 1], form ∗p : ∗U → ∗[0, 1], and Loebify — ∗U is not
a σ-field on ∗U, but pL := st(∗p) : σ(∗U)→ [0, 1] is a countably
additive probability on (∗U, σ(∗U)).

The mislaid agent characteristics are in ∗U \ U; analyze the game
using pL (or µL); interpret the elements of ∗U \ U. Can also
compactify U and work with Û \ U.
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Implementing the Plan

For µ ∈ ∆pfa([10,∞)),

define µL = L(∗µ) ∈ ∆ca(∗[10,∞)),

pL = L(∗p) ∈ ∆ca(∗C (A× [0, 1])), for E ∈ σ(∗U),
∗p(E ) = ∗µ({t : G(t) ∈ E}), and

for t ∈ ∗[10,∞), FµL
(t) = µL((−∞, t]).
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Equilibrium Analysis

Equilibrium strategies:

a∗(t) = 1{t≤t◦} where t◦ satisfies

FµL
(t◦) = 1

2 + 1
t◦ .

Equilibrium utilities: ε := 1
t◦ ' 0, 1

2 − ε of the agents play a∗ = 0,
receive u = 0; 1

2 + ε of the agents play a∗ = 1, and the conditional
distribution of their utilities is L(1− Y /t◦) where
Prob(Y ∈ A) = µL(A|(−∞, t◦]).

Different choice of pfa µ/p leads to conditional distribution of
utility being any element of ∆ca([0, 1]).
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What Changed?

Evaluating the utility of t ∈ ∗[10,∞) at 1
2 + ε requires the use of a

utility function that has |slope| = t ' ∞.

Domain changed from
A× [0, 1] = A×∆(A) to ∗(A×∆(A)) = ∗A× ∗∆(A).

Opposed points of view.

This seems not to be the game we started with.

All of the pieces came from the game we started with.
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WHAT?

Reality and represenation,

Die ganzen Zahlen hat der liebe Gott gemacht, alles
andere ist Menschenwerk. (Leopold Kronecker)

Pragmatism, to optimally attain “clearness of apprehension,”

Consider what effects, that might conceivably have
practical bearings, we conceive the object of our
conception to have. Then, our conception of these effects
is the whole of our conception of the object. (Charles
Sanders Pierce)
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Lessons for the Use of Purely Finitely Additive Probabilities

1. To use pfa’s in a model, need tools with which to calculate,

∗U \ U (or Û \ U if you insist) are the best known.

2. To interpret them in a model, need to interpret the “new”
points, but they were already there even if we didn’t see them
when we wrote the model down.

3. Best use is to capture “limit” phenomena in a pretty wide
sense. Roughly, ∗X contains the compactification of X with
respect to all the properties we can think of.
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I’m Done

Questions?

Thank you for listening.
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