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Countably Additive Subjective 

Probabilities 
MAXWELL B. STINCHCOMBE 

University of Texas, Austin 

First ver,ion received November 1993;.final version accepted August 1996 (Eds.) 

Thle suibjective probabilities implied by Savage's (1954, 1972) Postulates are finitely but not 
coulitably additive. The failure of countable additivity leads to two knowin classes of dominance 
paradoxes, money puimps anid indifferenice between an act and onie that pointwise dominiates it. 
There is a common resolution to these classes of paradoxes and to any othiers that might arise 
from failures of countably additivity. It consists of reinterpreting finiitely additive probabilities as 
the "traces" of counitably additive probabilities on larger state spaces. The niew and larger state 
spaces preserve the essential decision-thieoretic struictures of the original spaces. 

1. INTRODUCTION 

Savage's (1954, 1972) framework for modelling clhoice under uncertainty provides a theory 
of subjective probability, and has been called the "crowning glory of choice thleory." 
(Kreps (1988)). Any adequate education in modern economics must include his Subjective 
Expected Utility (SEU), this despite the paradoxes Savage's framework is known to con1- 
tain. The paradoxes, two kinds of money pumps or Dutclh book, and indifference between 
an act and one that pointwise dominates it do not depend oni violations of the Sure Thing 
Principle. Ratlher, they arise because Savage clhose to work in a framework that implies that 
the subjective probabilities fail to be countably additive.' Reinterpreting finitely additive 
probabilities as the "traces" of counitably additive probabilities oni larger state spaces 
resolves these paradoxes by slhowing that they ignore sets of positive probability. Thle 
resolution of the paradoxes can only be as strong as the match between the original finitely 
additive decision framework and its countably additive reinterpretation. 

1.1. The m01tc1h 

Savage's decision framework consists of a state space S alnd a set of consequeinces C. A 
gamiible, or siun1i1e act, is any mapping g: S -- C, the range of whiichi is finite, and an act is 
aniy mappinig a: S C. Preference relations, <, are defined on the set of acts. If the 
preference relation - satisfies six Postulates (in Appendix A for ease of refereince), tlheni 
it has an SEU representation for simple acts (gambles), that is, there exists a subjective 
probability P defined oC S anid a bounded, real-valued fLinction U definled onl C such that 
g1 ?g2 if anid only if J's U(g,(s))dP(s) < fS U(g2(s))dP(s). If -< satisfies an additional 
seventlh Postulate, it hlas an SEU representationi for acts. 

Suppressing somze details, a reinterpretation of a Savage decisioll frallmework is anl 
embedding of the state space S in a larger space S, extensionis of the acts and gambles 

1. Adaimis (1962) and Seidentfel(d and Schiervisih (1983) give examples of moniey pumps anid inidifferenice 
between atn act and a poinitwise dominant act, Wakker ( 1993) gives atn exaimple of the latter. 

125 
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126 REVIEW OF ECONOMIC STUDIES 

from sc3 to all of S, g and a F-*a', and an extension of P to P defined on the 
appropriate collection of subsets of S. The match between the original framework and its 
reinterpretation is quite close. 

The embeddings considered here produce countably additive P that are determined 
by the fact that they are extensions of P- that for all Ec S, P(E) = P(E). The new acts, 
when applied to P, produce the same distributions on the set of consequences. Again 
suppressinig some details, the image distribution of P induced by a is essentially 
indistinguishable2 from the image distribution of P induced by a. For probabilistically 
sophisticated preferences (Machina and Schmeidler (1992)), that is, preferences over A 
that depend only on the distributions induced on consequences, the reinterpretations pro- 
vided here provide equivalent frameworks for choice under uncertainty. Thus, Machina 
(1982) locally linear or Quiggin (1993) rank-dependent preferences over finitely additive 
probabilities can be reinterpreted as preferences over countably additive probabilities. In 
particular, one aspect of distributions being itdistinguishable is that their integrals are the 
same, Js U(a(s))dP (s) = fJ U (a?())dP (s). 

1.2. The mtismnatch 

Savage makes two assumptions on the framework, which, taken together, force the subjec- 
tive probability P to be finitely but not countably additive. First, the state space S is 
infinite and the probability P is non-atomic (in the finitely additive sense that it allows 
for partitions of the state space into sets of arbitrarily small probability). This is essential 
to the theory because it is necessary to partition S arbitrarily finely in order to obtain 
arbitrary probabilities. Second, all acts or gambles are evaluated, not just a subset of acts 
or gambles measurable with respect to some a-field of subsets of S smaller than the set 
of all subsets of S. A non-atomic P defined on all subsets of an infinite S must fail 
countable additivity.3 

As Savage indicates (1954, 1972, Section 3.4), the use of the set of all subsets is not 
necessary for his development. However, it does have an important implication for the 
interpretation of what he wrote. The restriction that gambles (or acts) be measurable with 
respect to some a-field of subsets of S smaller than the set of all subsets of S is clearly a 
restriction on the set of gambles (or acts) being considered. Despite this, there is no state 
at which the restriction is binding-changing any gamble (or act) at a single state results 
in another measurable gamble (or act).4 Put another way, the restriction to measurable 
gambles (or acts) gives pointwise absolute freedom even though overall choices are con- 
strained. By allowing all gambles (or acts), Savage allows for both pointwise absolute 
freedom and overall absolute freedom. 

The resolution to the paradoxes that is proposed here loses this overall absolute 
freedom. The new, larger state spaces have non-atomic, countably additive subjective 

2. This means exactly equal for simple acts, and weak*-equivalent for general acts. 
3. In their discussion of the appropriate space of strategies for non-atomic games, Aumann and Shapley 

(1978) note that Sierpinski (1956, 1st ed. 1934) slhowed that if the continuum hypothesis is accepted, then a 
measure P must be purely finitely additive if it is non-atomic on the set of all subsets of an infinite set. Savage 
(1954, 1972) notes Ulam's (1930) proof of the same result for the unit interval. Wakker (1993) notes that the 
same conclusion holds if the stronger Axiom of Constructibility is accepted. de Finetti (1972, 1974, 1975) uses 
the fact that countably additive measures necessarily entail nonmeasurable sets as a major argument against 
countable additivity. Both the continuum hypothesis and the Axiom of Constructibility are known to be indepen- 
dent of the usual axioms of set theory. 

4. This statement assumes a regularity condition-the a-field contains {s} for all sES. Passing to equiva- 
lence classes can be done so as to make this regularity condition un-needed. 
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STINCHCOMBE SUBJECTIVE PROBABILITY 127 

probabilities on them. Therefore, the new probabilities must be defined on cr-fields that 
are smaller than the set of all subsets of the new spaces. A cost to working with the 
reinterpretations is measurability requirements. In the new state spaces, there are (non- 
measurable) sets of states to which the agent cannot assign a probability.5 

A second mismatch between decision frameworks with finitely additive subjective 
probabilities and their countably additive reinterpretations is that the new state spaces 
may have peculiar mathematical properties. The leading example arises when the state 
space are required to be minimal. In this case, the new space is a large compactification of 
the original state space. Working with non-minimal reinterpretations avoids this problem. 

1.3. Sumnmnary and outline 

This paper provides a common explanation of the money pump and dominance paradoxes, 
and of any other paradox(es) that may arise in the future out of the failure of countable 
additivity. The explanation involves reinterpreting finitely additive subjective probabilities 
as the "traces" of countably additive subjective probabilities on larger spaces. The original 
state space S is regarded as being embedded in the new state space S. Any paradox arising 
from a failure of countable additivity in S can then be re-interpreted as an ill-posed 
problem in S. This resolution of the paradoxes is only as strong as the match between the 
original finitely additive decision framework and its reinterpretation. The reinterpretation 
reproduce an essentially equivalent version of the decision framework. The strength of 
this equivalence suggests (and this is discussed further in Section 8) that the state spaces 
S are "truer" versions of the state space. The cost of the reinterpretations is that a 
measurable structure is required, and S may have some peculiar properties. 

The next section contains a short review of finitely additive probabilities and their 
differences from countably additive probabilities. The following section gives the paradoxes 
and intuitive versions of the ways in which the reinterpretations resolve them. Section 4 
defines Bayesian decision frameworks and their reinterpretations, Section 5 gives the prop- 
erties of reinterpretations. Following this, Section 6 examines how the reinterpretations 
resolve the paradoxes. The penultimate section, Section 7, discusses the issue of finding a 
minimal reinterpretation, and shows that minimal reinterpretations exist. Finally, Section 
8 concludes with a methodological discussion, interpreting the new points in the state 
spaces, and pointing out the parallels with discussions from social choice theory, stochastic 
process theory, statistical decision theory, and game theory. Proofs are in Appendix C. 

2. THE PARADOXES OF FINITE ADDITIVITY 

This section reviews how finitely additive probabilities arise, and includes a summary of 
the relevant implications of the failure of countable additivity. 

2.1. Finitely additive probabilities 

A canonical probability that fails countable additivity can be had by trying to find a 
"uniform" distribution over the integers. For each ne SJ, let X,, be the uniform distribution 
on {1, 2, . .. , n}. For any EcRN, (2,(E)),,c [0, 1] has at least one accumulation point, 
and there is (Alaoglu's Theorem) a finitely additive A on the set of all subsets of the integers 
that consistently picks from these accumulation points, essentially by taking convergent 

5. Skyrms (1995) and also (1993) discusses these and related issues. 
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128 REVIEW OF ECONOMIC STUDIES 

subsequences.6 Thus, X{evens} = 1/2 because limA, {evens}=1/2, 247in: ie,J}=1/7, 
A{2"1: m EJ } =0, and there are sets E for which (An (E))n! N has many accumulation points. 

2.2. Relevant properties of A 

1. A is finitely additive-for any disjoint A and B, AX(A u B) = 2n (A) + A, (B), and 
this property is preserved at accumulation points. 

2. A fails to be countably additive-let E, = {me f%1: m <n},, E"TN, yet A (En) =0, so 
that lim, A (E,,) <A (limn En). 

3. Any finite E satisfies A (E) = 0. 
4. A is non-atomic-for any > 0, it is possible to partition fUl into finitely many sets 

E,with A (E1)<8. 
5. Any bounded function g on N%1 is A-integrable, and the integral can be defined by 

g(n)dA2 (n) = lim Z--,2 2'n{L2'' 2I )} ( 1 ) 

2.3. Dominated convergence fails 

The failure of countable additivity is equivalent to the failure of Lebesgue's dominated 
convergence theorem. To see why this is true, let gn be the indicator of the set En in the 
second point above. Then gn(m) T I for each in E NJ, yet limn I gn dil = 0 < J limn gn d2 = 1. This 
failure is at the heart of Adams' (1962) money pump, and is one way to understand 
Seidenfeld and Schervish's (1983) money pump. 

2.4. The integral of a strictly positive function may be zero 

The failure of countable additivity also allows for two functions to satisfy f(m) >g(m) 
for each mne N, yet to have the same integral. In particular, suppose that for all me N, 
f(m) > g(m) > 0, and that lim,_,,,7f(m) = 0. Then 

f(m)d). (in) = g(m)dA (in) = 0 (2) 

because At{f, ge [0, 1 /2"')_ 1. This property is at the heart of the dominance paradoxes. 

2.5. Conglomerability fails 

A more subtle property equivalent to countable additivity is conglomerability (de Finetti 
(1972), Dubins (1975), Seidenfeld, Schervish and Kadane (1984), Armstrong (1990)). A 
probability P fails conglomerability in a countable partition ir = { El, E2, .. . } of a state 
space S, if there is some event E, and constants kl ?k2 such that ki < P(EIEi)<k2 for 
each E if7r, yet P (E) <k1 or P (E) > k2. Failing conglomerability means that there is an 
event E, and a partition Xf with the property that, conditional on each and every event in 
ir, the posterior probability of E is above (or below) the prior probability of E. It is known 

6. More formally, note that probabilities are determined as points in X:= X E, I [0, t]. With the product 
topology, this is a compact space. The infinite set f({.,(E))ER, N *e CN} cX must therefore have accumulation 
points. The work in proving Alaoglu's theorem (e.g. Royden (1968, Theorem 10.17, p. 202)) is in showing that 
any such accumulation point is a finitely additive probability. 
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STINCHCOMBE SUBJECTIVE PROBABILITY 129 

that a finitely additive probability fails conglomerability in some partition if and only if 
it fails to be countably additive. 

The decision-theoretic implications of a failure of conglomerability can be striking. 
If conglomerability fails, there is an event E, a countably infinite partition 7r, and a bet 
conditional on E that an agent will pay to take, even though, conditional on each and 
every E, 7r, they are willing to pay to get out of. This property is at the heart of Seidenfeld 
and Schervish's (1983) money pump. 

2.6. Bayesian statistical interpretations fail 

The following is an implication of the failure of conglomerability taken from Heath and 
Sudderth (1989). Suppose that the parameter space is 0 = {... ., -3, -2, -1, 0, 1, 2, 3, ... . 
in a statistical model, and that if 0 eO is true, the observation X will be made according 
to a distribution Po. Suppose that Po (X= 0 - 1) = Po (X= 0 + 1) = 1/2. This means that if 
0 is an even number, the observation will be an odd number and vice ver-sa. 

The statistician's prior distribution over 0 is P= 1/2Q + 1/2p where Q is a countably 
additive probability with Q(0) >0 for each 0-0, and Q{evens} = 1/2. The probability p 
is any one of the purely finitely additive accumulation points (in XEc,[0, 1]) of the 
sequence 

pn= Unif {-2n, -2(n- 1), . . ., -2, 0, +2,. . ., 2(n- 1), 2n}, (3) 

so that p{evens} = 1. 
If the statistician sees the event {odds}, the posterior distribution is 1/3Q + 2/3p. On 

the other hand, if the event {mn} is observed, the posterior distribution is 
Q( * I {m-1, mn+ 1} ) because Q({m- 1, in+ 1} )>0 while p({m-1, n+ 1 } )=0. The pos- 
terior ignores the p part of the prior distribution for every realization 
in e {..., -3, -2, -1, 0, 1, 2, 3, . . . }. This shows that "drawing" a 0 according to P does 
not have some of the intuitive properties of random draws. Here, the half of the mass 
described by p seems to be lost. One interpretation is that the half of the mass described 
by p occurs, but as new points in some larger 0, a parameter space that contains ideal 
points that are to the "right" and to the "left" of the set 0. 

2.7. Comnpactifications 

Compactifications add ideal points to sets. Note that the c.d.f.'s G,, of An or the c.d.f.'s 
Hn of p,, are not tight in the sense of the weak convergence of probability measures (e.g. 
Billingsley (1979, Section 25)). In particular, for each number reR1, Gn(r), Hn(r)J0 as the 
mass in A,, "moves to the right" and the mass in p,, moves away from 0 in R. One response 
to this might be to interpret the limit, A, as putting all of its mass on the set { + oo } where 
oo is an ideal point added to the "right" of R. In a similar fashion, p miglht be interpreted 
as putting half its mass on { - oo } and half on { + oo }. In other words, regarding R = 

(-oo, + oo) as a dense subset of the compact space [-oo, + oo], the limits of the An and 
the p,, are distributions on the new, larger state space. 

This simple compactification of the space R will not work for our purposes note that 
in reducing A to a point mass, it loses the property of being non-atomic. One requirement of 
the state spaces used in the reinterpretations is that they are sufficiently rich that the limit 
of the An is again a non-atomic distribution. 
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3. THE PARADOXES 

This section begins witlh an example due, in slightly different forms, to Adams (1962), 
Seidenfeld and Schervislh (I1983), and Wakker (1993). An agent may have SEU preferences 
with a continuous expected utility function, yet be indifferent between an act and a point- 
wise dominant act. Following this are the two rather different money pump constructions 
of Adams (I1962) and Seidenfeld and Schervish (1983). The money pumps are more serious 
problems for decision-theoretic modelling than the dominance paradox. 

3. 1. Inniference betwveen dominating acts 

The basic example is 

Example 3.1. The state slace is S= N and the subjective probability P is the "uniform" 
distribution A. The set of consequences is [- I, + I], and U: [- 1, + I] -+ R is a continuous, 
strict/i' increasing, expected utility function. If a, (n) 10 and a, (n) > a2(n) > 0 for each n e- S, 
then U(aI(n))I U(0) and U(aI(n)) > U(a2(n)) ? U(0) for all ne S. But a1 and a2 are indiffer- 
ent because IN, U(al(n))dP(n)= f U(a2(n))dP(n)= U(0).7 

This is pointwise dominance, but at an intuitive level, it is not very much dominance- 
for any 8>0, a, fails to dominate a2 by even so little as e on a set having probability 1, 
(Vc>O)[P{n: c>aI(n)>a2(n) _O} = 1]. 

An alternative way to understand how little dominance is involved is to note that if 
a3 is an act satisfying a3(n) >0 for all n, then the act al -a3 is indifferent to a2 if and only 
if P{a3> E} =0 for all g>0. In other words, the amount a3 that can be taken from an 
agent with these preferences satisfies both a3 >0 and J a3 dP = 0. As seen above, with finitely 
additive probabilities, a3(n) >0 may hold for all n and still f a3dP = 0. 

To see the role played by the failure of countable additivity, let Ek= {ja1 - a2j < I /k} 
for kerkN, and E=nkEk. If P were countably additive, then P(Ek)= I for all k would 
imply P(E)= 1, and E is the event on which a, and a2 are equal. If the state space had 
some representation for the set E, this paradox would disappear. In any reinterpretation 
adequate for our purposes, each Ek has a corresponding Ek = { ia -a21 <1 /Il}, and P (Ek) = 

P(Ek)= I, implying that nkEk-= {Ia' -a2l=0} has probability 1, and this is the set on 
which a', and a2 are equal-"not very much dominance" becomes "dominance on a null 
set". 

3.2. Adams' mnoney pump 

Money pumps are more serious because it seems that a strictly positive amount can be 
taken from the agents. Both money pumps can be formulated with purely finitely additive 
probabilities, but this is somewhat less convenient. 

Example 3.2 (Adams). With the state space S= N, let Q be the countably additive 
probability satisfying Q{n} = 2 . The subjective probability is P= (Q + A)/2 so that P {n} = 

7. Any non-atomic, finitely additive P would work in this example because it satisfies P(E) = 0 for any 
finite E. In describing a variant of his money pump construction, Adams (1962) enumerates the rationals in 
[0, IJ as {q,,: ncEN }, defines a particular non-atomic measure on them, and sets a1(q,,)=2-'-, and a2(q,,)=0. In 
a footnote, Seidenfeld and Schervish (1983) set a1(n)=n X and a2(n)=O. Wakker (1993) sets a1(n)=n1 and 
a2(n)=(n+ l)-. 
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STINCHCOMBE SUBJECTIVE PROBABILITY 131 

2'") and ,Q1 P{n} = 4 <P(NJ)=1. The set of consequences is [-1, +1], and the 
expected utility function is U(x) = x. Fix soine re (I, 1). For each n e N, consider the gamble 
gn that loses r if Bn= {n} occurs, and that pays 2 (n+ I) no natter what occurs, gn()n) = 

2-In+ ') - r * I B, (M) for ni e S. Tlhis gamble has a positive expected value because r< I and 
P(Bn)=2-In +". By risk neutrality, the agent strictly prefers taking any finite set of these 
gainbles to not taking them. However, for any m e S, the payoff to taking all of the gambles 
simultaneously is 

Enc- N gn (m) = 
Enc- FN (2-( +-r- 1B,1 (m)) =-r < O. (4) 

In other words, the agent will pay a little bit to take each of the gambles ex ante, but 
at the end of this process, will pay to get out of having taken them at each meS. 

After accepting the first N bets, the agent wins EN I2-(n+ ) in all states of the world, 
and loses r< I in the event EN= {1, 2, ... , N}, a set having probability >E= I P{n} = 

E,N l 2-(n 2)< . However, after accepting all of the bets, the agent is in the position of 
winning ,EnN, 2- ( -+ 1 in all states of the world, and of losing r in the event 
E= UN EN= {1, 2, .. .}, a set having probability 1. Intuitively, E P{n} = 4 means that 
half of the probability mass is mislaid when enumerating the state space as UN EN. The 
mislaid probability is in the "complement" of E, a set which "should" have probability 
', but which can be empty because P fails countable additivity. If the state space had 
some representation for the complement of E, this paradox would disappear. 

This example is built on the failure of dominated convergence. After accepting the 
first N bets, the agent's losses are fN(m) = -rl {.Nl, }(m). But 

lim F fN(m)dP (in) =-/2 > lim fN(m)dP(m)=J' -rdP(n)=-r. (5) 
N -+ Yj- JN NN 

In other words, the losses increase discontinuously in the limit. By contrast, in any reinter- 
pretation adequate for our purpose, the agent's losses after the first N bets are 
fN()=-l{I,..N}(in). Here 

lim F fN(m)dP (in) = -r/2= lim fNn(m)dP (m) = -r IN(mn)dP(m), (6) 
N o N N 

because P is countably additive, and P (RN ) = 1/2. This is possible because N 1N N. 

3.3. Seidenfeld and Schervish's mnoney pum"p 

This money pump is built on the failure of conglomerability in an example from Dubins 
(1975). 

Example 3.3 (Dubins). Let S= U {(i, j): ic FN, j=0, I },so that S is the union of tw o 
copies of the integers, indexed by j= 0 o j= I. Let E= U {(i, I )} be thle event that j= 1, 
andfor is NJ. Let Ei= {(i, 0), (i, I )} so that ir= {El, E2, ... .} is a partition of S. Condlitional 
on E, suppose that P (i, 1) = 1 /2(Q + A)(i) wvhere Q and A are as in the previous examples. 
Conditional on EC, suppose that P= Q. Tlhus, for any is N, P( f(i, 0)} ) = 2` and 
P({(i, )} ) = 2-'. For each Ei, P(EI Ej) = even though P(E) = , so P is not congloinzer- 
able in ir. Note that ZEF P(Ei) = <I even though ir is a partition. 

Problems arise because a bet on E is a 50:50 affair, while a bet on E conditional on 
any Ei is a 1:2 affair. Thus, some bets look quite good unconditionally though they look 
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132 REVIEW OF ECONOMIC STUDIES 

quite bad conditional on each and every event in a countably infinite partition of the state 
space. 

Example 3.4 (Seidenfeld and Schervish). Suppose that E and 7r are as in Dubin's 
examplle. Let a, cdeliver- a consequence worth 35 utils in all states while a2 delivers a conse- 
quence wor-th 0 utils if E occur-s and 60 utils if E does not occur. Because 35 > ^ (0) + 5' (60) = 

30, a2-<al. But a,-<a2 given any Ei because 40= =(0)+ -(60)>35. 

In other words, a person with these preferences would pay to move from a2 to a,, 
and then, conditional on each and every event in a partition of the state space, pay again 
to move back. 

This paradox can also be understood as a failure of dominated convergence. Let D,, 
be the complement of UN,= Ei, and let D= nf Dn. The countable additivity of P would 
imply that lim,, J I D,, (m)dP (i) = 1/4 > 0 would imply that P (D) = 1/4. However, with the 
present state space, the event D is the empty set, giving the appearance of a money pump. 
If the state space had some representation of the set D, this raradox would also disappear. 
In any reinterpretation adequate for our purposes, the set (1n Dn has probability 1/4, and 
conditional on this set, the event E, on which a, delivers 0 utils, has probability 1. 

4. FRAMEWORKS FOR DECISIONS UNDER UNCERTAINTY 

4. 1. Bayesian decision franmeworks 

One formulation of Savage (1954, 1972) is 

Definition 4.1. A Bayesian decision framework is a 4-tuple 

9 = ((S, V), (C, l, A, G) 

Here (S, fP) is a measure space of states, (C, ') is a measure space of consequences, A 
is a subset (perhaps proper) of the set of (S9?\W)-measurable functions from S to C, and 
G is a subset (perhaps proper) of the set of (f\1W)-measurable functions taking on only 
finitely many values.8 

Typically, consequences are denoted by cl, c2, or C3, acts are denoted a,, a2, and a3, 
and gambles are denoted g9, g2, and g3. Of interest are the complete, reflexive, and transi- 
tive preference relations -< either on G or on A. Of particular interest are those preference 
relations having SEU representations. 

Definition 4.2. A preference relation -< on the set of acts A has a subjective expected 
utility representation for acts (respectively for gambles) if there exists a subjective probabil- 
ity P on 6e and a real-valued, '-measurable function U on C such that for all aeA, 

I I U(a)IdP is finite, and for all a,, a2e-A, a1<a2 if and only if J U(a1)dP?J U(a2)dP 
(respectively, for all g1, g2eG, g, ?g2 if and only if I U(g1)dP?Jf U(g2)dP). 

8. A measure space is a non-empty set and a ar-field of subsets. To avoid some difficulties, assume that C 
contains at least two points, and that any a-field mentioned separates points, if X-1 +x2, then there exists a 
measurable E with xi eE and x20E. If this assumption is not valid, then simply pass to the set of equivalence 
classes where, by definition, X1 -X2 if for all measurable E, I E(XI) = I E(X2)- 
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4.2. Savage dlecision ftamnent'orks 

Savage worked with a special class of decision frameworks. He assumed that S is an 
infinite set, that JV is the set of all subsets of S, and that W is the set of all subsets of the 
set of consequences. This implies that the set of Savage acts is the set of all functions from 
S to C and the set of gambles is the set of all finite range functions from S to C. In a 
Savage decision framework, if a preference relation -< satisfies six postulates, P1-6, then 
it has an SEU representation for gambles. If it also satisfies a seventh postulate, P7, then 
it has an SEU representation for acts. (P1 -7 are given in Appendix A for ease of reference.) 

5. REINTERPRETATIONS OF DECISION FRAMEWORKS 

Of primary interest are reinterpretations of Bayesian decision frameworks in which the 
preference over gambles have SEU representations. However, the reinterpretations pro- 
vided here are much more broadly applicable. 

For these reinterpretations to be adequate for our present purposes, they should 
provide a copy of the original decision framework and provide a resolution to the para- 
doxes that arise from failures of countable additivity. This involves three sets of require- 
ments. The first set of requirements concerns the state space, the second set concerns acts 
(and gambles), and the third set concerns "lining up" the first and the second set of 
requirements. The "lining up" requirement is that for any bounded continuous v on C. 

v(a(s))dP(s)= v(a())dP(s). (7) 

Note that Savage's decision frameworks make no use of continuity assumptions on the 
expected utility functions U. The last part of this section discusses how the continuity 
assumptions used here apply, or can be made to apply. 

5.1. A cop)y of t/e state space 

For the next four definitions, fix two measure spaces (X, .) and (Y, (3I). 

Definition 5.1. A mapping 'D from X into 6N" is an isomorphism if it is one-to-one, 
preserves unions, intersections, and complements, that is, for all El, E2e ', F(E1 u E2) = 

1(E1) u 1(E2), F(El n E2) = 1(E1) n 1(E2), and t(E") = (1(E1))'. The class of sets (D(,X) 
is a field, and is an isomorphic copy of X (alternately, 'D is an isomorphism between X 
and D(fX)). 

The class f(Xf) will not be a a-field in our reinterpretations if it is to resolve the 
paradoxes. For example, if 'D(fn Dn)= f,, 'D(D,,) in the explanation of the Seidenfeld and 
Schervish money pump, then there would be no non-empty representation of n, 'D(D,) 
in the new state space. 

As well as providing an isomorphic copy of the collection of subsets on which subjec- 
tive probabilities are defined, reinterpretations should provide an "isomorphic" copy of 
the original state space. To this end, 

Definition 5.2. Suppose that 'D is an isomorphism from q into V'. A measurable 
embedding qp of X in Y is subordinate to 'D if for all xeEe.sT, qp(x)eD(E). 

This content downloaded from 130.102.158.15 on Thu, 13 Nov 2014 00:24:43 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


134 REVIEW OF ECONOMIC STUDIES 

In general, {p(s): seE} is a strict subset of @F(E)-the reinterpretations add points 
to the original space. If P is a finitely additive probability on X and 'D is an isomorphism 
from T to MY, then 4>(P) can be defined by 'D(P)(E)=P(Q:I'(E)) for all Es@(s). Of 
interest is the existence of countably additive extensions of 4>(P) to all of MY. 

Definition 5.3. An isomorphism PD from X to V3 has the unique countably additive 
extension property if for all finitely additive probabilities P on T, 4D(P) has a unique 
countably additive extension from 'D(X) to (3'. 

Gathering these properties together, 

Definition 5.4. An isomorphism 'D from X into (3/ is adequate for our purposes or 
simply adequate if it has the unique countably additive extension property and there is 
an embedding (p subordinate to it. 

When (D is an adequate isomorphism and p is a given embedding subordinate to (D, 
@D(E), (p(s) and 4D(P) will be denoted E, &, and P as convenient.9 

The new points in Y are Y\{p(x): xeX}. In an adequate reinterpretation, these are 
entities added to X so that the probabilities add up correctly even under countable opera- 
tions. With P failing countable additivity, En4E in q does not imply that P(E,)JP(E). 
However, nn En can be a strict superset of D(nFV En) so that P(En)uP(qn E,,). There is 
a more sophisticated but parallel interpretation of the extra elements. Think of the events 
in X as propositions, so that an event E consists of those states of the world in which a 
proposition is true. The intersection and union operations can be thought of as the logical 
operations "&" and "or". The cr-field 9Y contains all countable limits of these logical 
operations. The new points Y\{q(x): xeX} are the states of the world that represent the 
limits of these operations. 

5.2. A copy of the acts 

A reinterpretation of a Bayesian decision framework should also provide a copy of the 
acts. 

Definition 5.5. Let P be a subjective probability on (S, 9?) in the Bayesian decision 
framework M. A reinterpretation of M for P is a 6-tuple 

gep = US, Y ), (C,@1,), A p, G; (, Y/p) . 

Here (S, 99) is a measure space, (D is an isomorphism between 5Y and I('Y2) c '5, and yp 
is a one-to-one, onto mapping from A into the set Ap of C-valued acts on (S, Y'), 
a - y/vp(a)=a. 

By itself, a reinterpretation need not help much, after all, setting (S, 9') = (S, Y) 
having (D defined by, @(E) ={(p(s): seE} where T is a permutation of S, and defining 
V'p(a)(p(s))=a(p(s)) gives a rather useless reinterpretation. What is needed is that 11 
have good properties and line up with y'p in the correct fashion. 

9. Kingman (1967) calls isomorphisms withi subordinate embeddings ramaificatio,i maps in his study of 
finitely additive probabilities in the theory of continiuous-time stochastic processes. See Section 8. 
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5.3. Linini,g up ltie copies 

The next definition provides a broadly useful class of decision frameworks. 

DefiUi ion 5.6. A Bayesian decision framework 4 is csm (complete, separable, and 
metric) (respectively compact) if the set of consequences, C, is a complete, separable, 
metric (respectively a compact metric) space,'0 and 6' is the Borel a-field on C. An act a 
is nearly compactly supported for the subjective probability P if for all e>0, there exists 
a compact set K c C suich that P {aK} > I - E. A csm . is nearly compactly supported 
for the subjective probability P if all acts are nearly compactly supported for P. 

If X. is compact, then it is nearly compactly supported for all P, though in general 
the set of nearly compactly supported acts depends on P. When consequences are monet- 
ary, the niear compactness assumption is that for every act a, and every E> 0, there exists 
an N,Ec R suclh that P{ ae [-Ng, +NJ ]> I - E. If P were countably additive, this would 
follow either from the observation that 1R is a complete, separable metric space (so all 
countably additive probabilities are nearly compactly supported), or from the observation 
that R = UNENJ [-N, +N]. Thus, acts being nearly compactly supported is necessary for 
the existence of reinterpretations in many interesting cases. 

The copies "line up" if the integrals of bounded continuous functions are preserved. 

Definition 5.7. For any subjective probability P on (S, 9') in a csm X, the reinterpre- 
tation Rp is adequate for P if z1 is an adequate isomorphism from 9 into f, and the 
mapping a v-+ tp(a) =a has the property that for aeA, and for all bounded continuous 
functions v: C-+ , 

r~~~~V A 
f v(a)dP-f v(a)dP. (8) 

s s 

Equation (8) guarantees that any SEU preferences -< over a set of nearly compactly 
supported acts having a representation with a continuous expected utility function U is 
duplicated by defining a, Ia2 if and only if a, -<a2. The class of preferences that is duplica- 
ted in an adequate reinterpretation is much broader than the set of SEU preferences. It 
contains all state independent preferences that do not distinguish between weak*-equiva- 
lent distributions on the set of consequences. 

The finitely additive probabilities p and p' on (C, IV) are weak*-equivalent if for any 
bounded continuous v, f c vdu = Jc vdp'. By the Reisz representation theorem (for finite, 
countably additive measures on complete, separable metric spaces), every finitely additive, 
nearly compactly supported probability p is weak*-equivalent to a unique countably 
additive probability ca(p). Equation (8) can be restated as saying that ca(P,) = Pa where 
Pa, is the distribution on C induced by the nearly compactly supported a and Pa is the 
corresponding distribution after an adequate reinterpretation. Suppose that -< is a prefer- 
ence ordering over acts that is state independent, that is, a preference ordering that depends 
only on the distributions induced by the acts. Suppose further that it does not distinguish 
between weak*-equivalent distributions. The implication of (8) is that -< is duplicated in 
any adequate reinterpretation simply by defining al a2 if and only if a, ?a2. 

10. The real line with the usual topology is a complete, separable metric (csm) space. Intervals [a, bh have 
all of these properties and are also compact. Complete, separable metric spaces are sometimes called Polish 
spaces. Many of the subsequent results are true in greater generality than the restriction to csm Bayesian decision 
frameworks implies, and this is noted. 
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The class of preference orderings that depend only on distributions over consequences 
and do not distinguish between weak*-equivalent distributions includes Machina's (1982) 
generalized expected utility preferences. It also includes the "non-additive" preferences 
represented by a I?a2 if and only if f udg(Fu(a)(u))? f udg(FU(a2)(u)) where U is a continu- 
ous, real-valued function on C, g is a continuous, increasing function from [0, 1] onto 
[0, 1], and Fu(a) is the c.d.f. of the distribution U(Pa). II Because these classes of preferences 
contain SEU preferences as a special case, they trivially contain money pumps and domi- 
nance puzzles if the subjective probabilities fail countable additivity. Adequate reinterpre- 
tations resolve those parts of the money pumps due to this failure, and not those parts 
due to a failure of the "linearity" of SEU preferences. 

5.4. Properties of adequate reinteipretations 

A crucial property of adequate reinterpretations is that they exist. 

Theorem 5.1. For any csm X which is nearly compactly supportedfor the subjective 
p-obability P, a reinterpretation adequate for P exists. 

A simplification of the proof delivers the following. 

Corollary 5.2. For any compact -4, there is an adequate reinteipretation that is indepen- 
dentof P.'2 

Gambles (simple acts) have special properties in reinterpretations-note the lack of 
restrictions on X and v in the following. 

Corollary 5.3. For any X, there is a reinteipretation . that is independent of P such 
that for all finitely additive pr-obabilities P on f, all gambles g e G, and for all functions 
v: C-+ R, 

J'v(g)dP= J'v(g)dP. (9) 

Equation (9) guarantees the equality, not merely the weak*-equivalence, of Pg and 
Pg for gamble g. Thus, any state independent preference ordering over simple acts is 
duplicated by defining gl _92 if and only if gl ?g2. 

A potentially inconvenient aspect of using adequate reinterpretations is that the prefer- 
ences _ are defined only on A-p, generally a strict subset of M((S, f ); C) (the measurable 
functions from S to C). There may be measurable functions on S that induce distributions 

1 1. The additive case is g(r) r. Quiggin (1993) contains an extended treatment of this class of generalized 
expected utility preferences. Allais (1953, p. 510, 512) suggests using systematic changes in the distribution over 
consequences, verbally identifying some currently popular properties the function g. He also (p. 513) suggests 
studying preferences that can be represented by non-linear functions of the entire distributioll of U(P,,). These 
weak*-continuous preferences are either Machina (1982) preferences or are arbitrarily close to this class of 
preferences. It was Machina's work that first showed that such an approach can deliver a workable theory of 
choice under uncertainty. See also Allais and Hageni (1979). 

12. All that is needed for Theorem 5.1 and Corollary 5.2 is that the space C be a Hausdorff topological 
space. One proof of these results uses the Loeb (1975) spaces (*S, o(*9Y)), where P is the Loeb measure derived 
from *P. When R is not compact, a :=(*a) will have to be modified on a set having P-measure 0. The near 
compactness assumption is necessary for this step to work. 
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over consequences very different than the set of distributions induced in A. The next result 
says that this cannot happen for non-atomic P, and can barely happen for general P. 

For any class of (measurable) functions, H from X to Y, and any probability Q on 
X, H1(Q) denotes the set of probabilities Q' on Yof the form Q'(E)= Q{lf-'(E)} for some 
lie- H. 

Theorem 5.4. Suppl)ose that . is csm, and that A is the set of all niear/v1 colilmpact/ 
sup)ported acts for a subjective pr obabilitiv P. If P is no n-atomXic, then A p ( P) = M ( P) ini any 
reintei)retaltion aldlequate Jfoi P w,here M = M ((, 9); C). For genercal P, M (P) is thle 
variation norm1? closur e of A p (P). 3 

5.5. Savage's lIcIk of (issulfle(I structure 

One of the beauties of Savage decisioni frameworks is the lack of assumed structure. Savage 
makes no assumptions on1 the space of consequences. By contrast, the very definlition 
of adequate reinterpretations requires at least a topological structure on the space of 
consequences and a corresponding measure theoretic structure. This contrast is not as 
large at it may appear. The following example demonstrates the major difficulty that 
must be overcome in generalizing adequate reinterpretatioins to arbitrary Savage decision 
frameworks. 

Example 5.1. SuppCose /iat S= N, thaIt C= R, and thaIt the subjective p)Iobabililt' is 
(say) tle "unifojbrm" clistribution P= 2.. Let a I(s) s. If preferences ar-e over aIll acts aid airie 
staIte independent, /icy mut1st cover the Clistributioni P,,, = o0n C. Hoit(ever, Section 2.6 show01s 
th(lt "drawls" mladle according to a distribution that fails c-oun1table additiviti' aCrie carried( on 
poin,ts nlot c(on1tain1edi in the original space. 

It is possible to systematically enmbed S in S so as to provide poilnts that carr-y the 
subjective probability as a countably additive probability. In a similar fashion, it is also 
possible to systemzatically embed C in a space C so as to provide points that carry all 
possible P,, as countably additive probabilities. One such procedure, atnd there are mlany, 

conipactifies C in suclh a faslhion that all bounided futictions, V, oni C correspond uLniquely 
to a continuous v on the coinpactified space, C. [hlis caii he initerpreted as the observationi 
that Savage imp)licithv worked with continiuous expected utility functions just as lhe iniiplic- 
itly worked with a miieasurable structure. The topology in wlhiclh hiis expected utility 
functions are contilLuous is the finiest possible. ianaely the set of all subsets of C. 
Generalized adequate reiiiterpretations require adding points to the topological space C 
so as to provide carr-iers for finitely additive probabilities. Witlh the appropriate generaliza- 
tion of weak*-equivalence, the results above cairry tlhrougl.'4 

13. The vriaiitioIn niorim distainice betweenI two probibilities li and V is giVenl by SLIp, I p (E) -i'(E)J. Appell- 
dix C contains an1 exaimple of an atomic P in a compact ! 1or- which AI(P) strictly containsl A(P). 

14. Oni the (stronig) advice of the editoIr anld LjdgilIg flromi1 the (strong) tend(lenicy of' Imiy flrienlds to change 
the topic wheni faiced withi the details of generalized adeqUate reinterpreltations, n1o Imlor-e will be said here! 
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6. ADEQUATELY REINTERPRETING THE PARADOXES 

6.1 . The (dlminai(lfce pUtiZle 

The starlting point is 

Lemnina 6.1. Suppose that X$ is csm,l5 P is a subjective probability, an-id that A is 
the se,t of'all t(inear/l comInpact/l supportedle nmeasurable .functions. If P { aeF} = 1 for S e 
(nmeasurable) set Fc C, thein P-almiost everyw1here, a takes its value in thle closure of F in 
(/il' reinterpretfation alequate ft P. 

Recall that Example 3.1 concerned two acts, a1, and a2, defined on the space of integers 
aind satisfying lim,, a1(n)=0 and a,(n)>a2(n)_O for all n c N. Because P(A)=0 for all 
finite A, for all ke l, P(Ek)= I where Ek= {ne J: lIa,(n)-a2(n)l < l/k}. Because the set 
of consequences is compact and U is continuous, Theorem 5.1 delivers an adequate reinter- 
pretatioln in wlhich U is the expected utility function representing < on A. By definition 
then, P(E1)=I. Lemma 6.1 implies that up to at most a set of P-measure 0,F, = 

(neR?J: I1(n)-a2(n) ? l/k} (provided th1at ja(n)-a2(n)j is itself an act in the original 
.X). The countable additivity of P then implies that P(E')U= where E'= (k Ek. But al 

and a'2 are equal oni E'. In other words, in any adequate reinterpretation, the dominance 
puzzle reduces to dominance on a null set. 

6.2. Adlams' 1. o?llloej' pu)np 

The ganmbles in Example 3.2 are of the form gjm(=) 2 r 1 B,, (in) for mne6 N and ne N. 
They are mapped to g,, ()1) = - rIB,, ()1) where B,, = {n} for m1 E N and ne N. By 
Theorem 5.1, the agent is risk neutral in any adequate reinterpretation. After taking the 
first N gambles in any adequate reinterpretation, the agent's position is N = I,,, and 
PNT l -r (In this last expression, it is important to note the difference between N 
anid NJ.) Because PLn PPn} =2-14 and P is countably additive, P( J)=-<P( N). 
Thus, AINdP= - rPUFJ ) = - r, exactly the limit of the expected positions from taking 
the gambles sequentially. The mislaid probability in the original, inadequate analysis is 
carried by the set Ni \ J, and there is no paradox. 

6.3. Seilenfeld an1d Schervish's i,0oneV pump 

The starting point in Example 3.4 is the observation that the partition ir= {E,, F,,.. 4 
satisfies , P(E;) < 1, sO that E P(E;) < I. Because P in any adequate reinterpretation is 
countably additive, this means that UX Ej is a strict subset of S. In particular, J= 

LEI E2, . . . is not a partition of S-evaluating a gamble conditional on eachi and every 
Ei is not a complete analysis. In particular, conditional on the complement of Ui E,, the 
event E has probability 1. 

Suppose that thle three consequences in Example 3.4 are monetary, and satisfy U(c,) = 

0, U(c2) = 60, and U(c3) = 35, and that U is continuous, bounded, and strictly increasing. 
Theorem 5.1 applies, and the continuity and monotonicity of U imply that there exist 

15. This lemma requires only that the space of consequences be a normal topological space. 
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quantities of money, rl, r2> 0 such that 

U(c3 - r,) > 2' U(c,) + 2 U(C2), (10) 

and 

- U(c, -(r, + r2)) + 3U(C2-(r1 +r2)) >U(C3-r'l)- . 

If the initial situation is the gamble g described by cl if E and c2 if EC, then its 
reinterpretation is the gamble g given by cl if E and c2 if Ec. Inequality (10) implies that 
this agent is strictly willing to buy insurance, that is, to pay r1 in each state of the world 
in return for being guaranteed C3. Now, conditional on each and every Ei (respectively 
each and every Ei), inequality (11) implies that this agent is strictly willing to pay r2 in 
each state seEd (respectively in each state sceE,) in return for being guaranteed cl -rl if 
E and c2 - r1 if EC. (This follows from Bayes' Law and the definition of an isomorphism.) 
In the original money pump, one concludes that, because ir is a partition, the agent was 
always happy to make the trades that reduced the initial situation of cl if E and c2 if EC 

to the terminal situation of c, - (r1 + r2) if E and c2 - (r1 + r2) if EC. By contrast, in any 
adequate reinterpretation of the money pump, the agent is changed from the initial situ- 
ation of cl if E and c2 if EC to the terminal situation only partially described by c, - (., + 12) 

if E n (Ui Ei) and c2 - (rl + r2) if EC n (Ui Ei). The description of the terminal situation 
is not complete until it specifies what happens on the non-empty set D' = (Ui Ei)'. 

6.4. Sumnmary 

The point of view taken here is that the original decision frameworks for the money pumps 
and the dominance paradoxes are simply not adequate. Countably infinite constructions 
require countably additive probabilities. The paradoxes use acts whose salient properties 
are described by countable limit operations, but do not use a countably additive probabil- 
ity. When this lack is corrected by reinterpretations that provide mirror copies of the 
original decision frameworks, the money pumps and the dominance paradoxes disappear 
because it is no longer possible to ignore sets of states having positive probability. 

7. MINIMAL REINTERPRETATIONS 

The previous two sections have shown that it is possible to reinterpret finitely additive 
Bayesian decision frameworks in an adequate fashion, and so resolve the paradoxes. There 
is, however, a loose end. This is due to the new state spaces S being so much larger than 
the original state space S. The expansion of a state space S in a decision framework X to 
larger state space S gives rise to a decision framework having many new subjective prob- 
abilities. In principle, the new decision framework, X, may give rise to distributions unlike 
any on the original state space. 

Example 7.1. An adlequate reinterpretation oJ a Bayesian decision fralnework based 
on the two-point state space (S, 99) ({0, 1}, 2 0,I cani be based on ti/e (rather larger) 
space (S, 9) = ([0, 1], d h) where .1 is tihe usual Borel a-field, wvith the mapping (p(s) = 

s, and @P(E) = { p(s): seE }. Applied to acts, the embedding r equies a(s^) = a(s) for s'= 0, 1, 
and mnakes no r-equir-emnents for the other s^e (0, 1). 
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The new decision framework in this Example is clearly adequate, but it is so much 
larger than it need be that it would never be used. One possible countably additive subjec- 
tive probability of an agent with the state space S is the uniform distribution. With the 
right acts, this gives rise to all of the possible distributions over any Polish (csm) space 
of consequences. By contrast, distributions induced by subjective probabilities on the 
original space must have two point supports. An intuitive criterion is that the enlarged 
state space allow only countably additive probabilities that arise as the image of finitely 
additive probabilities on the original space. 

Definition 7.1. An adequate isomwoi-phismii 'Dfroim m9 to ,9 is minimal if evety countably 
additive probability on Y is of the formn ?( Q) for some finitely additive probability Q on 
f. An adequate reinterpretation M is nminimnal if (F is minimal. 

Requiring minimality implies that the new state space in a reinterpretation is a Stone 
space.'6 A measurable isomorphism of two measure spaces is a one-to-one, onto measur- 
able mapping with measurable inverse. From the measure theoretic point of view, two 
measurably isomorphic spaces are indistinguishable. Kingman (1967, Theorem 5) proves 
that if FD is a minimal isomorphism from Y to f, then (S, .1') is measurably isomorphic 
to the Stone space for the Boolean algebra of bounded, measurable, real-valued functions 
on (S,Y). This explains 

Theorem 7.1. For any csm . which is nearly comiipactly supported for the subjective 
probability P, a minimal adequate reinterpretation for P exists. If X is com}pact and the set 
of acts is the set of all measurable functions, then there is a unique minimal reinterpretation 
which is adequate for all P. 

The previous section showed that adequate reinterpretations resolve the paradoxes 
that arise from the failure of countable additivity, all of this in an isomorphic copy of the 
original framework. This section has shown that there are adequate reinterpretations that 
add nothing to the set of phenomena being modelled. The cost of this minimality is that 
the Stone space is rather peculiar. If the original state space was (say) S=[0, I] with 9 

the set of Borel subsets of S, then the space S is known as the Stone space for L,[0, I]. 
This is a very large, compact space in which every open set is also closed. Many of 
the convenient and comfortable features of [0, 1] are lost. Beyond the observation that 
reinterpretations resolve the paradoxes and minimal reinterpretations are still reinterpreta- 
tions, there are two responses to this cost: 

1. it isn't that big-any analysis of choice under uncertainty that depends in a crucial 
fashion on special properties of the state space seems a bit misguided. If a result 
in choice theory is only true with a state space equivalent to [0, 1] with the Borels, 
then there may be problems with the result. 

2. it can be avoided-the space S can be avoided by using a non-minimal reinterpreta- 
tion. For example, the Loeb (1975) spaces used in the proof of Theorem 5.1 have 
the same first order logic properties as the space S. 

16. The original references are Stone (1937, 1947-48), and these spaces are covered in many texts, e.g. 
Dunford and Schwartz (1957), Semadeni (1971), or Sikorski (1969). For completeness, a simple construction 
of Stone spaces is given in Appendix B. 
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8. METHODOLOGICAL REFLECTIONS 

The authors of the paradoxes presented above wrote to point out that there are conflicts 
between finitely additive subjective probabilities and desirable properties for a theory 
of decisions under uncertainty. One summary of their work is that countably infinite 
constructions require countably additive probabilities. This paper proposes to resolve 
the conflict by reinterpreting decision frameworks, by identifying the finitely additive 
probabilities with countably additive probabilities on larger state spaces. Addition of new 
states in this fashion rules out ignoring positive probability sets of states by clever countable 
operations. The argument here is that the reinterpreted decision framework is so close to 
the original one that, at the very least, if countable constructions are to be allowed, the 
new state space should be regarded as a "truer" version of the state space. This is a claim 
with a contentious history. 

Skyrms (1995) provides a wonderfully clear discussion of the links between the differ- 
ent kinds of additivity and metaphysical arguments about models of quantities. Of particu- 
lar importance in this work are the results relating the additivity of subjective probabilities 
and whether or not money pumps exist. Many of the tensions that arise between the 
different philosophical considerations can be solved by use of a class of nonstandard 
probability spaces that are called star-finite (e.g. Anderson (1982)). These spaces can also 
provide adequate reinterpretations. 

Villegas' (1964) work also uses the minimal reinterpretations provided by a Stone 
space. Villegas provides an axiom, monotone continuity, which, if satisfied, guarantees 
that the subjective probability is countably additive. This is clearly not compatible with 
Savage's modelling choices. However, Villegas also argued that, because any finitely addi- 
tive probability "can be extended to a monotonely continuous qualitative probability" (in 
the terminology of this paper, can be identified with its countably additive extension to 
the appropriate Stone space), "there is no loss in generality if we consider only qualitative 
probabilities which are monotonely continuous". This paper has argued that the reinterpre- 
tations are different than the original frameworks, although they are very close. In particu- 
lar, (1) the state spaces are more complicated, (2) measurability requirements are necessary, 
it is no longer that case that the agents can assign a probability to each and every set of 
states,'7 and (3) the decision-theoretic paradoxes that result from the failure of countable 
additivity are resolved. 

Minimal reinterpretations have appeared in statistical decision theory. Le Cam 
(1986, Ch. 1.6, pp I 1-15) provides several characterizations of the appropriate Stone space 
for statistical decision theory, but seems to regard the whole question of state spaces as 
more of a nuisance than anything else. For Le Cam's decision theory, probabilities are 
continuous linear functions on lattices of real-valued functions, and it is these structures 
that are in the foreground. 

The new points in the minimal reinterpretations have played a parallel role in Arrow 
Impossibility Theorems for models with infinite sets of agents. Kirman and Sondermann 
(1972) and Hansson (1976) independently built on Fishburn's (1970) Arrow possibility 
example when the set of agents is infinite. Suppose that .Y is a free ultrafilter in an infinite 
set of agents.'8 Define a social order by x>-y if and only if x>-iy for every i in some set 
IfEF. This gives a social choice rule that satisfies all of Arrow's assumptions, and the 

17. Skyrms (1993) and (1995) contains discussions of the issues of interpreting state spaces and non- 
measurable "events". 

18. A class .f c2x of subsets of an infinite set X is called a free ultrafilter if A e.F implies that A is not 
finite, A, BEY implies that A r) Be.F, AEYF and B2A implies that BeY, and for all AE2X, either A E or 
AC . 
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authors show that this is the only way to satisfy Arrow's assumptions. As Kirman and 
Sondermann noted, the free ultrafilters are equivalent to the new points in a Stone space 
of agents, and they identify these agents as "invisible dictators". These new points are 
individuals that represent the intersection of increasingly small (generalized) sequences of 
sets that decrease to the empty set in the original space.'9 

The point of view advanced here, that the original frameworks are not adequate for 
the problems being considered, most closely resembles Kingman's (1967) analysis of finitely 
additive probabilities in the study of continuous-time stochastic processes and Harris, 
Stinchcombe, and Zame's (1995) analysis of finitely-additive mixed strategies in games. 
As in the Arrow possibility theorems, it is the emptiness of intersections that shouldn't be 
empty that drives both sets of arguments. 

Harris, Stinchcombe, and Zame (1995) argue that the failure of equilibrium arguments 
due to a lack of ideal elements is not generally interesting. Starting from the minimal 
structure of games, they examine equilibrium arguments with ideal elements, essentially 
replacing inadequate strategy spaces with versions of the S of this paper. What makes 
their analysis complicated is that the products of finitely additive probabilities fail the 
conclusions of Fubini's theorem. They show that adding ideal elements to strategy sets 
directly parallels the present addition of ideal elements to state space only for those games 
in which Fubini's theorem holds. 

Kingman (1967) begins with the observation that countable additivity is violated if 
and only if there is a sequence of sets E,1 { 0 with lim P(En) = a > 0. Kingman argues that 
6>0 means that it is the space that "is defective and should be regarded as a subset of 
some larger space in which the required (points) exists". For example, he proves that any 
process, be it a Brownian motion, a pure jump process, or one with everywhere non- 
measurable sample paths, has a representation as a non-countably additive probability on 
the set of polynomial paths. Because the polynomials are inadequate to represent these 
phenomena, the probabilities must fail countable additivity. He then proceeds to minimal 
isomorphisms as a way of adding ideal elements to the state space.20 

This addition of states in order to guarantee countable additivity runs entirely counter 
to de Finetti's (1972, 1974, 1975) point of view. Regarding Kingman's work, he writes 
(1975, p. 353), 

The basic idea is the possibility of stretching the interpretation in such a way as to 
be able to attribute the "missing" probability in the partition to new fictitious entities 
in order that everything adds up properly. In some cases, in order to salvage countable 
additivity, it is even claimed that the new entities are not fictitious, but real. 

As I read it, de Finetti's argument begins with the observation that it is only possible to 
sample a continuous-time stochastic process at a finite collection of times. Because non- 
measurable paths or jumps can only be observed with an infinite set of samples, one can 
argue that these "continuous" properties are the "fictitious" ones. 

de Finetti also notes (esp. 1974, pp 229--23 1) that finitely additive probabilities can 
be extended, perhaps in many ways, to any class of sets, while countably additive probabil- 
ities, when they can be extended at all, extend uniquely. He argues for the desirability of 

19. This whole issue is more thorouglhly covered in Armstrong (1980, 1985). Hainsson objects to this 
interpretation of ultrafilters for two reasons. First, there may not be a pre-defined, meaningful topology oni the 
space of agents so that compactification may not mean much. (Kirman and Sonidermann are quite careful withl 
topological issues in their interpretation.) Second, if there is a topology, it may not be Hausdorff, and this leads 
to equivalence classes of "dictators". 

20. The looser niotion of an adequate reinterpretation would have also served Kingman's purposes. 
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maniy extensions, asking for a case-by-case choice between finitely and countably additive 
probabilities, and disdaining "a preconceived preference for that which yields a unique 
and elegant answer even w,hen tdhe exact answ,er should instead be 'an) value lying betwveen 
these liimlits"' (italics in the original). There are serious philosophical difficulties with 
countable additivity is the interpretation of the non-measurable sets-these are "events" 
or propositions to which an agent cannot assign a degree of likelihood. de Finetti's argu- 
ment is that this difficulty implies that finite additivity is the correct choice. 

What the money pumps show is that beyond being "unique and elegant" (and this 
is no small virtue), the countably additive version of the theory is the right one for the 
case of decisions under uncertainty if our agents should not be exploitable because of 
some "' 'missing' probability". Of course, this argument is susceptible to the counter that 
the money pumps and dominance examples require infinite constructions, and are therefore 
just as "fictitious" as (say) jump processes. That being said, the closeness of the reinterpre- 
tations convinces this author that the "fictitious" states are better thought of as being 
initially unobserved,2' though no less "real" for that. 

As economists, we do not want to build models of markets with agents that can be 
monley pumped. With subjective probabilities that fail countable additivity, there are 
money pumps for SEU preferences or any of their generalizations. For all of these prefer- 
ences, the "fix" proposed here also works. The fix involves adding extra states, in this 
case and in many related ones, the states are easy to interpret. 

APPENDIX A. SAVAGE'S POSTULATES 

The definitions used in stating the Postulates are included. 

Pi. < is complete and transitive. 

Di. a, ?a2 given B c(S, if and only if a'- a'2 for every a' and a' that agree withi a, and a2, respectively, 
on B and with each other on B' and a'2-a either for all such pairs or for none. 

P2. For every a,, a2, and BcS, either a,?a2 given B or a2?a, given B. 

D2. c?<c2 if and only if a,<a2 when a,(s)=c, and a2(s)=c2 for every sES. 

D3. BcS is null if and only if for all a,, a2, a,?a2 given B. 

P3. For every non-null BcS, if a,(s)=c, and a2(S)=C2 for every seB, then a,?a2 given B if and only 
if Cl <C2 - 

D4. For A BcS A<B if and only if aA-<as or Cr?C2 for every aA, aR, c,, c2 such that aA(s)=c, for 
seA, aA (s) = c2 for s?A, aB(s) = c, for seB, a,(s)= c2 for soB. 

P4. ForeveryA,BcS, A<BorB<A. 

P5. It is false that for every a, and a2, at<a2. 

P6. Suppose that a2>-a3 . Then, for every c, eC there is a finite partition of S such that, if a'2 agrees with 
a2 and a' agrees with a3 except on an arbitrary element of the partition, a'2 and a'3 being equal to cl there, then 
a>-a3 and a2>a'. 

If the preference relation < also satisfies the following Postulate, then it has a SEU representation for 
acts. 

D5. a,<c, given BcS (respectively cr?a, given B) if and only if ar?a2 given B (respectively a2?a, 
given B) when a2(s) = c, for every sES. 

P7. If a,?a2(s) (respectively a2(s)<a,) given BcS for every sEB, then a,?a2 given B (respectively 
a2<a, given B). 

21. Thanks to an anonymous referee for this felicitous phrase. 
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APPENDIX B. A CONSTRUCTION OF THE STONE SPACE 

Let (X, W) be a measure space, and let Mb denote the set of bounded, measurable, real-valued functions on X. 
Each xeX can be uniquely identified with the infinite vector v(x):= (f(x%))EMh in the space 
X':= x,EMb [inf.Exf (x), sup.Exf(x)]. With the product topology, X' is compact (by Tychonoff's theorem). The 
Stone space for L, is the compact closure, V, in X' of the set V:= {v(X): XeX}. In this space, each feMh has 
a unique continuous extension from V to V, and all continuous functions on V are extensions of fe Mb. 

APPENDIX C. PROOFS 

All non-standard constructions are assumed to be in a polysaturated extension of a superstructure containing 
S as a bounded set (see e.g. Hurd and Loeb (1985) or Lindstr0m (1988) for accessible introductions to non- 
standard analysis). 

Proof of Theoremii 5.1. Set S=*S, set .'= r(*Y), and let P be the Loeb (1975) measure derived by 
extending the finitely additive ?*P from *.Y to cr(*Y). The isomorphism 'D is defined by '1(E) =*E. 

We first check that 4D is adequate. Define q by p(s) =*s. By transfer, iD is an isomorphism and q is 
subordinate to (. The basic result of Loeb (1975) is that (D has the unique countably additive extension property, 
so that (D is adequate as needed. 

We must now define yrp. To this end, let co be an arbitrary point in C. For any act a, let E,,=a '(K,,) 
where K,,c- C is compact and satisfies P{aEK,,}> I - I/n. By the assumption that acts are nearly compactly 
supported, such a K,, exists. For sEU,, *E,,, define V'p(a)(s) =a(s) =*a(s). For s U,, *E,,, set a(s) = co. The 
function a is measurable, and if v is bounded and continuous, then 

v(a)dP = * *v(*a)d*P- O*v(*a)dP= v(?*a)dP= v(a')dP. 

The first equality is definitional, the second follows because v(a) is bounded and measurable, the third because 
v is continuous and a is nearly compactly supported, and the fourth because Vp modifies *a on the complement 
of U.. *E,,, a set of P-measure 0. 11 

Pr oof of Cor ollary 5.2. If C is compact, then set K,, =C in the construction used in the proof of Theorem 
5.1, so that a is independent of P. 11 

Proof of Corollary 5.3. Endow the space Cwith the discrete topology. Any gamble is automatically nearly 
compactly supported as finite sets are compact, and any functions v is continuous. Bounding v outside the range 
of a gamble if necessary, the above construction of (D and xyp works for gambles with no need for modification 
on sets of measure 0. 11 

Proof of Lenma 6.1. Suppose, for the purposes of contradiction, that a does not take its values P-almost 
everywhere in F, the closure of F. Let P,, denote the distribution on C induced by a' acting on P. Because P is 
countably additive and C is normal (and every metric space is normal), if P(F) < l, thenl there exists a compact, 
hence closed, F2, disjoinit from Fand such that P(F) > 0. By the compactness of F, and Urysohn's characterization 
of normal spaces, there exists a continuous function v satisfying 0? v _ 1, v(F2) = 1, and v(F) = 0. But the 
definition of an adequate reinterpretation implies that 

0= Jv(a)dP = Jv(a)dP > 0. 

a contradiction that completes the proof. 1 

Pr?oof of Tlheorem 5.4. Suppose that P is non-atomic, i.e. for all Es 9 and 0 < 1 < 1, there exists 
E'c E, E'eV such that P(E')=rP(E) (by Armstrong and Prikry (1981) this is equivalent to non-atomicity). 
Pick an arbitrary mn1eM. We must slhow that for some nearly compactly supported act acA, P4 =P, . 

Because all countably additive probabilities on1 a Polish set of consequences are nearly compactly supported, 
there exists a sequence of compact K,, c C such that P(m '(K,,))> I - I/11 and K,, c K,,, . Because each K,, is 

)K(n)II K (it) 
compact, there exists a sequence of measurable, finite partitions of C, (D,,k4 () " such that (i) U I D,,, = K,, 
(so that D,,.K(,,, I I = C\K,,), (ii) max {diameter D,,,: k<K(n)}< I/u, and, (iii) for all n, (D,, I 

k)k"restricted 
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to K,, refines (D,,k )g ') The next step is to produce an increasingly fine class of partitions of S, (E,,k )K-'n) 
l, to 

match up with in 
- 1 

(D,,. 
Because P is non-atomic, there exists a parallel sequence of finite, measurable partitions of S, 

(E,,k )=4'I),l such that (i') P(E,,k)=P(1n '(D,,k)), (iii'), for all n, restricted to E,, :- Uk= E,,k, the partition 
(E,,, A. )A, refines the partition (E,,4 )ZKZ'n). For each (n, k) pair with k_ K (n), pick C,,kED,,J and fix and 
arbitrary c(eC. For neN, define a,,(s)=C,k if seE,, and a,,(s)=co otherwise. For all seU,, E,,, a,,(s) is a Cauchy 
sequenice and so converges because C is complete. For s0 UE,,, a,, (s)-c,. Hence a,, -a for all seS and some 
measurable ac A. For any E>0 and for all n sufficiently large, the construction of a,, guarantees that the Prohorov 
distance between P,a, and P,,, is less than c. Thus, for a, the Prohorov distance between Pa and P,,, is 0. 

For compact metric sets of consequences, the same construction works with increasingly fine partitions of 
all of C of the form (D,,k )k ='I with maximum diameter going to 0, and the construction is therefore independent 
of P. 

For the general case, the equality of variation norm closures follows from dividing P into its atomic and 
its non-atomic parts. The first half of this proof covered the non-atomic part, the atomic part is immediate. 11 

The following is an example of an Atomic P in a compact X for which M(P) strictly contains A(P). 

Example C.1. Define P on N by P= AQ1 + -Q2 wAhere Q1((n} )=2- and Q2 is a {O, l }-valued, purely 
finiitely additive miieasure otn N sIIch1 that Q2(A) = 0 for any finite set A. Eniumiierate tihe rationals in C= [0, I as 

q,,: n E } . Let a(n) = q,,. Note that the act a has a unique continuous extension, a, to N, the Stone space for the 
Boolean algebra of bounded, real-vahiedfunictions on N. The measure Q2 is point mass on somiie point n'E N. This 
ineans that P := a(P) puits mass Q,2- on tlhe n-thi rational q,,, and puts mass 3 on some re(O, I]. This is the r 
unique/y deter mined by r = a(n'). Any continuous functionfon IJ with the property that f(P)(q,,) = IA2"" must satisfy 
Jf(n') = r becatuse N is denise in FI, and conttinouis functions ar e determ1zined by their values on dense sets. Thtus, no 
act b on N can have b(P) = P,, s : r, the measure which mass 3 2- on the n-tbl rational q,,, and puts mass 3 on s. 

Proof of Tlheoremi 7.1. Define the -equivalence relation - on *S by s t if for all measurable, bounded, 
real-valued f on S, *f(s) .. *f (t). By Anderson (1982), *S/I with the weakest topology making each of the ?*f 
continuous is the Stone space for the Boolean algebra of bounded measurable functions on (S, .9). The construc- 
tion of Vrp in the proof of Theorem 5.1 then gives a measurable a because the indicator function, I ,,, of each 
E,, =a -'(K,,) is bounded and measurable. Further, the interpretation is adequate for P because taking equivalence 
classes does not affect the integrals because v(a) is bounded and measurable. The independence of P for compact 
X follows from Corollary 5.2. 11 

Ackntowledgemenetts. Bob Anderson, Mark Machiina, Joel Sobel, Hal White, the editor, and three anony- 
mous referees helped immensely with perspective on, questions about, references for, and organization of this 
paper. They are not to blame for the remaining deficiencies, they prevented worse. 
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