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Abstract. The best available definition of a subset of an infinite dimensional,
complete, metric vector space V being “small” is Christensen’s Haar zero sets,
equivalently, Hunt, Sauer, and Yorke’s shy sets. The complement of a shy set
is a prevalent set. There is a gap between prevalence and likelihood. For any
probability µ on V , there is a shy set C with µ(C) = 1. Further, when V is
locally convex, any i.i.d. sequence with law µ repeatedly visits neighborhoods
of only a shy set of points if the neighborhoods shrink to 0 at any rate.

1. Shy sets and prevalent sets

Specialized to a real topological vector space V with a complete, separable,
metrisable topology, Christensen’s [2] Haar zero sets are a subclass of the universally
measurable sets. A universally measurable S is a Haar zero set if there is a measure
µ, such that µ(S + v) = 0 for every v ∈ V .1

Hunt, Sauer, and Yorke (HSY) [4] more thoroughly investigate properties and
examples of shy sets. A set S is shy if it is a subset of a Borel set S′ for which
µ(S′+v) = 0 for every v ∈ V and some µ such that µ(K) = µ(V ) for some compact
K. Expanding HSY’s definition of shyness to subsets of universally measurable sets
causes no change to any of their results, and expanding Christensen’s definition to
include subsets of Haar zero sets causes no change to his results.

Because a compactly supported measure is a measure, S being shy implies that S
is a Haar zero set. The tightness of measures on V implies that S being a Haar zero
set implies that S is shy. A measure µ is tight if for every ε > 0 there is a compact
set Cε such that µ(Cε) > µ(V ) − ε. Because V is a complete, separable metric
space, every measure on V is tight (e.g. Dudley [3, Theorem 11.5.4]). Suppose that
µ is a measure such that µ(S + v) = 0 for all v. Define µε by µε(A) = µ(A ∩ Cε).
For 0 < ε < µ(V ), µε is a compactly supported measure satisfying µε(S + v) = 0
for all v ∈ V , so that every Haar zero set is shy.
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1A measure on V is a countably additive, finite, positive, and non-zero set function on V ,

the Borel σ-field on V . Vµ denotes the completion of V with respect to the measure µ, and
Vu =

⋂
µ Vµ is the σ-field of universally measurable sets. Every measure µ on V has a unique

extension to Vu. Every measure µu on Vu has a unique restriction, µ, to V , and µu is the extension
of µ.
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The complement of a shy set is called a prevalent set. Important properties of
prevalent and shy sets include:

1. shy sets have no interior so that prevalent sets are dense,
2. the countable union of shy sets is shy, equivalently, the countable intersection

of prevalent sets is prevalent,
3. if V is locally compact, that is, finite dimensional, then a set is shy if and

only if it has Lebesgue measure 0, and
4. if V is not locally compact, i.e. is infinite dimensional, then compact sets are

shy.

Suppose that S is shy and that µ(S + v) ≡ 0. Setting Q(·) = µ(·)/µ(V ) gives
Q(S + v) ≡ 0 and shows that there is no loss in assuming that µ is a probability
in the definition of shy sets. If µ has any atoms, then µ(S + v) ≡ 0 only if S = ∅,
so that the µ that matter for shyness are non-atomic. HSY show that the uniform
distribution on subsets of finite dimensional subspaces of V are especially useful
non-atomic measures, and this observation will be crucial here.

Unless explicitly noted, V is infinite dimensional with a complete, translation
invariant metric d(·, ·), the balls around 0 are both convex and balanced,2 and all
measures are probabilities.

2. The gap

The gap between between likelihood statements and prevalence statements for
properties in V arises from the combination of the tightness of probabilities and
the failure of local compactness.

2.1. The gap for Bayesians. As Christensen [2, p. 119] notes, there is no proba-
bility µ such that S being shy is equivalent to µ(S) = 0. Slightly more can be said
— any probability µ must assign mass 0 to a prevalent set of points.

The support of µ, supp(µ), is defined as the intersection of the closed sets F
such that µ(F ) = 1. The support of µ being large, say all of V or all of the unit
ball in V , is an indication that µ covers many points. However, because µ is tight,
for every ε > 0 there is a compact Cε such that µ(Cε) > 1 − ε. Setting C =

⋃
εCε

(the union being taken over rational, positive ε) gives C ⊂ supp(µ) = clC with
µ(C) = 1. Being the countable union of compact (hence shy) sets means that C
is shy. Thus, V \ C is prevalent and µ(V \ C) = 0. If beliefs are modeled as
probabilities, even full support beliefs about V do not cover very much of V .

2.2. Intermediate sets. There are many C′ that are shy and satisfy C ⊂ C′ ⊂
clC and µ(C) = 1 where C is a countable union of compact subsets of V . A set F
is approximately flat if for every ε > 0, there is a finite dimensional subspace W
of V such that F ⊂ W + B(0, ε) where B(v, r) is the ball around v with radius r.
Any finite union of approximately flat sets is approximately flat, and every compact
set is approximately flat — let W be the span of a finite ε-net.

Lemma 1. For any sequence Fn of approximately flat sets and any rn → 0, the
set C′ =

⋂
m

⋃
n≥mCn is shy where Cn = Fn +B(0, rn).

2A set A in V is balanced if for all x ∈ A, λx ∈ A whenever |λ| ≤ 1. Local convexity of V
implies the existence of a neighborhood basis of balanced, convex sets.
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The set C′ in the previous lemma consists of points that are within rn of Fn for
infinitely many n. If µ(Fn) ↑ 1, as must happen for some sequence Fn of compact
(hence approximately flat) sets, then µ(

⋃
n Fn) = 1 and

⋃
n Fn ⊂ C′ ⊂ cl

⋃
n Fn,

and the inclusions may be strict. Taking Fn ≡ F shows that the closure of any
approximately flat set is shy.

Proof of Lemma 1. There is no loss in assuming that the sequence Fn is nested. To
show that C′ is shy, it is sufficient to prove the existence of a probability Q such
that Q(C′ + v) ≡ 0. By the easy Borel-Cantelli Lemma,3 it is sufficient that for all
v ∈ V ,

∑
nQ(Cn + v) <∞.

The construction divides N into sets Mk, where Mk = {nk−1 < n ≤ nk}, k =
1, 2, . . . . For each k, there is a probability Qk supported on a finite dimensional,
compact set of radius 2rk such that

∑
k rk < ∞. Further, for all v ∈ V , pk =∑

n∈Mk
Qk(Cn + v) < 1/2k. The probability Q will be defined as the convolution

Q1 ∗Q2 ∗ · · · , and
∑
nQ(Cn + v) will be shown to be less than or equal to

∑
k pk,

which is finite.
Set n0 = 0. This paragraph gives the inductive construction of Qk such that∑
n∈Mk

Qk(Cn + v) < 1/2k. Given nk−1, let rk = max{rn : n > nk−1} (which
exists because rn → 0). Pick nk such that for all n ≥ nk, rn < rk/2. Because the
Fn are nested and rn ≤ rk for each n ∈ Mk, Cn = Fn +B(0, rn) ⊂ Fnk + B(0, rk)
for each n ∈ Mk. Pick 0 < ε < rk/2 so that (rk + ε)/2rk < 3/4. Because Fnk
is approximately flat, there is a finite dimensional subspace, Wk, of V such that
Fnk ⊂Wk+B(0, ε). Pick an integer Nk such that (3/4)Nk < 1/2k(nk−nk−1). Pick
Nk linearly independent points ei, i = 1, . . . , Nk, such that d(ei, 0) = 1 (where d(·, ·)
is the complete, translation invariant metric on V ) and d(ei,Wk) = 1. Parametrize
the subspace Vk spanned by the ei by a ∈ RNk , a ↔

∑
i aiei. Let Ak be the

set of a in RNk such that d(
∑

i aiei, 0) ≤ 2rk. Ak is a convex, balanced set
with non-empty interior. Take Q′k as the uniform distribution on Ak so that
Q′k({a : d(

∑
i aiei, 0) ≤ rk + ε}) < (3/4)Nk . Let Qk be the corresponding image

law on Vk. For all v ∈ V , Qk(Wk +B(0, rk + ε) + v) ≤ (3/4)Nk < 1/2k(nk −nk−1).
Further, Cn+v ⊂Wk+B(0, rk+ε)+v. Combining, Qk(Cn+v) < 1/2k(nk−nk−1)
for each n ∈Mk.

Because rk+1 < rk/2,
∑
k 2rk <∞ so that the convolution Q = Q1 ∗Q2 ∗ · · · is

well-defined. For each k, let Pk be the convolution of the Qj , j 6= k, so that Q =
Qk ∗Pk. Pick any n ∈Mk and any v ∈ V . Q(Cn+v) =

∫
V
Qk(Cn+v−s) dPk(s) so

that Q(Cn+v) < 1/2k(nk−nk−1). This implies that
∑

nQ(Cn+v) <
∑

k 1/2k = 1
so that Q(C′ + v) = 0, as was to be shown.

2.3. The gap for approximate frequentists. Frequentist interpretations of µ
also do not cover much of V , at least not at any rate of approximation.

Let Yi, i = 1, 2, . . . , be a sequence of i.i.d. random variables defined on a prob-
ability space (Ω,F , P ) and having distribution µ on V . It is (well-)known that
for P -almost every ω, the set Y1(ω), Y2(ω), . . . is dense in the support of µ, so that
repeated draws from µ may seem to cover a large part of V . However, there is a shy
set C′, C ⊂ C′ ⊂ supp(µ), consisting of all points whose neighborhoods are visited
infinitely often when the neighborhoods shrink. Conversely, there is a prevalent

3The easy Borel-Cantelli Lemma says that, for a measure P , if
∑
n P (En) <∞, then P (E) = 0

where E =
⋂
m

⋃
n≥mEn. The proof is P (E) ≤ P (

⋃
n≥m En) ≤

∑
n≥m P (En) ↓ 0 so that

P (E) = 0.
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set of points in V whose neighborhoods are almost never visited by repeated draws
from the distribution µ provided the neighborhoods shrink to 0.

For v ∈ V and rn → 0, an rn funnel at v is the sequence of balls, B(v, rn),
centered at v with radius rn. Let λn ↑ ∞. For v ∈ V , let A(v) be the event that
Y1, . . . , Yλn visits the rn funnel at v for infinitely many n. More explicitly, A(v) is
the set of ω such that Yi(ω) ∈ B(v, rn) for some i ≤ λn for infinitely many n. A
point v ∈ V is (rn, λn)-lonely if P (A(v)) = 0. Equivalently, v is (rn, λn)-lonely
if, with probability 1, the rn-ball around v eventually receives no more visits from
Y1, . . . , Yλn .

Loneliness is prevalent.

Theorem. For any probability µ, any rn → 0, and any λn ↑ ∞, the set of (rn, λn)-
lonely points is prevalent.

Proof. Pick a sequence en ↓ 0 such that
∑

n en <∞. Because µ is tight, there is a
nested sequence of compact (hence approximately flat) subsets, Kn ⊂ Kn+1, of V
and a sequence dn ↓ 0 such that µ(Kn) > (1 − dn) and (1 − (1− dn)λn) ≤ en. Set
Bn = {ω : (∃i ≤ λn)[Yi(ω) 6∈ Kn]} so that P (Bn) ≤ en.

For v ∈ V , let An(v) be the set {ω : (∃i ≤ λn)[Yi(ω) ∈ B(v, rn)]}. The set of ω
that are in An(v) for infinitely many n is A(v) =

⋂
m

⋃
n≥mAn(v). If d(v,Kn) ≥ rn,

then P (An(v)) ≤ P (Bn) ≤ en. By the Borel-Cantelli Lemma (again), P (A(v)) =
0 if

∑
n P (An(v)) < ∞. To show that v is lonely, it is sufficient to show that∑

n P (An(v)) <∞. This means that v is lonely if d(v,Kn) ≥ rn for all but finitely
many n — if there exists an m such that for all n ≥ m, d(v,Kn) ≥ rn, then∑
n P (An(v)) ≤ (m− 1) +

∑
n≥m en <∞.

Let Cn = Kn + B(0, rn) so that C′ =
⋂
m

⋃
n≥m Cn is the complement of the

set of v satisfying d(v,Kn) ≥ rn for all but finitely many n. It is sufficient to show
that C′ is shy, and this is the conclusion of Lemma 1.

3. Comments

The comments address several issues: why, in retrospect at least, the Theorem
is not surprising; the connections to naive stochastic search; which easy generaliza-
tions are available and which are not; how translation invariance relates to the gap
between prevalence and probability; and why a measures-on-measures approach
does not lead to shyness.

3.1. In retrospect. One intuition comes from how small approximately flat sets
are. If W d is a d-dimensional subspace of Rk, then, as a proportion of the unit ball,
W d +B(0, ε) is on the order of εk−d. This leads one to suspect that approximately
flat sets are “small” in infinite dimensional V ’s. The Theorem builds on the fact
that for any probability µ and any ε > 0, there is an approximately flat set Fε such
that µ(Fε) > 1− ε.

A second intuition comes from the observation that every δ-ball in V contains
infinitely many disjoint δ/4-balls. Thus, the “proportion” of any given B(v, δ) that
has any significant proportion of the mass in B(v, δ) is vanishingly small. Millar
[6] used this intuition in a study of naive stochastic search.

3.2. Naive stochastic search. Let Θ denote the closed unit ball in V where V
is a Banach space with norm ‖ · ‖. Millar [6] examines a number of problems from
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mathematical statistics, e.g. non-parametric goodness of fit statistics, minimum dis-
tance estimators and maximum likelihood estimates, that involve the computation
of quantities of the form infθ∈Θ D̂n(θ) where n is the number of available obser-
vations. For many D̂n(·), finding the infimum may not be feasible, and stochastic
search methods may be tempting.

After taking λn independent draws from some probability µ with supp(µ) =
Θ, one can approximate the complicated infimum problem by the finite problem
mini≤λn D̂n(Yi). With probability 1, the sequence Y1(ω), Y2(ω), . . . comes within
any ε > 0 of any θ0. Provided D̂n(·) is continuous and λn ↑ ∞ sufficiently quickly,
this seems promising.

Unfortunately, it is typical that D̂n changes with n so as to confound the naive
stochastic search just described. First, if for all constants c there exists N such
that for all n ≥ N , θn 6∈ B(θ0, cn

−γ) (where γ is in (0, 1/2], usually γ = 1/2),
then typically D̂n(θn) → ∞. Second, if there exists a c and an N such that
θn ∈ B(θ0, cn

−γ) for all n ≥ N , then typically D̂n(θn) is bounded.
The direct implication of the Theorem presented here and the two properties

of D̂n just described is that for all θ0 in a prevalent set, with probability 1,
mini≤λn D̂n(Yi) → ∞ even when infθ∈Θ D̂n(θ) is bounded. Millar [6] showed that
there is a countably infinite set, {θ0,j} ⊂ Θ, having this and a stronger property —
on a set of ω having probability 1,

lim inf
n

inf
j

min
i≤λn

‖Yi − θ0,j‖/rn ≥ 1.

With probability 1, Yi, i = 1, . . . , λn not only keeps at distance rn (or further)
away from each θ0,j, it simultaneously stays rn (or further) away from all of them.

The denseness of prevalent sets implies that the countably infinite set {θ0,j} in
Millar’s result cannot be replaced by a prevalent set. In a more positive vein, he
also demonstrates that there are a variety of more sophisticated, non-i.i.d. stochastic
search schemes with better behavior.

3.3. Generalizations. Suppose that Sn is a sequence of sets in a class S that is
closed under finite union and that rn → 0. It is possible that

⋃
n Sn is a strict subset

of
⋂
m

⋃
n≥m Sn + B(0, rn), which is in turn a strict subset of cl

⋃
n Sn. Lemma 1

showed that if S is the set of approximately flat sets, then
⋂
m

⋃
n≥m Sn +B(0, rn)

is shy. It would be nice to know how large S can be and still have
⋂
m

⋃
n≥m Sn +

B(0, rn) shy. The answer cannot be all shy sets — the countable sets, including the
countable dense ones, are shy.

As discussed above, there is no countably additive probability, µ, assigning 0 to
shy sets and 1 to prevalent sets. It is easy to show that there are finitely additive
µ that do this.4 The class H consisting of shy sets and their complements is a
σ-field, define µ′(H) = 0 if H is shy and µ′(H) = 1 if the complement of H
is shy.5 By the Hahn-Banach Theorem, µ′ has an extension, µ, to the Borel σ-
field on V . Since every compact set is shy, µ is 0 on the compacts; hence purely
finitely additive. Being purely finitely additive is a drawback for both Bayesian
and frequentist interpretations of µ-likelihood. Being purely finitely additive, there
exists a nested sequence En ↓ ∅ with E1 = V and µ(En) ≡ 1. Setting Dn =

4This is the only paragraph in which the assumption of countable additivity is dropped.
5An analogous σ-field is the class of all countable subsets and their complements in an un-

countable space.
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En \ En+1 expresses V as a countable union of disjoint sets each of which has µ-
probability 0. In this sense, µ is not supported anywhere in V . Another version of
µ not being supported anywhere in V is the observation is that if V is imbedded
in its compact Stone space, V̂ , the extension of µ, µ̂, satisfies µ̂(V ) = 0 (Kingman
[5] discusses the implications of this observation when V is a set of possible sample
paths and µ is a stochastic process).

3.4. Translation invariance and the gap. Another way to understand the gap
is that the requirement of translation invariance reverses the intuitive link between
characteristics of a probability measure and the assignment of zero mass indicating
a ‘small’ set. If a probability µ1 assigns positive mass to many sets, e.g. a non-
degenerate Gaussian distribution in Rk, then µ1(S) = 0 is a strong statement that
S is ‘small’. On the other hand, if µ2 assigns 0 mass to most sets, e.g. if µ2({x}) = 1
for some x, then µ2(S) = 0 has very few implications for the ‘size’ of S. When
translation invariance is added to this we reverse the strength of the conclusions:
µ2(S + v) ≡ 0 if and only if S = ∅, an extremely strong conclusion about the
smallness of S; µ1(S + v) ≡ 0 if and only if µ1(S) = 0 if and only if S is shy in Rk.

Translation invariance also means that only a shy set of measures matter in the
definition of shyness. A set S is µ-shy if it is a subset of a universally measurable
set S′ satisfying µ(S′ + v) ≡ 0. The set of µ-shy sets is S(µ), the class of shy sets
is S =

⋃
µ S(µ). If µ has any atoms, then S(µ) = {∅}. This means that the µ that

matter in defining shy sets are the ones without atoms. The probabilities without
atoms, the ones that matter, are, relative to the set of probabilities on V , a shy set.

Let M(V ) be the Borel measures on V with the (metrisable) weak∗ topology.
The set of probabilities, ∆(V ), is complete in the relative weak∗ topology and is
itself a shy subset of the completion of M(V ). Anderson and Zame [1] address the
rather subtle problems in extending the definitions of shy sets to shy subsets of sets
that are themselves shy. Fix a metrisable, topological vector space X. The following
is their simple sufficient condition for shyness relative to a convex set C ⊂ X, with
C being a Borel subset of X that is topologically complete in the relative topology.
W denotes a finite dimensional subspace of X and λW denotes Lebesgue measure6

on W .

Definition. A universally measurable subset E ⊂ C is finitely shy in C if there
is a finite-dimensional subspace W ⊂ X such that λW (C + a) > 0 for some a ∈ X
and λW (E + x) = 0 for every x ∈ X. A (not necessarily universally measurable)
subset F ⊂ X is finitely shy in C if it is contained in a finitely shy universally
measurable set. A subset Y ⊂ C is finitely prevalent in C if C \Y is finitely shy
in C.

Lemma 2. The set of probabilities on V without atoms is finitely shy in ∆(V ).

Proof of Lemma 2. Let δ1 and δ2 be point mass on two distinct points, v1 and v2,
in V . Take W to be the span of the point (δ1−δ2) in M(V ). If we take a = δ2, then
for all r ∈ [0, 1], r(δ1− δ2) +a = rδ1 + (1− r)δ2 ∈ ∆(V ) so that λW (∆(V )−a) > 0.
Let E ⊂ ∆(V ) denote the set of probabilities on V without atoms. For every
x ∈M(V ), the set of r such that r(δ1 − δ2) + x has no atoms contains at most one
point so that λW (E + x) = 0.

6Since all that matters for the definition are the null sets, any linear parametrization of W can
be used to define λW .
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3.5. Measures on measures. Only a shy set of measures are used in defining
shy sets. Because ∆(V ) is a complete, separable metric space, any probability on
probabilities, P ∈ ∆(∆(V )), is carried on a shy set of probabilities. One might
imagine that there is a P carried on the set of µ that matter with the property
that S is shy if and only if P ({µ : µ(S) = 0}) > 0. Here P would play the role of
translating the µ. This will not work.

Lemma 3. For every P ∈ ∆(∆(V )), there is a shy set S such that

P ({µ : µ(S) = 1}) = 1.

Proof of Lemma 3. As ∆(V ) is a complete metric space, for every δ > 0, there is
a compact set Kδ such that P (Kδ) > 1 − δ. For every weak∗ compact set, K, of
measures on V , and every ε > 0, there exists a compact Cε(K) ⊂ V such that
for all µ ∈ K, µ(Cε(K)) > 1 − ε. Take S =

⋃
ε,δ Cε(Kδ) (where the union is over

rational ε, δ > 0). For P -almost every q ∈ ∆(V ), q(S) = 1, but S is shy.

References

[1] Anderson, R. M. and W. R. Zame (1997). Genericity with Infinitely Many Parameters. Working
Paper, Department of Economics, U. C. Berkeley.

[2] Christensen, J. P. R. (1974). Topology and Borel Structure. Amsterdam: North-Holland Pub-
lishing Company. MR 50:1221

[3] Dudley, R. M. (1989). Real Analysis and Probability. Wadsworth & Brooks/Cole, Pacific Grove,
California. MR 91g:60001

[4] Hunt, B. R., T. Sauer, and J. A. Yorke (1992). Prevalence: A Translation-Invariant ‘Almost
Every’ on Infinite-Dimensional Spaces. Bulletin (New Series) of the American Mathematical
Society 27, 217-238. MR 93k:28019

[5] Kingman, J. F. C (1967). Additive Set Functions and the Theory of Probability. Proceedings
of the Cambridge Philosophical Society 63, 767-775. MR 36:3385

[6] Millar, P. W. (1992). Stochastic Search in Banach Spaces. In Probability in Banach Spaces,
R. M. Dudley, M. G. Hahn, and J. Kuelbs (eds.), 497-509. MR 94g:62084

Department of Economics, University of Texas at Austin, Austin, Texas 78712-1173

E-mail address: maxwell@eco.utexas.edu

http://www.ams.org/mathscinet-getitem?mr=50:1221
http://www.ams.org/mathscinet-getitem?mr=91g:60001
http://www.ams.org/mathscinet-getitem?mr=93k:28019
http://www.ams.org/mathscinet-getitem?mr=36:3385
http://www.ams.org/mathscinet-getitem?mr=94g:62084

	1. Shy sets and prevalent sets
	2. The gap
	2.1. The gap for Bayesians
	2.2. Intermediate sets
	2.3. The gap for approximate frequentists

	3. Comments
	3.1. In retrospect
	3.2. Naive stochastic search
	3.3. Generalizations
	3.4. Translation invariance and the gap
	3.5. Measures on measures

	References

