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Abstract. This paper gives a geometric representation of a class of non-parametric regres-
sion estimators that includes series expansions (Fourier, wavelet, Tchebyshev and others),
kernels and other locally weighted regressions, splines, and artificial neural networks. For
any estimator having this geometric representation, there is no curse of dimensionality —
asymptotically, the error goes to 0 at the parametric rate. Regression efficacy measures
the amount of variation in the conditional mean of the dependent variable, Y , that can be
achieved by moving the explanatory variables across their whole range. The dismally slow,
dimension-dependent rates of convergence are calculated using a class of target functions
in which efficacy is infinite, and the analysis allows for the possibility that the dependent
variable, Y , may be an ever-receding target.

I. Introduction

The starting point is a probability space (Ω,F , P ) and an independent and identically
distributed (iid) sequence (Yi, (X1,i, X2,i, . . .))

n
i=1 in Lp(Ω,F , P ), p ∈ [1,∞). Interest centers

on estimating the target functions,

fd(x1, . . . , xd) := E (Y |(X1, . . . , Xd) = (x1, . . . , xd)) (1)

from the realization (Yi(ω), (X1,i(ω), . . . , Xd,i(ω)))ni=1. This paper provides an asymptotic
analysis of the question, “How large must n be to nonparametrically estimate fd(·) to any
given degree of precision?” Of particular interest is the relation between d and n.

I.A. Different Answers. There are, in the literature, two very different answers, the usual
one, due to Stone (1982), is applicable to all nonparametric regression techniques, the second
due to Barron (1993), is applicable to the nonparametric regression technique known as
single-layer feedforward (slff) artificial neural networks (ann’s) with sigmoidal activation
functions.

1. The usual asymptotic analysis yields the following answer: if fd belongs to a particular
dense class, VLip

d , then for a desired degree of precision, ε, there is a constant C, indepen-

dent of ε, such that n must satisfy n−
1

2+d < Cε. The C may depend on the distribution of
the data and the nonparametric technique. Further, all nonparametric techniques have
this property.

2. The slff ann analysis yields the following answer: if fd belongs to a different dense class,
Vann
d , then for a desired degree of precision, ε, there is a constant C, independent of ε

but dependent on d, such that n must satisfy n−
1
2 < Cε. As above, C may also depend
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on the distribution governing the data and on the non-parametric regression technique
through the specific choice of sigmoidal activation function.

If Cε = 1/100 for both approaches, and d is a largish positive integer, say 7, the usual
analysis suggests that one needs 1018 independent observations, not a practical data require-
ment, while the ann analysis suggests that one needs but 104 independent observations, a
large but not impractical data requirement. This impracticality is known as “the curse of
dimensionality.”1 It should be noted that the dependence of C on d in the ann analysis
might, in principle, lead to the re-emergence of the curse. This paper shows that the ann
type of analysis can be done with a constant that does not depend on d for a very wide
collection of nonparametric techniques.

I.B. The Source of the Difference. The difference in the two types of analysis arises from
different assumptions about the classes, VLip

d ,Vann
d ⊂ Lp(Ω,F , P ), containing the target

functions fd(·). In both cases, the assumed classes are dense, and being dense, they are
impossible to reject on the basis of data with smooth measurement error. The regression
efficacy of explanatory variables is the amount by which the conditional mean of Y varies
as the values of (X1, . . . , Xd) move across their range.2 The boundedness/unboundedness of
regression efficacy and the possibility/impossibility of ever-receding targets are two of the
ways in which the classes differ.

1. In the dense class VLip
d used in the curse analysis, efficacy is unbounded in d, the number of

explanatory variables. This means that there may infinitely many groups of explanatory
variables, each of them having the same ability to vary the conditional mean of Y .
By contrast, the dense classes used in the ann analysis has a bound on efficacy that is
independent of d. This argument should not be taken as being a final statement of affairs,
although unbounded regression efficacy is counter-intuitive, we give an example below of
a sequence (Y, (X1, X2, . . . , Xd, Xd+1, . . .)) with efficacy that is unbounded in d.

2. The target functions in (1) above work with a fixed Y , as does the ann analysis. In
particular this means that there is a fixed joint distribution governing the data. Implicit
in the curse analysis is the possibility that we are varying Y as we vary d — instead
of calculating the errors in our attempts to estimate E (Y |(X1, . . . , Xd)), we may be

calculating the errors in an attempt to estimate E (Yd|(X1, . . . , Xd)) where the sequence
Yd may be divergent, i.e. ever-receding.

I.C. Outline. The next section begins with notation, two norms, and the basic implications
that come from breaking up total errors into an approximation errors and estimation errors.
It then explains how the main result of the paper, Theorem A yields the result that the total
error is bounded by the estimation error in nonparametric regression. The two norms are

1The immense literature following on Stone’s analysis has expanded the curse results far beyond his use of
the sup norm to include the Lp-norms, the Sobolev norms, examined the partial role that smoothness of
the target can play in overcoming the curse, and extended the analysis well beyond regression problems.
Barron worked with single-layer feedforward ann’s, as did Mhaskar and Michelli (1995) in a slightly different
context. Yukich, Stinchcombe and White (1995) improved Barron’s result in several directions, Chen and
White (1999) improved it even further, Chen (2007) is a survey.
2From the Oxford English Dictionary, efficacy is the “Power or capacity to produce effects.” While we think
of regression efficacy as causal efficacy, the referee has quite correctly pointed out that there need not be a
causal or even a structural component to efficacy as discussed here.
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the Lipschitz norm and the efficacy norm, which is a variant of Arzelá’s multidimensional
variation norm.3 The approximation error part of the curse analysis uses sets of targets
functions having uniformly bounded Lipschitz norm, the approximation error part of the
ann analysis uses sets of targets having uniformly bounded efficacy norm.

The following section gives two kinds of intuition about efficacy. The first has to do
with the change in the amount of ‘information’ contained in (X1, . . . , Xd) and the amount
contained in (X1, . . . , Xd+1). The second compares the implications of Lipschitz bounds and
of efficacy bounds in the special case that the conditional mean functions are affine and the
regressors, (X1, . . . , Xd) are independent. In this particular case, one can directly see how
bounded/unbounded efficacy works, and how ever-receding targets can arise.

The penultimate section gives the dimension independent geometric representation of
nonparametric regression estimators, and demonstrates that several of the well-known esti-
mators have this structure. The last section gives possible extensions and conclusions.

II. Norms, Density, and Rates

We begin with notation, then turn to the contrasting norms and their basic denseness
property. After this, we turn to the source of the curse results and the contrast with the
ann results.

II.A. Notation. L0 = L0(Ω,F , P ) denotes the set of R-valued random variables, Lp =
Lp(Ω,F , P ) ⊂ L0 the set of random variables with finite p’th norm, p ∈ [1,∞). For
any sub-σ-field G ⊂ F , L0(G) ⊂ L0 is the set of G-measurable random variables and
Lp(G) := Lp ∩ L0(G).

X = {Xa : a ∈ N} ⊂ L2 denotes the set of possible explanatory variables, Xd denotes
σ(X1, . . . , Xd), the smallest σ-field making X1, . . . , Xd measurable, and X denotes σ(X),
the smallest σ-field making every Xa in X measurable. We assume that Y ∈ Lp for some
p ∈ [1,∞) so that the set of all conceivable target functions is Lp(X ). The set of all possible
targets based on some finite set of regressors is

⋃
d L

p(Xd), and this set is dense in Lp(X ).

II.B. A Tale of Two Norms. By Doob’s Theorem (e.g. Dellacherie and Meyer (1978,
Theorem I.18, p. 12-13)), Lp(Xd) is the set of functions of the form ω 7→ g(X1(ω), . . . , Xd(ω))
having finite p’th moment, g a measurable function from Rd to R.

For each d ∈ N, C(Rd) denotes the set of continuous functions on Rd, and the ob-
vious extension/restriction identifies C(Rd) with Cd ⊂ C(RN), the elements of C(RN)
that depend on only the first d components, (x1, . . . , xd) of the infinite length vectors

(x1, x2, . . . , xd, xd+1, . . .). For x, y ∈ Rd, ed(x, y) :=
√

(x− y) · (x− y) denotes the Eu-
clidean distance between the d-dimensional vectors x and y.

Definition 1. The Lipschitz norm of an fd ∈ C(Rd) is

‖fd‖Lip = supx∈Rd |fd(x)|+ supx 6=y
|fd(x)−fd(y)|

ed(x,y)

whenever this is finite. The Lipschitz constant of fd is supx 6=y
|fd(x)−fd(y)|

ed(x,y)
. CLip

d (B) ⊂
C(Rd) denotes the set of fd with Lipschitz norm B or less. A sequence of functions fd in

C(RN) with fd ∈ Cd is uniformly Lipschitz if for some B, each fd belongs to CLip
d (B).

3See Adams and Clarkson (1933) for an extensive comparison of the many non-equivalent definitions of
bounded variation for functions of two or more variables.
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We will be interested in the maximal total variability in the conditional mean of Y as
the explanatory variables move monotonically across their range. Recall that the total
variation of a function f : R→ R is TV (f) = sup

∑
i |f(xi+1)−f(xi)| where the supremum

is taken over all finite subsets x1 < x2 < · · · < xI of R. A wide-sense monotonic path
in Rd is a function t 7→ x(t) from R to Rd such that for each i ∈ {1, . . . , d}, the function
xi(t) is either non-decreasing or non-increasing.

Definition 2. The monotonic total variation of a function fd ∈ C(Rd) is MTV (f) =
supx TV (fd ◦x) where the supremum is taken over wide-sense monotonic paths in Rd.4 The
monotonic total variation norm or efficacy norm is

‖fd‖MTV = |fd(0)|+MTV (fd)

whenever this is finite. CMTV
d (B) ⊂ C(Rd) denotes the set of fd with monotonic total

variation norm B or less. A sequence of functions fd in C(RN) with fd ∈ Cd is uniformly
efficacy bounded if for some B, each fd belongs to CMTV

d (B).

The range of functions with a Lipschitz constant B grows with d, but not so quickly as
their monotonic total variation.

Example 1. If fd : [−1,+1]d → R belongs to CLip
d (B), then[

maxx∈[−1,+1]d fd(x)−miny∈[−1,+1]d fd(y)
]
≤ 2B

√
d (2)

because maxx,y∈[−1,+1]d e(x, y) = 2
√
d. By contrast, for fd having Lipschitz constant B,

MTV (fd) ≤ 2Bd because the longest monotonic paths in [−1,+1]d are of length 2d.5

An implication of the previous example is that the ratio ‖f‖MTV /‖f‖Lip is unbounded on
those parts of C(RN) for which both norms are finite. The next example demonstrates that
‖f‖Lip/‖f‖MTV is also unbounded.

Example 2. For fd(x) := max{0, 1− ed(x, 0)} and fd,n(x) := 1
n
fd(n

2x), ‖fd,n‖Lip ↑ ∞ and
‖fd,n‖MTV ↓ 0.

Lusin’s theorem and standard approximation results deliver the following.

Lemma 1. If Y ∈ Lp(Ω,F , P ), f(x1, x2, . . .) = E (Y |(X1, X2, . . .) = (x1, x2, . . .)), p ∈
[1,∞) and ε > 0, then there exists g ∈ C(RN) such that ‖f − g‖p < ε and the sequence

gd := E (Y |(X1, . . . , Xd) = (x1, . . . , xd)) is both uniformly Lipschitz and uniformly efficacy
bounded.

II.C. Estimation and Approximation Errors. Reiterating, interest centers on estimat-
ing fd(x1, . . . , xd) := E (Y |(X1, . . . , Xd) = (x1, . . . , xd)) from iid data (Yi, (X1,i, . . . , Xd,i))

n
i=1

assuming that each fd belongs to some vector subspace, V′d, of Vd := Lp(Xd). Let µ be the
true joint distribution of the data and µ̂n(ω) the empirical joint distribution of the data. A

sequence of non-parametric estimators, f̂n, is typically of the form

f̂n = argming∈Θκ(n)

[∫
(y − g(x))2 dµ̂n(y, x)

]1/2
(3)

4Taking the supremum over the subset of monotonic increasing paths delivers the Arzelá norm.
5One could reconcile these by replacing e(x, y) by the distance d1(x, y) =

∑
i≤d |xi − yi| in the definition of

Lipschitz functions, but this seems to be contrary to common usage.
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where (Θκ)
∞
κ=1 is a sequence of subsets of V′d, κ(n) ↑ ∞ and (Θκ)

∞
κ=1 are chosen so that

f ∈ climinf Θκ(n) with probability 1 (where climinf An = {g ∈ V : ∀ε > 0, ‖g − An‖ <
ε for all large n} is the closed liminf of a sequence of sets An.).

A useful contrast with (3) arises if µ is perfectly known. Define f ∗κ(n) as

f ∗κ(n) = argming∈Θκ(n)

[∫
(y − g(x))2 dµ(y, x)

]1/2
. (4)

The total error, ‖f̂n − f‖, can be bounded by the sum of an estimation error, εn, and an
approximation error, an,

εn + an := ‖f̂n − f ∗κ(n)‖︸ ︷︷ ︸
estimation error

+ ‖f ∗κ(n) − f‖︸ ︷︷ ︸
approx. error

≥ ‖f̂n − f‖. (5)

The larger is Θκ(n), the smaller is an. The tradeoff is that a larger Θκ(n) leads to overfitting,

which shows up as a larger εn. Most analyses of ‖f̂n − f‖ begin with a dense set, V′d ⊂ Vd,
of targets. The set V′d is chosen so that one can calculate εn(κ) and an(κ) as functions of κ.
With this in place, one then chooses κ(n) to minimize εn(κ) + an(κ).

Stone (1982) showed that the “optimal” rate of convergence is rn = n−1/(2+d). By optimal,
Stone meant that if the sequence fd is uniformly Lipschitz, then for any nonparametric

regression technique, any sequence of estimators, f̂n, satisfies

‖f̂n − f‖ ≥ OP (n−1/(2+d)), (6)

and that some sequence satisfies (6) with equality.
By denseness, no data with smooth measurement error can reject the hypothesis that

fd ∈ CLip
d . It seems that this should make the Lipschitz assumption unobjectionable, but it

is where dimensionality enters. An extremely clear example of how this works in L2(X ) is
Newey (1997). He shows that, if µ satisfies some easy-to-verify and quite general conditions
and the target, f , satisfies the uniform approximation condition supx infg∈Θκ |f(x)−g(x)| =
O
(

1
κα

)
, then

‖f − f̂n‖2 = OP
(
κ
n

+ 1
κ2α

)
. (7)

Ignoring some of the finer detail, the κ/n term in Newey’s result corresponds to the square
of the estimation error, and the κ−2α to the square of the approximation error.6 To balance
the tradeoffs, one picks κ = κ(n) to minimize κ

n
+ 1

κ2α
.

If f : [−1,+1]d → R has Lipschitz constant B, we must evaluate f at roughly
(

2B
ε

)d
(carefully chosen) points to pin down f to within ε at all points in its domain. For many

classes Θκ this yields, for every f ∈ CLip
d , supx infg∈Θκ |f(x) − g(x)| = O

(
1
κα

)
with α = 1

d
.

Minimizing κ
n

+ 1
κ2/d

yields κ = n
d

2+d , evaluating the minimand at the solution gives the
cursed rate from (6),

‖f − f̂n‖2 = OP
(
κ
n

+ 1
κ2/d

)
= OP

(
n−

2
2+d

)
, or ‖f − f̂n‖ = OP

(
n−

1
2+d

)
. (8)

Artificial neural networks can accurately fit sparse high dimensional data. A theoretical
basis for this empirical observations was given in Barron (1993). He showed that for every
d, there is a dense set of functions, Vann

d , depending on the architecture of the networks,
such that for all f ∈ Vann

d , the following variant of the uniform approximation condition

6See his equation (A.3), p. 163, for the omitted detail.
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(7), supx infg∈Θκ |f(x)−g(x)| ≤ C(d)
(

1
κα

)
, is satisfied with α = 1

2
. Ignoring the dependence

on d in the constant C(d), we have ‖f − f̂n‖2 = OP
(
κ
n

+ 1
κ2α

)
= OP

(
κ
n

+ 1
κ

)
. Minimizing

yields κ(n) =
√
n so that ‖f − f̂n‖2 = O

(
1√
n

)
.

It is in principle possible that d 7→ C(d) grows explosively enough to vitiate this analysis
and return us to the curse world. As we will see, this need not happen, either for ann
estimators, nor for any of the other main classes of nonparametric estimators.

Theorem A (below) shows that for any estimator having a particular geometric represen-
tation, for any rn converging to 0, no matter how quickly, and any κ(n) increasing to∞, no
matter how slowly, there exists a dense V′ ⊂ V for which the approximation error satisfies
an = O(rn). The geometric representation covers a class of non-parametric regression esti-
mators that includes, but is not limited to, series expansions (Fourier, wavelet, Tchebyshev
and others), kernels and other locally weighted regressions, splines, wavelets, and artificial
neural networks.

Through the following steps, we have dimension independent rates of convergence: First,
pick κ(n) ↑ ∞ in such a fashion that consistency is guaranteed, typically this requires

κ(n)/n ↓ 0; Second, calculate en = ‖f̂n − f ∗κ(n)‖; Third, invoke Theorem A to guarantee the

existence of a dense class of targets, V′, such that for all f ∈ V′, an = ‖f ∗κ(n) − f‖ = O(en).

Fourth, observe that ‖f̂n − f‖ ≤ en + an = O(en).

III. Intuitions About Efficacy

To gain intuition about bounded/unbounded efficacy, we will first discuss the possible de-
crease in the amount of ‘information’ gained about Y in the move from the set of regressors
(X1, . . . , Xd) to the set of (X1, . . . , Xd+1). After this we will specialize to the case of affine
conditional expectations and bounded range, non-degenerate, independent explanatory vec-
tors (X1, . . . , Xd). Here one can directly see how ever-receding targets may arise, and also
count the differences in the numbers of regressors that matter.

III.A. The Information Contained in a Set of Regressors. In general, one does not
expect that the Xk should be mutually independent. This might arise if the Xk are random
draws from some larger set of possible explanatory variables. We first discuss the intuitions
from the case that they arise from iid draws from L2(Ω,F , P ), then from the case that they
arise from processes that are approximately recurrent.

Let ∆(L2(Ω,F , P )) denote the set of probability distributions on L2(Ω,F , P ), here viewed
as the set of possible explanatory variables. Suppose first that the Xk are iid draws from
some ν ∈ ∆(L2), that is, suppose that there is some probability law generating the regressors
from amongst all possible regressors. By the generalized Glivenko-Cantelli theorem, the
empirical distribution, νd, of (X1, . . . , Xd) converges to ν. This means that the additional
explanatory power to be gained by projecting Y onto the span of (X1, . . . , Xd) must be
going to 0. Another way to see how this is operating is to note that the support of any ν
must be approximately flat.

Another sort of intuition would come into play if the process generating the Xk had
the property that one long set of regressors, say Xk, . . . , Xk+n1 , contained much the same
information about Y as could be found in Xk′ , . . . , Xk′+n2 , where k′ > k + n1. Such a
situation would arise if e.g. the Xk were drawn according to a smooth Markov process
with a unique ergodic distribution ν. When the random variables Xk and Xk′ are close
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to each other in L2(Ω,F , P ), then continuity would tend to make the distribution of the
next excursion from the neighborhood containing the two of them have close to the same
distribution. This would mean that we would expect that the information in Xk′ , . . . , Xk′+n2

that is above and beyond what can be found in Xk, . . . , Xk+n1 should be small.7

III.B. Affine Conditional Expectations and Iid Regressors. In the case that the
regressors or iid and all of the conditional expectations of Y given X1, . . . , Xd are affine,
it is particularly easy to see how the difference between bounded and unbounded efficacy
works, and how ever-receding targets can arise. For the rest of this section, and only for the
rest of this section, we assume that:

(1) the Xk, are mutually independent, take values in [−1,+1], have mean 0, and are not
degenerate in the limit, i.e. lim infk Var(Xk) = σ > 0, and

(2) the condition expectation of Y is an affine function for all d, i.e. fd(x1, . . . , xd) =
E (Y |(X1, . . . , Xd) = (x1, . . . , xd)) is of the form β0 +

∑
a≤d βaxa for some sequence

(βa)a∈N.

In this context, we examine how efficacy interacts with properties of Y ; how the uniform
Lipschitz assumption allows ever-receding targets; and how bounds on the numbers of im-
portant regressors work.

Several of the arguments depend on the three series theorem — if Ra is a sequence of
independent random variables, then the convergence of the three series,

∑
a P (|Ra| > c),∑

aE
(
Ra · 1|Ra|≤c

)
, and

∑
a Var

(
Ra · 1|Ra|≤c

)
for some c > 0 implies that

∑
aRa converges

a.e., and if
∑

aRa converges a.e., then the three series converge for all c > 0 (see e.g.
Billingsley (2008, p. 290).)

We begin with an elementary result.

Lemma 2. If βa ∈ R, a ∈ {0, 1, . . .} is a sequence in R, then the sequence of affine
function fd = β0 +

∑
a≤d βaxa on [−1,+1]d has uniform Lipschitz bound B if and only if

supA⊂N
∑

a∈A |βa| ≤ B
√

#A, and has uniform efficacy bound 2B if and only if
∑

a |βa| ≤ B.

Proof. For any non-empty A ⊂ N, if f is affine and |βa| 6= 0 only for a ∈ A, then
maxx6=y |f(x)− f(y)|/e(x, y) is

∑
a∈A |βa|/

√
#A, yielding the first part of the Lemma. For

the second part, note that the monotonic total variation of an affine f on [−1,+1]d is
2
∑

a≤d |βa|. �
The condition

∑
a |βa| ≤ B is the crucial part of Tibshirani’s (1996) least absolute shrink-

age and selection operator (lasso) models, and we will examine the connection in more
detail in §III.D. Somewhat counterintuitively, one can have integrable Y , affine conditional
expectations, and unbounded efficacy, i.e.

∑
a |βa| =∞.

Example 3. Suppose that the Xa are iid and that βa = O
(

1
a

)
. For any c > 0, for all large a,

P (|Ra| > c) = 0. This implies that for large a, E
(
Ra · 1|Ra|≤c

)
= 0 and Var

(
Ra · 1|Ra|≤c

)
=

O
(

1
a2

)
. The requisite three series converge, so Yd := β0 +

∑
a≤d βaXa converges a.e. to

some random variable Y . Since the variance of the Yd is uniformly bounded, the Yd are
uniformly integrable, hence Y is integrable. Thus, conditional expectations can be affine
while

∑
a |βa| =∞.

7I am grateful to Graham Elliot and Jim Hamilton for these points.
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III.C. Receding Targets. The affine structure plus the minimal assumptions on Y neces-
sary for the existence of a target function lead to further restrictions on the βa’s.

Lemma 3. If Y ∈ L1(Ω,F , P ) and E (Y |(X1, . . . , Xd) = (x1, . . . , xd)) = β0 +
∑

a≤d βaxa,

then
∑

a |βa|2 <∞.

Since Var(Y ) = E (Var(Y |X1, . . . , Xd)) + Var(E (Y |X1, . . . , Xd)), we know that the vari-
ance of the fd(X1, . . . , Xd) is bounded in d when Y ∈ L2(Ω,F , P ). A slightly more involved
argument yields the same conclusion more generally.

Proof. Martingale convergence implies that Yd := E (Y |(X1, . . . , Xd)) → YX := E (Y |X )
a.e. If

∑
a |βa|2 diverges, then there exists an increasing sequence 1 = D1 < D2 < · · · <

Dk < · · · such that
∑Dk+1−1

a=Dk
|βa|2 > 2. For every ω for which Yd(ω) converges, the random

variables Rk(ω) :=
∑Dk+1−1

a=Dk
βaXa(ω) must go to 0. However, for all large k, the variance of

Rk is at least 3σ, contradicting the three series theorem. �
If Y 6∈ L1(Ω,F , P ), then E (Y |X) does not exist for any random vector X. The following

example gives a uniformly Lipschitz class of affine fd(·)’s for which no Y ∈ L1(Ω,F , P ) can
satisfy E (Y |(X1, . . . , Xd)) = fd(X1, . . . , Xd).

Example 4. If |βa| = 1√
a
, then

∑
a∈A |βa| = O(

√
#A) so that the sequence fd = β0 +∑

a≤d βaxa is uniformly Lipschitz by Lemma 2. Since
∑

a β
2
a diverges, Lemma 3 implies

that there is no Y ∈ L1(Ω,F , P ) having affine conditional expectations fd(x1, . . . , xd) =
β0 +

∑
a≤d βaxa.

If we define Yd = β0 +
∑

a≤d βaXa in Example 4, then, by the three series theorem, the
sequence Yd diverges. The implication is that the Lipschitz worst case analyses may be
based on ever-receding targets, so that, instead of calculating the errors in our attempts to
estimate E (Y |(X1, . . . , Xd)), we may be calculating the errors in an attempt to estimate

E (Yd|(X1, . . . , Xd)) for an ever receding sequence Yd.

III.D. Number of Regressors Intuitions. The condition
∑

a |βa| ≤ B for uniformly
bounded efficacy (Lemma 2) implies that as the number of regressors grows, the amount
by which any further regressors can affect the conditional mean of Y goes to 0. Another
model which suggests this involves random parameters, and is also related to Tibshirani’s
(1996) lasso models. We will suppose that the βa’s are independent random variables with
E |βa| = 1, scale them as a function of d so that the functions β0 +

∑
a≤d βaxa satisfy

Lipschitz or efficacy bounds, and ask the question, “How many of the d regressors can be
ignored while still making an error of less than ε?”

Satisfying the Lipschitz constraint on average and being requires multiplying the βa’s
by something on the order of 1/

√
d. By contrast, if we bound the causal efficacy of the

explanatory variables, we must multiply the βa’s by something on the order of 1/d. Let
|β|(a) be the a’th order statistic of the |βa|’s. For given d and ε > 0, let N = N(d, ε) be
the largest integer satisfying 1√

d

∑
a≤N E |β|(a) < ε and M = M(d, ε) the largest satisfying

1
d

∑
a≤M E |β|(a) < ε.

Example 5. If the |βa| are independent exponentials with mean 1, then the difference be-
tween the order statistics, |β|(a+1)−|β|(a), are independent exponentials with means 1/(d−a)
(e.g. Feller (1971, I.6, pp. 19-20). From this, N(20, 0.05) = 4 while M(20, 0.05) = 13. On
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average, 4 of the 20 regressors can be ignored if f has a Lipschitz constant of 1, while 13 of
20 can be ignored if the monotonic total norm of f is 1.

Since the βa are multiplied by something going to 0 as d increases, it is their tail behavior
that determines N(d, ε) and M(d, ε) when d is larger. If the tails of the |βa| are thinner
than the exponential tails, e.g. they have Gaussian tails, then even fewer of the regressors
matter, both N and M are smaller. For some tail behaviors, the ratios N/d and M/d go to
0 at different rates as d ↑ ∞.

The dimension dependent growth of total efficacy is behind the slower rates of convergence
in higher dimensions. Here, varying the distributional assumptions about the regression
coefficients shows that this may not be the relevant approximation. One suspects that in
many empirical situations, the total efficacy is often small relative to d because relatively few
regressors turn out to matter very much. This is behind the success of Tibshirani’s (1996)
lasso models, and, as part of an extended comparison of parametric and nonparametric
methods, Breiman (2001) discusses several general classes of high-dimensional situations in
which this kind of ratio result holds.

IV. The Geometry of Dimension Independent Rates

The previous section strongly suggests that the rate of convergence analyses of non-
parametric regression should focus on efficacy bounded classes of functions rather than the
efficacy unbounded class of Lipschitz functions. The result in this section goes further, and
gives a unified, dimension-independent, geometric representation of a class of non-parametric
regression estimators that includes, but is not limited to, series expansions (Fourier, wavelet,
Tchebyshev and others), kernels and other locally weighted regressions, splines, wavelets,
and artificial neural networks. The geometric representation allows one to identify, for each
of these regression techniques, classes that function as Barron’s efficacy bounded class, Vann

d .

IV.A. Spaces of Targets. Let µ denote the distribution of (Y, (X1, . . . , Xd)) in R1+d and
µX the (marginal) distribution of the explanatory variables, (X1, . . . , Xd). The target func-
tion is x 7→ f(x) := E (Y |X = x) from the support of µX to R. Throughout, the target is
assumed to belong to a space of functions V ⊂ Lp(Rd, µX) for some p ∈ [1,∞) endowed with
a norm that makes it a separable, infinite dimensional Banach space such as the following.

(1) V = L2(Rd, µX), typically used in Fourier series analysis, wavelets, and other or-
thogonal series expansions.

(2) V = Lp(Rd, µX) spaces, p ∈ [1,∞), typically used when higher (or lower) moment
assumptions are appropriate.

(3) V = C(D), the continuous functions on a compact domain D ⊂ Rd satisfying
µX(D) = 1, with norm ‖f‖∞ := maxx∈D |f(x)|.

(4) V = Cm(D), the space of m-times continuously differentiable functions, m ∈ N, on
a compact domain D having a smooth boundary and satisfying µX(D) = 1, with
norm supx∈D

∑
|α|≤m |Dαf(x)|, typically used when smoothness of the target is an

appropriate assumption.8

8Here, α is a multi-index, α = (α1, . . . , αd), αi ∈ {0, 1, . . .}, and |α| :=
∑

i αi.
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(5) V = Sm,p(Rd, µX), p ∈ [1,∞), the Sobolev spaces, defined as the completion of the
set Cm,p(Rd, µX), the m-times continuously differentiable functions on Rd, with norm

‖f‖ =
∑
|α|≤m

[∫
|Dαf(x)|p dµX(x)

] 1
p < ∞, are typically used when approximation

of a function and its derivatives rather than uniform approximation is appropriate.

The sets CLip
d , CMTV

d , and CLip
d ∩ CMTV

d are dense in all of these spaces. They are also
negligible in a sense to be made clear below.

IV.B. Compactly Generated Two-Way Cones. An estimator of an f ∈ V is a sequence

of functions f̂n ∈ V where each f̂n depends on the data (Yi(ω), (X1,i(ω), . . . , Xd,i(ω)))ni=1. For

the nonparametric techniques studied here, the f̂n are of the form f̂n(x) =
∑

k βkck(x) where
βk ∈ R and ck ∈ V. What varies among the estimators are the functions ck, the number of
terms in the summation, and the dependence of both on ω. The geometry that is common
to nonparametric regression estimators is that there is a sequence, Cκ(n) = Cκ(n)(ω) ⊂ V of

compactly generated two-way cones with the property that f̂n ∈ Cκ(n).

U = {f ∈ V : ‖f‖ < 1} denotes the unit ball in V, its closure is U , and ∂U = {f ∈ V :
‖f‖ = 1} is its boundary. For E ⊂ V, spE is the span of E, that is the set of all finite
linear combinations of elements of E, and spE is the closure of the span of E.

For S ⊂ R, S · E := {s · f : f ∈ E, s ∈ S} is the set of scalar multiples of elements of E
with scalars belonging to S. It is worth noting that in the following definition, a cone need
not be convex, e.g. the non-negative axes in Rd are a cone, and that a two-way cone may
contain linear subspaces.

Definition 3. A set F ⊂ V is a cone if F = R+ · F , that is, if F is closed under mul-
tiplication by non-negative scalars. A set C ⊂ V is a two-way cone if C = R · C. A
two-way cone is compactly generated if there exists a compact E ⊂ U , 0 6∈ E, such that
C = R · E.

IV.C. Examples. We turn to examples of commonly used nonparametric estimators that
belong to sequences of compactly generated two-way cones. Series estimators (Fourier se-
ries, wavelets, splines, and the various polynomial schemes), as well as broad classes of
artificial neural network estimators belong to nested sequences of compactly generated two-
way cones. Kernel estimators and other locally weighted regression schemes on compact
domains belong to a non-nested sequence of compactly generated two-way cones. Through-
out, it is important to note that the sequence of cones will often depend not only on n, the
number of data points, but on ω through the data, (Yi(ω), (X1,i(ω), . . . , Xd,i(ω)))ni=1.

IV.C.1. Series estimators. Fourier series, wavelets, splines, and the various polynomial
schemes specify a countable set E = {ek : k ∈ N} ⊂ ∂U with the property that spE = V.
Descriptions of the specific ek for Fourier series, for the various polynomial schemes, and

for wavelets are widely available. The estimator based on n data points, f̂n, is a function of
the form

f̂n(x) =
∑

k≤κ(n)β̂kek(x). (9)

The dependence on ω arises because the function is chosen to best fit the data. The estima-

tors f̂n belong to Cκ(n) := sp {e1, . . . , eκ(n)}. Being a finite dimension subspace of V, each
Cκ(n) is a compactly generated two-way cone, e.g. generated by sp {e1, . . . , eκ(n)} ∩ ∂U .

Since spE = V, having limn κ(n) = ∞ guarantees that the f̂n can approximate any
function. To avoid overfitting and its implied biases, not letting κ(n) go to infinity too
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quickly, e.g. κ(n)/n → 0 guarantees consistency. If κ(n) → ∞ is regarded a sequence of
parameters to be estimated e.g. by cross-validation, then κ(n) also depends on ω, which
yields the random sequence ω 7→ Cκ(n)(ω).

IV.C.2. Kernel and locally weighted regression estimators. Kernel estimators for functions
on a compact domain typically begin with a function K : R → R, supported (i.e. non-
zero) only on [−1,+1], having its maximum at 0 and satisfying three integral conditions:∫ +1

−1
K(u) du = 1,

∫ +1

−1
uK(u) du = 0, and

∫ +1

−1
u2K(u) du 6= 0. Univariate kernel regression

functions are (often) of the form

f̂n(x) =
∑n

i=1 β̂ig(x|Xi, hn) =
∑n

i=1 β̂iK( 1
hn

(x−Xi)). (10)

Here κ(n) = n and Cκ(n)(ω) = sp {K( 1
hn

(x−Xi(ω)) : i = 1, . . . , n}.
When the kernel function, K(·), is smooth and its derivatives satisfy lim|u|→1K

(α)(u) = 0,

and the Xi belong to a compact domain, D, the estimator f̂n belongs to Cm(D) for any m,
and the Cm(D)-norm or one of the Spm-norms might be used. If the kernel function, K(·),
function is continuous but not smooth, the f̂n belong to Cb(R), hence to Lp(R, µX). For

any compact D ⊂ R, the restrictions of the f̂n to D belong to C(D).
In all of these cases, the n-data points, Xi, i = 1, . . . , n, and the window-size parameter

hn, define n non-zero functions, g(·|θi,n), θi,n = (Xi, hn). The estimator, f̂n, belongs to the
span of these n functions. As established above, the span of a finite set of non-zero functions
is a compactly generated two-way cone.

The considerations for choosing the window-sizes, hn, parallel those for choosing the κ(n)
in the series expansions. They can be chosen, either deterministically or by cross-validation,
so that hn → 0, to guarantee that the kernel estimators can approximate any function, but
not too quickly, so as to avoid overfitting.

The considerations for multivariate kernel regression functions are almost entirely analo-
gous. These estimators are often of the form

f̂n(x) =
∑n

i=1β̂ig(x|Xi, hn) =
∑n

i=1β̂iK(
1

hn
‖x−Xi‖) (11)

where hn ↓ 0 and the Xi are points in the compact domain D ⊂ Rd.
Locally weighted linear/polynomial regressions have different gi(·|θi,n), see e.g. Stone

(1982). In all of these cases, when the domain is compact, so are the sets of possible
parameters for the functions gi, and the mapping from parameters to functions is continu-

ous. This again implies that the f̂n belong to the span of a finite (hence compact) set not
containing 0.

IV.C.3. Artificial neural networks. Single hidden layer feedforward (slff) estimators with
activation function g : R→ R often take E ⊂ V as E = {x 7→ g(γ′x̃) : γ ∈ Γ}. Here x ∈ Rd,
x̃′ := (1, x′)′ ∈ Rd+1, and Γ is a compact subset of Rd+1 with non-empty interior. The slff
estimators are functions of the form

f̂n(x) =
∑

k≤κ(n)β̂kg(γ̂′kx̃), (12)

where the γ̂k belongs to Γ. Specifically, Cκ(n) = {
∑

k≤κ(n) βkck : ck ∈ E} is the compactly
generated two-way cone of slff estimators.

If κ(n) → ∞, κ(n)/n → 0, and spE = V, then the total error goes to 0. Various
sufficient conditions on g that guarantee spE = V with compact Γ in the Banach spaces
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listed above are given in Hornik et. al. (1989, 1990), Stinchcombe and White (1990, 1998),
Hornik (1993), Stinchcombe (1999). Also as above, κ(n) may be regarded as a parameter,
estimated by cross-validation.

When g is continuous and Γ is compact, then E is a compact subset of C(D) for any
compact D ⊂ Rd. When g is bounded, as is essentially always assumed, E is a compact
subset of Lp(Rd, µX) for any p ∈ [1,∞). When g is bounded and measurable, as in the case
of the frequently used ‘hard limiter,’ g(x) = 1[0,∞)(x), and µX has a density with respect
to Lebesgue measure, E is a compact subset of Lp(Rd, µX), p ∈ [1,∞). When g is smooth,
e.g. the ubiquitous logistic case of g(x) = ex/(1 + ex), and Γ compact, then E is a compact
subset of Cm(D), and of Spm(Rd, µX) for any m and any p ∈ [1,∞).

Aside from notational complexity, essentially the same analysis shows that multiple hidden
layer feedforward networks output functions are also expressible as the elements of the span
of a compact set E.9

Radial basis network estimators most often take En to be a set of the form En = {x 7→
g( 1

λn
(x− γ)′Σ(x− γ)) : γ ∈ Γ, λn ≥ λn}, Γ a compact subset of Rd containing the domain,

Σ a fixed positive definite matrix, λn ↓ 0 but not too quickly, g a continuous function. The
estimators are functions of the form

f̂n(x) =
∑

k≤κ(n)β̂kg(γ̂′kx̃), (13)

The continuity of g implies that the En have compact closure. For the common choices of
g in the literature, g(0) 6= 0 so that 0 6∈ En.

IV.D. Rates and Consistency. In the examples just given, the sequence of compactly
generated two-way cones become dense, and may be either deterministic or random. The
cones becoming dense is consistency.

Definition 4. A random sequence of compactly generated two-way cones, ω 7→ Cκ(n)(ω), is
consistent if for all g ∈ V, P (∪N ∩n≥N [d(g, Cκ(n)(·)) < ε]) = 1.

IV.E. Results. For any sequence of sets, Bn, [Bn i.o.] :=
⋂
m

⋃
n≥mBn is read as “Bn

infinitely often,” while [Bn a.a.] :=
⋃
m

⋂
n≥mBn is read as “Bn almost always.” For a

compactly generated two-way cone, C, of estimators, and r > 0, the set C + r · U is the
set of all targets that are within r of set of estimators contained in C. Consistency can be
rewritten as “for all ε > 0, P ([Cκ(n) + ε · U a.a.] = V) = 1.” Of particular interest will be
sets of the form [Cκ(n) + rn · U a.a.] where rn → 0 and Cκ(n) is a sequence of compactly
generated two-way cones.

This section proves Lemmas 4 and 5, which yield the following.

Theorem A. For any consistent nonparametric regression technique with estimators be-
longing to a sequence, Cκ(n), of compactly generated two-way cones, and for any rn → 0, a
dense, shy set of targets can be approximated at the rate O(rn).

“Shyness” is defined below, and provides useful information about the sets of targets.
Within the Banach spaces of functions listed above (and many others), CLip

d and CMTV
d

form dense, shy sets of functions, as does their intersection.

9Consistency issues for multiple layer feedforward networks are addressed in the approximation theorems of
Hornik, Stinchcombe, and White (1989, 1990), and Hornik (1993).
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For M ∈ N, define AMn := Cκ(n) +Mrn ·U . Fix a sequence of sets of estimators Cκ(n). For
g ∈ V, there exists a subsequence, n′, such that d(g, Cn′) = O(rn′) if and only if g ∈ [AMn i.o.]
for some M ∈ N. If we do not allow subsequences, we have d(g, Cn) = O(rn) if and only if
g ∈ [AMn a.a.] for some M .

Definition 5. The set of O(rn)-accumulatable targets is ∪M [AMn i.o.], and the set of
O(rn)-approximable targets is T (rn) := ∪M [AMn a.a.].

Lemma 4. P (T (rn) is dense ) = 1 if and only if the Cκ(n) are consistent.

Proof. Suppose that Cκ(n) is consistent. Let G = {gj : j ∈ N} be a dense subset of V.
Define Bm

j = ∪N ∩n≥N [(gj + 1
m
·U)∩ (Cκ(n)(ω) + rn ·U) 6= ∅]. Since the Cκ(n) are consistent,

P (Bm
j ) = 1. Therefore, P (∩m,jBm

j ) = 1. Finally, the event that d(gj, T (rn)) < 1/m for
every m contains ∩m,jBm

j .
Suppose now that Cκ(n) is not consistent, i.e. there exists g ∈ V and ε > 0 such that

P ([d(g, Cκ(n)) < ε a.a.]) < 1, equivalently, P ([d(g, Cκ(n)) ≥ ε i.o.]) > 0. For all M , Mrn < ε
for all but finitely many n. Therefore, P (T (rn)∩(g+ε·U) = ∅) > 0. That is, the probability
that T (rn) is dense is less than 1. �

The Lipschitz functions and the functions with bounded efficacy satisfy the following
notion of a negligible subset of an infinite dimensional space.10

Definition 6. A subset S of a universally measurable S ′ ⊂ V is shy or Haar null if there
exists a compactly supported probability η such that η(S ′ + g) = 0 for all g ∈ V.

Lemma 5. If rn goes to 0 more slowly than r′n, then T (rn) \ T (r′n) is shy.

For ease of later reference, we separately record the following easy observation.

Lemma 6. If C is a compactly generated two-way cone, then it is closed, has empty interior,
and C ∩ F is compact for every closed, norm bounded F .

Proof of Lemma 5: It is sufficient to show that the set of O(rn)-accumulatable targets is
shy because T (rn) = ∪M [AMn a.a.] ⊂ ∪M [AMn i.o.], and any subset of a shy set is shy.

A set F ⊂ V is approximately flat if for every ε > 0, there is a finite dimensional subspace
W of V such that F ⊂ W + ε · U . Every compact set is approximately flat — let Fε be a
finite ε-net and take W = spFε. From Stinchcombe (2001, Lemma 1), for any sequence Fn
of approximately flat sets, [(Fn + rn ·U) i.o.] is shy. Since the countable union of shy sets is
shy, ∪M [(Fn +Mrn · U) i.o.] is shy.

Fix arbitrary R > 0. It is sufficient to prove that (R · U) ∩ [AMn i.o.] is shy. Fix arbitrary
η > 0. R · U is a subset of the closed, norm bounded set R · (1 + η)U . By Lemma 6,
the set Fn = Cn ∩ (R · (1 + η)U) is compact. Since compact sets are approximately flat,
S = [(Fn +Mrn · U) i.o.] is shy. Since rn → 0 and η > 0, [(R · U) ∩ [AMn i.o.]] ⊂ S. �
Proof of Theorem A: Lemma 4 shows that consistency of the non-parametric regression
technique with estimators given by a sequence Cκ(n) of compactly generated two-way cones
and denseness of T (rn) are equivalent. Lemma 5 shows that T (rn) is shy. �

10There are several related notions of negligible sets in infinite dimensional spaces, detailed in Benyamini
and Lindenstrauss (2000, Ch. 6). Anderson and Zame (2001) cover some of the uses of shy (Haar null) sets
in economic theory, and greatly extend the applicability of the notion.
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V. Conclusions and Complements

Most of the analyses of the rates of convergence for nonparametric regression arrive at
dismal results with even a moderate number of regressors. The key assumption driving
these results is that the target function, f(x1, . . . , xd) = E (Y |(X1, . . . , Xd) = (x1, . . . , xd))
is uniformly Lipschitz. This assumption can never be rejected by data. Replacing the
Lipschitz functions by sets of functions sharing this unrejectability shows that the order
of the rate of convergence is given by the order of the estimation error, that dimension-
dependent approximation error need play no role.

Examples suggest that dimension dependence of the complexity of a regression function
is more tightly tied to its monotonic total variation than to any measure of its smoothness.
These examples also demonstrate that how the variation depends on the dimensionality may
vary from one set of problems or distribution over problems to another. Experience suggests
that the variation, both in linear and non-linear regression, is often small.

Together, the results and examples suggest that rates of convergence calculated using
Lipschitz functions are mis-leading, that what matters is some measure of variability. This
puts correspondingly more weight on the criteria of interpretability and generalization for
the judging competing nonparametric approaches.

There are a number of subsidiary points to be made.

V.A. Comparison and Estimation of Dense Sets. As well as comparing T (rn) and
T (r′n) for the same nonparametric regression technique, one can also compare these sets
across regression techniques. For example, Barron (1993) fixes a pair of rates, rn and
r′n with r′n = o(rn), and shows that for the ann techniques that he considers, Tann(r′n)
cannot be approximated by any series expansion at a rate rn. Reversing his example in L2

requires a permutation of the basis elements, and gives rise to a set Tseries(r′n) that cannot
be approximated by any variant of his ann technique at a rate rn.

This seems to be part of a more general pattern. Pick a pair of sequences rn, r
′
n with r′n =

o(rn). From Lemma 4, T (rn) \ T (r′n) and T (r′n) are disjoint, dense sets of nonparametric
targets. We conjecture that for generic pairs of sequences, C1,κ(n) and C2,κ′(n), of compactly
generated two-way cones, T1(r′n) \ T2(rn) 6= ∅ and T2(r′n) \ T1(rn) 6= ∅.

As has been noted, with smooth classical measurement error (or with errors in variables),
it is not possible to reject (say) HEff : fd is uniformly efficacy bounded in favor of the larger
alternative hypothesis, HLip : fd is uniformly Lipschitz bounded. If one could estimate
Lipschitz or efficacy norms, then in principle one could test the alternative hypotheses
against each other, but this estimation problem seems extraordinarily difficult.

V.B. Comparisons Across Rates. If rn and r′n both go to 0 but rn goes more slowly, then
the dense class T (rn) is larger than the dense class T (r′n). Lemma 5 shows that the difference
between the sets, T (rn) \ T (r′n), is shy. Shy subsets are an infinite dimensional extension of
the finite dimensional Lebesgue null set notion non-genericity. This gives partial information
about the size of the difference between the two sets. It is only partial information because
the proof simply shows that the larger of the two sets is Haar null, and any subset of a null
set is a null set. Two points:

(1) Much to be desired is an improvement on this partial result. Something that would,
despite the impossibility of data ever distinguishing between the dense sets, allow one
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to distinguish, at least theoretically, more finely between sets of targets T (rn) and
T (r′n). However, Lemma 5 shows that trying to resurrect the curse of dimensionality
in rates of convergence requires one to say that one non-generic dense set of functions
is clearly preferable to another non-generic dense set of functions, and that it’s
preferable because it yields worse results.

(2) For finite dimensional parametric estimation, superefficiency can happen on Lebesgue
null sets (e.g. Lehmann and Casella (1983, Ch. 6.2)). For infinite dimensional non-
parametric estimation, Brown, Low, and Zhao (1997) show that it can happen “ev-
erywhere,” that is, at all points in the dense sets of targets T (rn) that are typically
used. It seems that behind this result is the same approximately-flat-but-not-flat
infinite dimensional geometry that yields the denseness of the T (rn) classes.11

V.C. Smoothness. Another aspect of the work on the curse rates of approximation is that
smoother targets lead to faster approximation. For example, if the target f is assumed
to have s continuous derivatives, and these derivatives are Lipschitz, then Stone’s rate of
approximation is increased to OP (n−1/(2+[d/s])). The dense classes, Vann, in the dimension
independent ann rate of approximation work are defined by an integrability condition on
various transforms of the gradient of the target. Niyogi and Girosi (1999) note that this
suggests that s = s(d) in such a fashion that [d/s] stays small for the Vann and d increases.

One might guess that something similar is at work in the classes T (rn) that are analyzed
here. However, this kind of smoothness argument is problematic for three separate kinds
of reasons. First, for many classes of ann’s, the dense set of targets are not only infinitely
smooth, they are analytic. It is hard to see how smoothness could vary with dimension
in this context. Second, for many other classes of ann’s, the dense set of targets contain
discontinuous functions, and smoothness cannot enter. Finally, the work here provides a
plethora of dense classes for which the dimensionality of the regressors plays no role, and
it seems unlikely that there is some special smoothness structure common to the different
dense sets that work for the different techniques.

V.D. More on Negligible Sets. By definition, S is shy if and only if η(S+g) is shy for all
g and some compactly supported probability η. If V = Rk, the finite dimensional case here
ruled out by assumption, one can take η to be the uniform distribution on [0, 1]k and show
that S is shy if and only if it is a Lebesgue null set if and only if for every non-degenerate
Gaussian distribution ν, ν(S) = 0. Stinchcombe (2001) showed that there is no similar
comfortable Bayesian interpretation of shy sets in the infinite dimensional contexts studied
here.

Other relevant properties of this class of shy sets are:

(1) shy sets have no interior so that prevalent sets are dense;
(2) the countable union of shy sets is shy, equivalently the countable intersection of

prevalent sets is prevalent; and
(3) if V is infinite dimensional if and only if compact sets are shy.

Lemmas 5 and Theorem A used shy sets. These results would not hold if we replaced
shy sets with the original, more restrictive, class of infinite dimensional null sets due to
Aronszajn (1976). These are now called Gauss null sets because Aronszajn’s definition is

11I am grateful to Xiaohong Chen and Jinyong Hahn for these last two points.

15



now known to be equivalent to the following: S is Gauss null if and only if for every non-
degenerate Gaussian distribution, ν, on V, ν(S) = 0 (see Benyamini and Lindenstrauss,
2000, Ch. 6). Every Gauss null set is shy, but the reverse is not true. It can be shown that
the sets ∪nCκ(n) of estimators are Gauss null, but not that [Cκ(n) + rn · U a.a.] is not.

V.E. Possible Extensions and Generalizations. There are several additional points to
be made.

1. One can think of the analysis of affine conditional means with independent regressors of
§III as a very special class of parametrized models. Suppose, more generally, that Cκ is
smoothly parametrized by a κ-dimensional vector with κ fixed. Standard results imply

that ‖f̂n − f ∗κ‖ = εκ,n = O(n−1/2). If instead of being fixed, we let κ depend on d and
on n. If κ(d, n) ↑ ∞, as required for consistency, but κ(d, n) grows very slowly, then the
n−1/2 rate of approximation slows as little as one desires.

2. If the data is not iid but has some time series structure, one expects that the estimation
error in (5) will not be O(n−1/2) for fixed κ, but something slower. Again, since Lemmas 4
and 5 concern approximation error, total error for the nonparametric regressions covered
here would also go to 0 at this ineluctably slower rate if we were outside of the iid case.

3. It is hard to imagine nonparametric techniques with estimators that do not belong to a
sequence of compactly generated two-way cones. For example, in the above discussion
of the locally weighted regression schemes and the artificial neural network estimators,
we made use of compact domain assumptions to ease the exposition, and this led to the
compactly generated conclusion. However, since the distribution of the data is tight,
one can replace the compact domains with a sequence of compact domains having the
property that with probability 1, the estimators belong to the associated sequence of
compactly generated two-way cones.

4. The proof of Lemma 4 can be easily adapted to show that consistency is equivalent to
T (rn) containing a dense linear subspace of V with probability 1. Cohen et. al. (2001)
characterize some of these dense linear subspaces for wavelet expansions.

5. All of the above has been phrased as regression analysis of conditional means. Since
Lemmas 4 and 5 concern the approximation error, one could also, with essentially no
changes, consider, e.g., conditional quantile regression and/or loss functions other than
mean squared loss. At whatever rate the estimation error goes to 0, there is a dense class
of nonparametric targets with the approximation error going to 0 at the same rate.

6. The use of Banach spaces for the set of targets is not crucial. The compactly generated
assumption must be slightly modified in locally convex, complete, separable, metric vector
spaces, but the main result driving the shyness proofs is Stinchcombe (2001, Lemma 1),
which applies in such spaces. For example, one could take V = C(Rd) with the topology
of uniform convergence on compact sets, or any other of the other Frechet spaces that
appear in non-parametric regression analyses.

7. It is a reasonable conjecture that the same results hold for density estimation as hold
for regression analysis. Following Davidson and McKinnon (1987), the target densities
can be modeled as points in a convex subset of the positive orthant in a Hilbert space.
Lemma 4 should go through fairly easily, but Lemma 5 may be more difficult. The
shyness argument requires extending Stinchcombe (2001, Lemma 1) to Anderson and
Zame’s (2001) relatively shy sets.
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8. It can be shown that if C is a compactly generated two-way cone, then the open set
C+U is not dense in V. The role of the compact set E not containing 0 in the definition
of compactly generated cones can be seen in the following, which should be compared to
Lemma 6.

Example 6. If xn is a countable dense subset of ∂U and E is the closure of {xn/n : n ∈ N},
then E is a compact subset of the closed, norm bounded set U . However, the two-way cone
R ·E is not compactly generated, not closed, and is dense, so that R ·E + ε ·U = V for any
ε > 0.

V.F. Studying the Difficulty of Nonparametric Problems. Finally, some rather pre-
liminary simulation data suggest that it is possible to characterize the difficulty of nonpara-
metric problems by studying when the root-n consistency “kicks in.” More specifically, let
d be the number of regressors and let n(d) be the number of data points beyond which
the root-n asymptotics provide a reasonable guide. The higher is the function d 7→ n(d),
the more difficult the problem. Being uniformly higher for many different nonparametric
techniques constitutes a strong indication that the problem is considerably more difficult.
We leave this for future research.
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