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THE UNBEARABLE FLIGHTINESS OF BAYESIANS:

GENERICALLY ERRATIC UPDATING‡

MAXWELL B. STINCHCOMBE

Abstract. A decision maker tries to learn the distribution of an observed,
utility relevant, independent and identically distributed (iid) sequence of ran-
dom variables. The random variables have infinite support, and the decision
maker learns by updating their prior distribution on the set of distributions
of the sequence. For a generic set of priors, Bayesian updating and the corre-
sponding optimizing behavior are wildly erratic.

1. Introduction

In solving dynamic maximization problems, one can either form a complete

contingent plan that maximizes expected utility or one can update the prior

distribution and then maximize using the posterior distribution. I apply this

principle to the study of long run optimal behavior in commonly used class of

dynamic programming problems, those with additively separable expected utility

representations of preferences, and a utility-relevant, exogenous processes that is

iid. The uncommon aspect of the problems under study is that the stochastic

law for the exogenous variables is not known, it must learned by updating.

Optimal job search behavior in standard models has reservation wage policies

that depend on the distribution of wages, savings, and the leisure-consumption

tradeoff. Inventory models with fixed costs of ordering give rise to (s, S) policies

that depend on the costs and distribution. When present actions and future

realizations determine payoffs, forecasts become valuable. In these three cases,

one may see many odd phenomena while the prior information is being replaced

by data and the distribution of the exogenous randomness is being learned. One

might hope that, as more data accumulates, the posterior distribution converges
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to the true distribution, and the corresponding optima choices converge to the

best response to the true distribution.

This paper proves that for a generic set of priors, there is a probability 1

set of histories along which the decision maker becomes, infinitely often, nearly

convinced of every element of a dense set distributions for the exogenous sequence.

This means that they will choose, infinitely often, all of the actions that are

rationalized by a dense set of beliefs. For example, in the job search models, with

probability 1, arbitrarily high wages will be rejected, infinitely often, as not good

enough, and arbitrarily low wages will be accepted, infinitely often.

Intuitively, this kind of updating arises because a prior over a set of distribu-

tions needs to encode relative likelihoods of infinitely many pairs, triplets, etc.,

of occurences. Generically, some of these relative likelihoods are arbitrarily close

to 0. During any history in a set of realizations having probability 1, events with

arbitrarily small relative likelihood will occur. The proof shows that this will lead

to erratic updating behavior.

The present work can be understood in the context of two results. First, if

the decision maker best responds to the empirical distribution, they will, with

probability 1, eventually converge to best responding to the true distribution.

An expected utility maximizer expects to beat this strategy. Second, suppose

that the true distribution of the process is drawn according to some probability

that is mutually absolutely continuous with respect to the decision maker’s prior.

Doob (1949) showed that the updated beliefs form a convergent martingale so

that beliefs converge to point mass on the true distribution. The present work

entertains the possibility that the decision maker’s prior knowledge is not correct,

and asks what we can say about the set of beliefs that the decision maker might

have that would lead to finding the true distribution.

To specify what it means to be “nearly convinced of every element of a dense set

of distributions,” let G be an open set of possible distributions of the exogenous

process. Beliefs become nearly certain that G governs the process if, for a

set of histories having probability 1 and for every ε > 0, the posterior probability

assigned to G is greater than 1−ε infinitely often. Since the empirical distribution
converges to the true distribution, the (non-Bayesian) beliefs given by point mass

on the empirical distribution become nearly certain that G governs if and only

if G contains the true distribution. Beliefs are erratic if they become nearly
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certain that every non-empty open G governs. Since different G can be disjoint,

being erratic is a very strong form of failing to settle down. This paper proves:

Theorem. If the true distribution has infinite support, then the set of erratic

priors belongs to the complement of a countable collection of closed convex sets

of priors, each of which has an empty interior.

The next section examines the implications of this result in a three widely used,

representative models, and gives some intuition and context for the result. The

following two sections contain an examination of the interpretations of prevalence,

the notion of genericity used here, as well as the formal statement and proof. The

last section concludes.

Throughout, probabilities are countably additive, Borel probabilities, whether

specified directly or through use of a density, probabilities are said to converge

if and only if they converge weakly, and probabilities on sets of probabilities are

defined on the σ-field generated by the topology of weak convergence.

2. Examples, Intuition, Empiricists, and Context

One can see implications of the result proved here in the context of inventory

models, search models, and forecasting models. The implications are puzzling

because the empiricist’s strategy, best responding to the empirical distribution,

converges to a best response to the true distribution with probability 1.

There are several intuition about the puzzle. First, when the prior distribution

is widely spread, it may well have likelihood in neighborhoods of densities that

“wiggle” sufficiently fast to ‘track’ or ‘overfit’ the data. Second, even among the

priors for which the beliefs converge to something, the mapping from priors to

limit points is extremely discontinuous. Third, even in the case of finitely sup-

ported observations, convergence of the posterior distribution can be arbitrarily

slow. Finally, generically, the relative likelihoods of different realizations come

arbitrarily close to 0 and ∞. Updating with extreme relative likelihoods can
cause posterior distributions to jump, and this may matter, especially in the case

of slow convergence.

From martingale convergence arguments (Doob, 1949), we know that beliefs

converge if the true distribution is drawn according to any probability mutually

absolutely continuous with the prior. Especially when the prior distribution has

full support, this seems to be a strong argument for the consistency of updating.
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The present work examines the possibility that the decision maker is mistaken

about the process that generated the true distribution.

Though the results are somewhat more general, in the examples, the random

variables, Xt, are assumed iid, taking values in a convex subset of R
n with non-

empty interior, n ≥ 1, and they have a continuous, strictly positive density, f ,
with respect to Lebesgue measure.

2.a. Examples: Inventory, Search, Forecasting. The following is a fairly

standard example of an inventory model.

Example 1. Each period, t, an iid demand, Xt ≥ 0, is realized. Sales are Yt =
min{Xt, It} where It ≥ 0 is the inventory on hand in period t. Any unfilled
demand is lost. At the end of each period, as a function of previous history, a

re-stocking decision, Rt ≥ 0, is made, leading to inventories It+1 = (It−Yt)+Rt.
Revenues in period t are p · Yt. Costs, Ct, have a storage component, s · (It− Yt),
and a re-ordering component, (C + cRt)1{Rt>0}. The decision maker maximizes
expected discounted profits, E

∑
t β
t(pYt − Ct).

We assume that the Xt have a continuous strictly positive density f on an

interval [0,M ] or [0,∞). For appropriate values of f, p, s, C, and c, it is profitable
to run the inventory system at a positive level. If f is known, the optimal rule is

an (s, S) inventory policy: order enough to get inventory up to S if it is below s.

Or, if you prefer, R∗t = (S − (It − Yt)) · 1{It−Yt<s}.
This paper studies the case in which f is not known and the decision maker

has a prior distribution over the set of densities. The Theorem given above and

the logic that proves the optimality of (s, S) policies for known f imply that, for

every prior in a prevalent (generic) set, on a probability 1 set of histories, there

are infinitely many points in time when inventory close to 0 is not replenished,

and infinitely many points in time that huge purchases are made in the presence

of a large inventory.

Example 2. Each period, t, there is an iid wage offer, Xt. If accepted, one works

for T ≥ 2 periods (T can be random) at wage Xt, then becomes unemployed again,
and the new offer Xt+T occurs in the following period. If rejected, a new Xt+1

occurs in the following period. Wage income, Yt, is the most recent accepted offer

if employed during a period and is 0 otherwise. In each period, the decision maker

consumes ct and leisure, `t. The consumption ct comes out of savings, St, or wage
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income, Yt, 0 ≤ ct ≤ St + Yt, and St+1 = (1 + r)(St + Yt − ct). `t is large in
unemployed periods and smaller in employed periods. Utility (felicity) in period

t is u(ct, `t), u(·, ·) is concave and increasing, and the decision maker maximizes
E
∑
t β
tu(ct, `t).

The easiest assumption on the stochastic Xt is that they have a continuous

strictly positive density, f , on some interval [a, b]. If f is known, optimal policies

involve a reservation wage that depends on the marginal rate of substitution

between consumption and leisure in the utility function u(·, ·), negatively on the
size of the savings account, positively on the riskiness of theXt. Rothschild (1974)

notes the lack of robustness of these search theoretic results, “Almost without

exception, these results depend on the untenable assumption that searchers know

the probability distribution from which they are searching.” The present work

shows a bit more.

Suppose that f is not known, and that the decision maker has any prior dis-

tribution in the prevalent set of priors here identified. The Theorem given above

and the logic behind the optimality of reservation wages for known f imply that,

for every ε > 0, on a set of histories having probability 1, the searcher will infin-

itely often accept all wage offers greater than a+ ε, and will infinitely often reject

any wage offer less than b− ε (where b is Bill Gates’s annual income).
The need for good forecasting appears in the following class of models.

Example 3. Each period t, an action at must be taken before the realization of

a random Xt. The decision maker maximizes E
∑
t β
tu(at, Xt).

Suppose that Xt = (Rt, Pt) ∈ R2+ is the amount of rain during a growing season
and the selling price at harvest time, and that at ≥ 0 is the amount of fertilizer
applied. In this case, u(at, Xt) might be of the form PtG(at, Rt)−pat for a concave
growth function G(·, ·) and price p for fertilizer. Suppose that Xt = (τt, Ht) ∈ R2+
is the arrival time of the monsoon rains and the random maximal harvest level,

and that at is the scheduled planting time. In this case, u(at, Xt) might be of the

form Ht−r|τt−at| ·1{τt<at}−s|τt−at| ·1{τt>at}, r, s > 0, so that one loses different
amounts of the maximal harvest Ht depending on whether the monsoons arrive

before or after planting.

In this class of problems, there are no (interesting) dynamics when the Xt are

iid with known f — there is no need for forecasting because the optimal policy

is stationary, at ≡ a∗ where a∗ solves maxa
∫
u(a, x)f(x)dx. This implies that,
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when the decision maker has any prior in a prevalent subset of the possible priors,

for each history in a set having probability 1, infinitely often, the decision maker

will best respond to being nearly convinced that the true distribution is in the ε-

ball aroung every density, g, in a dense set of densities. In the fertilizer example,

the decision maker will infinitely often apply only enough fertilizer for desert

conditions, and will infinitely often apply enough fertilizer for daily monsoon

rains.

2.b. Intuition. There are four pieces of intuition for why the main result might

be true.

First, when the prior distribution is widely spread, it may well have likelihood

in neighborhoods of densities that “wiggle” sufficiently fast to track the data. This

would result in updating “overfitting” the data. Second, even among the priors

for which the beliefs converge to something, the mapping from priors to limit

points is extremely discontinuous. Third, even in the case of finitely supported

observations, convergence of the posterior distribution can be arbitrarily slow,

essentially because the prior need not put much weight in a neighborhood of

the true distribution. When the set of possible distributions is large, one might

guess that “not having much weight in the neighborhood” happens often. Finally,

generically, priors assign arbitrarily high and arbitrarily low relative likelihoods

to different events, and updating uses these comparative likelihoods.

2.b.1. Wiggles and overfitting. If the prior distribution is full support, then the

neighborhoods of arbitrarily variable densities receive positive weight. For any

given realization of draws (i.e. for any given data set), there may well be a ‘wiggly’

density in the support that looks ‘just like’ the data. This leads to an ‘overfit,’

especially if the wiggly density has relatively high prior likelihood.

2.b.2. A strong sense of discontinuity. We now show that, for every strictly pos-

itive density, g, there is a dense set of priors, M(g), with the property that, no

matter what evidence accumulates, beliefs converge to g. Seeing why this is true

helps demonstrate no more than plausibility. I emphasize that the priors in this

example are not the priors that appear in the result, they are but an expository

device.

Throughout, we suppose that Xt is an iid sequence of random variables having

a continuous, strictly positive density, f , on an interval [a, b]. Let P∞f denote
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the associated product measure on the sequence space [a, b]N. Let Z denote the
set of continuous densities on [a, b]. Thus, ϕ ∈ Z iff ϕ ≥ 0 is continuous and
satisfies

∫
[a,b]
ϕ(x) dx = 1. A prior distribution is a probability µ, belong to the

set of probabilities on ∆(Z). After a t-length history ht, let µ(·|ht) ∈ ∆(Z) be
the associated posterior distribution.

Let A ⊂ Z be the set of continuous densities with holes in their support, that
is, densities for which the interior of ϕ−1(0) is non-empty. Note that A is weakly
dense in Z. For any strictly positive g ∈ Z, let M(g) be the set of priors putting
positive mass on g and on finitely many points in A. Thus, any ν ∈ M(g) is of
the form = α0δg +

∑I
i=1 αiδai where each ai ∈ A, each αi > 0, and

∑I
i=0 αi = 1.

Notice that the prior ν has finite support. Further, some of its support points,

the ai, do not have full support. The result here concerns full support priors on

the set of densities with full support.

Lemma 1. For every g, M(g) is dense in ∆(Z). Further, on a set of histories
having P∞f -mass 1, for every µ ∈M(g), µ(·|ht) converges to δg.
Proof: M(g) is dense because any set of probabilities with finite support in a
dense set is dense. Fix µ ∈ M(g). Let ϕ1, . . . , ϕm be the points in supp(µ) ∩ A.
For each ϕi, let Oi be a non-empty open subset of ϕ−1i (0). The waiting time
till ϕi is contradicted is a geometric random variable; the waiting time till all of
the ϕi are contradicted is the maximum of a finite number of geometric random
variables; and this is finite with P∞f -probability 1. Thus, for large t, µ(·|ht) = δg
with P∞f -probability 1.

2.b.3. Arbitrarily slow convergence. Suppose that there are two possible obser-

vations, H and T , and that the true probability of each is 1
2
. Suppose that the

prior has a density with respect to Lebesgue measure that is of proportional to

f(x − 1
2
) where f(r) ↓ 0 very quickly as r ↓ 0. By choosing f(·) appropriately,

the posterior distribution will converge to the true distribution as slowly as one

wishes.

2.b.4. Generically extreme relative likelihood ratios. A prior encodes the likeli-

hoods and relative likelihoods of the Xt landing in infinitely many different sets.

We will see that a prior having full support is a generic condition. Provided the

prior has full support, the relative likelihoods of disjoint events are necessarily

unbounded and arbitrarily close to 0. Since the posterior probabilities involve

dividing by the probability of a priori unlikely events, it is at least possible that
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updating can move the posterior by a huge amount. There is a slightly more

detailed way to look at this.

Updating a prior, µ, to a posterior, µ(·|ht), after partial history ht = (x1, . . . , xt)
is done using the formula

µ(B|ht) :=
∫
B
Πtτ=1ϕ(xτ )µ(dϕ)∫

Z Π
t
τ=1ϕ(xτ )µ(dϕ)

, B ⊂ Z.(1)

Let Gi = Bε(gi) be a disjoint pair of ε-balls around densities gi ∈ Z, i = 1, 2.
There is a probability 1 set of histories such that lim supt µ(Gi|ht) = 1, i = 1, 2.
Since the Gi are disjoint, we also know that lim inft µ(Gi|ht) = 0, i = 1, 2. Almost
all histories have the property that the ratio in (1) moves almost as high and as

low as possible infinitely often.

For µ(Gi|ht) to be close to 1, we must have µ-most of the higher values of
the function ϕ 7→ Πti=1ϕ(xt) concentrated in the ε-ball around gi. Since the

Xt are iid f , for large t, we (loosely) expect that Π
t
i=1ϕ(xt) takes the value∫

[a,b]t
Πtτ=1ϕ(x)Π

t
τ=1ϕ(x)dx1 · · · dxt. With µ being full support, the set of ϕ having

very small values in the neighborhood of some/many of the xt’s is strictly positive.

For some ht then, the denominator in (1) will be quite small, and the ratio quite

sensitive.

2.c. The Empiricist’s Strategy. The paradox of erratic updating is that the

posterior beliefs, by not settling down, contrast sharply with a major implica-

tion of the maintained iid assumption, that the empirical cdf does settle down.

It might seem that such behavior has negative implications for the optimality

of dynamic expected utility maximization in iid contexts. Let us examine this

argument in a version of the need for forecasting seen in Example 3.

Suppose that at each t, a decision maker chooses at ∈ {a, b} after having
observed the realizations of random numbers, X0, X1, . . . , Xt−1, in [0, 1] with
density f (with X0 any number in [0, 1]). After at is chosen, Xt is realized

and observed, and the decision maker receives reward Rt = u(at, Xt) ∈ [0, 1].
Corresponding to any infinite sequence ((at), (xt))

∞
t=1 of actions and realizations

is the sequence of rewards R̃ = (Rt)
∞
t=1 = (u(at, xt))

∞
t=1. Sequences of rewards

are evaluated using the Bernoulli utility function Vβ(R̃) := (1 − β)
∑
t β
t−1Rt,

0 < β < 1. The decision maker’s preferences over distributions on possible reward

sequences are represented by the expected utility function EµVβ(R̃) where “E
ν”

indicates integration with respect to the measure ν.
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Let R̃e be the achievable “empiricist” sequence of rewards associated with

choosing at to best respond to the empirical distribution of the history h
t−1 =

X0, . . . , Xt−1. Let R̃µ be the achievable sequence of rewards associated with
choosing at to best respond to the posterior µ(·|ht−1). Suppose that a is not a
dominant action, i.e. there exists a neighborhood of some x◦ ∈ [0, 1] such that
u(a, x) < u(b, x) for all x in the neighborhood, but that a is the strict best

response to f , i.e. r =
∫
u(a, x)f(x) dx > r =

∫
u(b, x)f(x) dx.

Since the true distribution of the sequence of Xt’s is P
∞
f , the “objective” max-

imizing strategy is at ≡ a, delivering an “objective” expected utility r. By the
Glivenko-Cantelli theorem, with P∞f probability 1, the entries in the vector R̃

e

are r, in expectation, with at most finitely many exceptions. By contrast, gener-

ically, R̃µ is r infinitely often. This seems to indicate that patient optimizers will

prefer R̃e to R̃µ, that the consistency embodied in the empiricist strategy leads

to higher payoffs, at least for patient decision makers.

Let δf ∈ ∆(Z) denote point mass on the distribution f . Formalizing the
argument about patient decision makers would require the inequality

EδfVβ(R̃
e) > EδfVβ(R̃

µ), β ∈ (β◦, 1) for some β◦ < 1,(2)

and it is here that the fallacy appears clearly. It is quite easy to give generic µ’s

and f in the support of µ satisfying (2). However, an expected utility maximizer

chooses actions bearing in mind a wide range of possibilities, knowing full well that

this may involve the “wrong” action being chosen from time to time. Evaluating

a course of action under δf , that is, under certainty about the true distribution

is, from the decision maker’s point of view, an entirely irrelevant exercise.

2.d. Context. There is a very strong consistency result available for Bayesian

updating. Suppose, as above, that the decision maker has a prior µ, in ∆(Z).
Suppose further than ν is mutually absolutely continuous with respect to µ, and

that some f ∈ Z is drawn according to ν. In this context, Doob (1949) showed
that the updated beliefs, µ(·|ht), is an almost everywhere convergent martingale,
and that the limit of the martingale is almost everywhere δf .

This can be interpreted as saying that, if the decision maker is “more or less

right” about the process(es) that generate f , they will eventually learn f by

observing the Xt. Combined with the result here, this means that the set of
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ν that are mutually absolutely continuous with µ is a shy set. It also provides

another interpretation of the work here.

The present work entertains the possibility that the decision maker’s prior

knowledge is not correct. Suppose instead of f being drawn according to ν, we

imagine that f is determined by some process outside of the decision maker,

and that µ represents the beliefs part of the preferences of an expected utility

maximizer. With this distinction between the process(es) generating f and the

beliefs of the decision maker, it makes sense to ask what happens if the decision

maker is mistaken.

3. The Prevalent Properties of Probabilities

This section provides a brief introduction to shyness and prevalence, and to its

extension to convex subsets. This tool is here expanded, and then applied to the

set of probabilities on a linear space, specifically, to the set of priors, ∆(Z), that
are under study.

When discussing “smallness” of sets in a vector space X, X will always denote

an infinite dimensional, locally convex, topological vector space that is also a

complete separable metric (csm) space.1 When discussing “smallness” of subsets

of a convex subset of X, e.g. ∆(Z), C will always denote a convex subset of X
that is topologically complete in the relative topology.2

3.a. Large and Small Subsets of X. There are two main notions of small

subsets available for X, a topological and a measure theoretic notion. The com-

plement of a “small” subset is a “large” set.

1This class of spaces includes (but is not limited to) Rr as well as the spaces that appear in
most of the theory of non-parametric regression theory: separable Banach spaces such as the
Lp(Ω,F , P ) spaces, 1 ≤ p < ∞, F countably generated; C(X), the continuous functions with
the sup norm when X is compact; C(X) with the topology of uniform convergence on compact
sets when X is locally compact and separable (e.g. X = Rr); the Sobolev spaces Spm(R

r, µ)
defined as the metric completion of Cpm(R

r, µ), the space of m times continuously differentiable

functions, m ≥ 0, on Rr having finite norm ‖f‖p,m,µ =
∑
|α|≤m

[∫ |Dαf(x)|p dµ(x)] 1p , p ∈
[1,∞), µ a Borel probability measure on Rr; and Cm(X), the space of m times continuously
differentiable functions on a compact X with the norm

∑
|α|≤nmaxx∈X |Dαf(x)|. From Rudin

(1973, Theorem 1.24, p. 18), the topology on X can be metrized by a translation invariant
metric d(·, ·), that is, d(x, y) = d(x+ z, y + z) for all x, y, z ∈ X. Whenever a metric on X is in
use, it is translation invariant.
2A subset of a metric space is topologically complete if there exists a complete metric
inducing the topology.
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The topological notion of smallness is called meagerness is due to Baire (1899,

§59-61, pp. 65-67). The measure theoretic notion of smallness is called Haar zero
sets is due to Christensen (1972, 1974, Ch. 7). A description and use of an earlier,

and slightly more restrictive definition of small sets can be found in Aronszjan

(1976), it’s equivalence with several other definitions is covered in Csörnyei (1999).

The properties of Haar zero sets and several applications were more thoroughly

investigated under the name of shy sets by Hunt, Sauer and Yorke (HSY, 1992),

who especially applied these techniques to the study of the generic behavior of

dynamical systems. There are subtle and difficult problems in extending shyness

to a definition of non-generic for subsets of convex subsets of vector spaces that

are themselves shy, e.g. spaces of probability measures. These problems were

discovered and resolved by Anderson and Zame (2001).

3.b. Meager and Residual Sets. A closed set with no interior seems small.

Definition 1. A set S is nowhere dense if its closure has no interior. A set

S is meager if it can be expressed as a countable union of nowhere dense sets.

A set E is residual or Baire large if it is the complement of a meager set.

Baire large sets are, equivalently, the countable intersection of open dense sets.

The countable union of meager sets is meager, the countable intersection of Baire

large sets is a Baire large set. Baire’s Theorem shows that residual sets are

dense, and to some extent this justifies thinking of residual sets as being “large”

or “generic”. Baire large sets can have Lebesgue measure 0 and seem quite small

in Rk (k <∞ throughout).

Example 1. Let qn be an enumeration of the vectors in R
k with rational coor-

dinates. For any rational ε > 0, let Eε be the union of open balls centered at qn,

∪nB(qn, ε/2n). Eε is an open dense subset of Rk having Lebesgue measure less
than ε. The set E = ∩εEε is a Baire large set having Lebesgue measure 0.

3.c. Shy and Prevalent Sets. For Rk, we have the following.

Lemma 2. For a universally measurable S ⊂ Rk, the following are equivalent
a. Λk(S) = 0 where Λk is k-dimensional Lebesgue measure,

b. P (S) = 0 where P is a probability with an everywhere positive density with

respect to Λk, and
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c. there exists a compactly supported probability η such that η(S + x) = 0 for all

x ∈ Rk.
Proof: The equivalence of (1) and (2) is immediate. The following proof of the
equivalence of (1) and (3) is directly from Hunt, Sauer, and Yorke (1992), and is
reproduced here for completeness.
If Λk(S) = 0, take η = Uk, the uniform distribution on [0, 1]k. If there is a com-
pactly supported η such that η(S+x) ≡ 0, then ∫

Rk
η(S+x) dΛk(x) = 0, so that∫

Rk

[∫
Rk
1(S+x)(y) dη(y)

]
dΛk(x) = 0, implying

∫
Rk

[∫
Rk
1(S+x)(y) dΛ

k(x)
]
dη(y) =

0. Since 1(S+x)(y) ≡ 1(S−y)(x) and
∫
Rk
1(S−y)(x) dΛk(x) = Λk(S − y), we have∫

Rk
Λk(S − y) dη(y) = 0. Since Λk is translation invariant and non-negative,

Λk(S − y) ≡ Λk(S) ≥ 0, ∫
Rk
Λk(S) dη(y) = 0, implying that Λk(S) = 0.

In Rk, this ties together the Lebesgue measure definition of smallness, (a), a

probabilistic interpretation of smallness, (b), and a translation invariance defini-

tion, (c). As we will see, the first two have no direct generalizations to X, but

the translation invariance condition does generalize.

Let L : Rk → V be continuous and linear, and let Uk be the uniform distri-
bution on [0, 1]k. Taking η to be the L(Uk), the image law of Uk under L, is so

useful that it merits a special name.

Definition 2 (Christensen. HSY). A subset S of a universally measurable S ′ ⊂
X is shy if there exists a compactly supported probability η such that η(S ′+x) = 0
for all x. S is finitely shy if η can be taken the continuous linear image of Uk

for some k. The complement of a (finitely) shy set is a (finitely) prevalent set.

From HSY (1992, Facts 2′ and 3′′), no S containing an open set can be shy
in X so that prevalent sets are dense, and countable unions of shy sets are shy,

equivalently, countable intersections of prevalent sets are prevalent

3.d. Shy Subsets of Convex Sets. For a convex C ⊂ Rk, the appropriate
definition of shy subsets of C uses aff (C), the smallest affine subspace containing

C, and the lower dimensional Lebesgue measure on aff (C).

Example 4. For x 6= y ∈ R2, let C = {αx + (1 − α)y : α ∈ [0, 1]} and S ′ =
{αx+(1−α)y : α ∈ [1

2
, 1]} ⊂ C so that dim (C) = 1 < 2 = k. S ′ is a shy subset of

R
2 so that S ′ can be expressed as the intersection of a shy set and C, meaning that
S ′ would be shy if we used that definition. Here aff (C) = {αx+(1−α)y : α ∈ R},
and both C and S ′ have positive Lebesgue measure in aff (C), so that S ′ is not a
shy subset of C.
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An example directly relevant to this paper demonstrates that the affine sub-

space approach does not generally work in X.

Example 5. Let X be the set of countably additive, finite, signed measures on

2N, C = ∆(N) ⊂ X to be the probability measures on 2N. ∆(N) is a convex,
finitely shy subset of X even though aff (∆(N)) = X. To se that ∆(N) is finitely

shy, let η be the uniform distribution on the line L joining the 0 measure and any

point mass, δn. For any x ∈ X, L ∩ (∆(N) + x) contains at most one point, so
that η(∆(N) + x) = 0.

Working from the “outside” of C, that is, with aff (C), is not appropriate in

X. Anderson and Zame (2001) give a definition of shy subsets of convex sets that

works from the “inside.” For any c ∈ C, C convex, and any ε ∈ (0, 1), the set
εC+(1− ε)c is a convex subset of C. This is a version of C that is shrunk toward
c. For a measurable C ⊂ X, ∆K(C) denotes the compactly supported probability
measures on C. Recall the maintained assumption that C is a convex subset of

X that is topologically complete in the relative topology.

Definition 3 (Anderson and Zame). A subset S of a universally measurable S ′ ⊂
C is shy relative to C at c ∈ C, or simply shy at c if C is clear from context,
if for all neighborhoods Uc of c, and all ε > 0, there exists a η ∈ ∆K(C) satisfying
1. a support condition, η(Uc ∩ [εC + (1− ε)c]) = 1, and
2. a translation invariance condition, (∀x ∈ X)[η(S ′ + x) = 0].
S is shy if it is shy at all c ∈ C. S is finitely shy relative to C if there exists
a if η ∈ ∆K(C) that is the continuous affine image of Uk for some k such that
(∀x ∈ X)[η(S ′ + x) = 0]. The complement of a (finitely) shy set is a (finitely)
prevalent set.

Anderson and Zame (2001) demonstrate the following:

Fact 0: If S is shy at some c ∈ C, then it is shy.
Fact 1: Every subset of a shy set is shy.
Fact 2: If S is shy in C, then for all x ∈ X, S + x is shy in C + x.
Fact 3: The countable union of shy sets is shy.
Fact 4: No relatively open subset of C is shy in C.
Fact 5: If X = Rn and int(C) 6= ∅, then S ⊂ C is shy iff λ(C) = 0.
Fact 6: If S is finitely shy, then it is shy.

For convex S, finite shyness is related to the existence of an algebraic interior.
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Lemma 3. A convex S ⊂ C is a finitely shy subset of C iff it has has empty
algebraic interior relative to C.

Proof: The algebraic interior of coS relative to C is empty iff there exists a
point x ∈ C with the property that no line through x intersects coS in more
than a single point. One point subsets of lines are Lebesgue null sets.

3.e. Co-Shy Sets. Some small, convex sets of probabilities are not shy.

Example 6. Let C = ∆(R) be the set of countably additive, Borel probability

measures on R. For any r ∈ R, let δr be the probability assigning mass 1 to
the set {r}. For any ε ∈ (0, 1), the closed, convex set Sε,r = εC + (1 − ε)δr has
non-empty algebraic interior, empty relative interior, and is not shy.

To see why Sε,r is not shy, set c = δr and consider a candidate η to prove

shyness. η must satisfy the support condition, η(Uc ∩ [εC + (1 − ε)c]) = 1, and
therefore assigns mass 1 to S ′ = Sε,r. Taking x = 0, we have a violation of the
translation invariance condition, (∀x ∈ X)[η(S ′ + x) = 0].
Sε,r can be re-written as {µ ∈ C : µ({r}) ≥ (1−ε)}. Since r is a single point in
a vector space, the set of probabilities assigning mass to that point is intuitively

small. More generally, for ν ∈ C, the set Sε,ν = εC + (1− ε)ν cannot be shy, and
Sε,ν = {µ ∈ C : ∀A ⊂ R, µ(A) ≥ (1− ε)ν(A)}.
To deal with such problems, we introduce a slightly larger class of “small” sets.

Definition 4. A set S ′ ⊂ C is co-shy in C if it is a subset of a universally
measurable S where S = T ∪ V , T a shy set and V a countable union of closed,
convex sets with empty relative interior.

Directly from the definition and the properties of shy sets, we have

Co-Fact 1: Every subset of a co-shy set is co-shy.
Co-Fact 2: If S is co-shy in C, then for all x ∈ X, S + x is co-shy in C + x.
Co-Fact 3: The countable union of co-shy sets is co-shy.
Co-Fact 5: If X = Rn and intC 6= ∅, then S ⊂ C is co-shy iff λ(C) = 0.
Lemma 4 (Co-Fact 4). No relatively open subset of C is co-shy in C.

Proof: There are two steps, showing that C is not co-shy in itself, and showing
that this gives the desired result.
Step 1: C is not co-shy in itself.
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Let V = ∪m∈NVm be a countable collection of closed convex subsets of C having
empty relative interior. It is sufficient to show that T ◦ := C \ V is not shy.
[Fill in, seems tricky]
Step 2: No relatively open subset of C is co-shy in C.
Since X is locally convex, Q ⊂ C is relatively open iff it contains the intersection
of a convex open U and C. Let C ′ = U ∩ C. Suppose, for the purposes of
establishing a contradiction, that Q is co-shy in C. This implies that C ′ must be
co-shy in C. This in turn implies that C ′ can be expressed as [T ∪ V ]∩C ′. This
implies that C ′ is co-shy in itself, contradicting Step 1.
In Banach spaces, the classes of shy and co-shy sets need not be equal.

Example 7 (Borwein and Noll). Let X = c0 be the set of sequences converging

to 0 with the sup norm. X+ is convex, closed, and has empty interior, hence is

co-shy. Suppose that K ⊂ X is compact. For each n, let xn be the minimum
of 0 the n’th component of any element of K. By compactness, xn is finite and

xn → 0. Let x = (−x1,−x2, . . . ) and observe that K + x ⊂ X+. Therefore X+
contains a translate of any compact set, hence is not shy.

Matouškova and Stegall (1996) show that the previous kind of example can

only arise in non-reflexive Banach spaces. Specifically, their Theorem 6 shows

that a separable Banach space is non-reflexive iff it contains a closed convex set

with no interior that contains a translate of every compact set. This is some

comfort.

3.f. Prevalent Properties of Probabilities. When M is a finite set, the set

of full support probabilities in ∆(M) is prevalent. The analogous result for more

general X also holds.

Lemma 5. Let C be a convex subset of X that is topologically complete in the

relative topology. The full support distributions are a prevalent subset of ∆(C),

and the non-atomic probabilities are shy in ∆(X).

Proof: Fix a non-empty open G ⊂ C. Let H = H(G) be the set of µ such
that µ(G) = 0. Pick full support ν1 and ν2 with the property that ν1(G) 6=
ν2(G). Because ν1(G) 6= ν2(G), for any finite, signed measure x, the function
α 7→ [αν1(G) + (1 − α)ν2(G) + x(G)] is affine with a non-zero slope. Therefore,
the set of α ∈ [0, 1] such that αν1 + (1− α)ν2 + x ∈ H contains at most 1 point.
Therefore, H(G) is finitely shy. Let {Gn : n ∈ N} be a basis for the topology
of C. The set of distributions in ∆(C) that fail to be full support is ∪nH(Gn),
the countable union of shy sets, hence shy. The second statement is Lemma 2 in
Stinchcombe (2001).
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3.g. Interpretational Issues. In Rk, Lemma 2 ties together Lebesgue mea-

sure, a probabilistic interpretation, and a translation invariant property of the

smallness of a set S. Lebesgue measure fails to extend to X because there is no

translation invariant measure on X assigning positive mass to every open set. If

there were, it would have to assign equal, and strictly positive mass to every open

ball B(x, ε/4). Since X is infinite dimensional, every B(y, ε) contains countably

many disjoint balls with radius ε/4, and the measure assigned to every open set

would therefore be infinite.

Probability measures on csm spaces are tight, that is, for every ε > 0, there

is a compact set, Fε, with P (Fε) > 1 − ε. Probabilistic interpretations fail to
extend to X directly because the tightness of any probability P on X implies

that P (S) = 1 for S being the countable union of compact, hence shy, sets.

Probabilistic interpretations of shyness also fail to be approximately true.

Let Yi be an independent and identically distributed (iid) sequence of random

variables distributed P . Suppose that that rn → 0, and that Nn → ∞. A
point x ∈ X is (rn, Nn)-lonely if P∞(A(x)) = 0 where A(x) = [An(x) i.o.],
An(x) = {d(Yi, x) < rn for some i ≤ Nn}. In other words, the x is lonely if,
with probability 1, B(x, rn) eventually receives no more visits from Y1, . . . , YNn.

Stinchcombe (2001) shows that, no matter how slowly rn goes to 0 or how quickly

Nn goes to ∞, a prevalent set of points are (rn, Nn)-lonely.

4. The Generic Inconsistency

Fix an infinite, locally compact, complete, separable metric (csm) space (X, d)

with X denoting Borel sigma-field. (A space is locally compact if every point has
a neighborhood with compact closure. The spaces R` and N are locally compact,

infinite dimensional topological vector spaces are not.) ∆(X) denotes the set of

(countably additive, Borel) probabilities on X . An iid sequence of draws, (Yn)n∈N,
is made according to a distribution θ ∈ ∆(X), and θ∞ denotes the corresponding
product distribution on XN. Prior beliefs, µ, are points in ∆(∆(X)), the set of

distributions on the set of distributions on X. Both ∆(X) and ∆(∆(X)) are

csm’s in the weak∗ topology.
Define θµ ∈ ∆(X) by θµ(E) =

∫
∆(X)
θ(E) dµ(θ) for µ ∈ ∆(∆(X)). If θµ 6�

θ, the choice of version of the conditional probabilities matters quite sharply

because, with continuous random variables, one typically updates after observing

a null set. To relate µ to the updated, versions of µ conditional on finite histories
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of draws, one must make a whole system of coordinated choices of versions. This

will be done by assuming that the µ’s under study put mass 1 on the dense set

of θ’s having continuous densities with respect to some full support reference

measure. Throughout, a simple reference case has X countable and discrete, in

which case the σ-finite reference measure, λ, can be taken to be counting measure.

In this reference case, all probabilities have densities with respect to λ so that

densities can effectively disappear from the analysis.

In use are the following assumptions and notation.

A. λ is a full support, σ-finite reference measure on X . C(X) is the set of
continuous functions on X. Cλ+ ⊂ C(X) is the set of non-negative f such
that

∫
X
f dλ = 1, Cλ++ ⊂ Cλ+ is the set of strictly positive f . Each f ∈ Cλ+ is

associated with a probability θf ∈ ∆(X) defined by θf(A) =
∫
A
f dλ. When

X is countable and discrete, Cλ+ = ∆(X).
B. Both Cλ++ and C

λ
+ are Gδ’s in the csm ∆(X), implying that there are com-

plete separable metrics, d++ and d+ inducing the weak
∗ topology. (A Gδ is

a countable intersection of open sets. The relative topology on any Gδ in
a csm can be metrized with a complete separable metric. It is easy to give
explicit metrics making Cλ+ and C

λ
++ into csm’s. )

C. Mλ ⊂ ∆(∆(X)) denotes the set of probabilities on probabilities ∆(Cλ+),
while Mλ++ denotes ∆(C

λ
++). M

λ
B are those for which Bayes updating using

densities will never involve division by 0, formally,

M
λ
B = {µ ∈Mλ : ∀(x1, . . . , xt) µ({f : Πti=1f(xi) > 0}) > 0 }.

From the definitions, Mλ++ ⊂ MλB ⊂ Mλ. It can be shown that Mλ++ is a
convex, topologically complete, prevalent subset of the convex csm Mλ, and MλB
is a Gδ, hence topologically complete.

Assuming that µ ∈ MλB, updating after partial history ht = (x1, . . . , xt) ∈ X t
is done using the values of the densities at ht and the prior, µ,

µ(B|ht) :=
∫
B
Πti=1f(xt) dµ(f)∫

Cλ+
Πti=1f(xt) dµ(f)

, B ⊂ Cλ+.(3)

Definition 5. For any θ ∈ ∆(X), Cons(θ) ⊂ MλB denotes the set of µ inMλB that
are consistent for θ, that is, the set of beliefs that satisfy µ(·|ht) →w∗ δθ θ∞-
a.e. A pair (µ, θ) is erratic, wildly inconsistent, fickle, or faddish, written

µ ∈ err(θ), if for all non-empty open subsets G of ∆(X), lim supt µ(G|ht) = 1
θ∞-a.e.
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Being erratic is a very strong form of failing to be consistent.

Theorem. For any full support θ ∈ ∆(X), err(θ) is the complement of a count-
able union of closed convex sets with empty interior in MλB.

Proof: Fix a full support θ and a countable collection of fn ∈ Cλ++ such that
the θn := θfn are dense in ∆(X), and θn 6= θ for all n ∈ N.
Abuse notation with fn(h

t) := Πti=1fn(xi) for partial histories h
t = (x1, . . . , xt).

Let Un,m be a nested sequence of open neighborhoods of θn not containing θ in
their closure and having diameter less than 1/m. Let vn,m : ∆(X) → [0, 1] be
a continuous function taking the value 1 on Un,m and 0 on the complement of
Un,m−1. For each ht, define the continuous function Vn,m(·, ht) on MλB by

Vn,m(µ, h
t) = (

∫
Cλ+

vn,m(f)f(h
t) dµ(f))/(

∫
Cλ+

f(ht) dµ(f)).

This is the expected value of vn,m conditional on h
t when beliefs are µ. If posterior

beliefs along a sequence of histories ht converge to δθn , then limt Vn,m(µ, h
t) = 1.

For ε > 0 and t ∈ N, define Sn,m(ε, t) = {µ ∈ MλB :
∫
X∞ Vn,m(µ, h

t) dθ∞(ht) ≤
ε}. By continuity, Sn,m(ε, t) is a closed subset of MλB.
Outline:

1. For all ε > 0 and for all t, Sn,m(ε/2, t) ⊂ coSn,m(ε/2, t) ⊂ Sn,m(ε, t). This
intermediate result leads to

2. For all T ,
⋂
t≥T Sn,m(ε, t) is shy, equivalently,

⋃
t≥T Sn,m(ε, t)

c is prevalent.
3. err(θ) =

⋂
ε,n,m,T

⋃
t≥T Sn,m(ε, t)

c (the intersection taken over rational ε in

(0, 1)). Since the intersection of countably many prevalent sets is prevalent,
this and the second step complete the proof.

Details:

1. For all ε > 0 and all t, S(ε/2, t) ⊂ coS(ε/2, t) ⊂ S(ε, t).
Since each S(ε, t) is closed, showing coS(ε/2, t) ⊂ S(ε, t) is sufficient. Pick
µ, µ′ ∈ S(ε/2, t) and 0 < α < 1. Let µαµ′ = αµ + (1 − α)µ′. What must
be shown is

∫
m(µαµ′, ht) dθ∞(ht) ≤ ε. For numbers s, s′ > 0 and r, r′ ≥ 0

αr+(1−α)r′
αs+(1−α)s′ ≤ max{ rs , r

′
s′} ≤ r

s
+ r′
s′ . This delivers∫

m(µαµ′, ht) dθ∞(ht)

=

∫ ∫
vn,m(f)f(h

t) dµαµ′(f)∫
f(ht) dµαµ′(f)

dθ∞(ht)

≤
∫ ∫

vn,m(f)f(h
t) dµ(f)∫

f(ht) dµ(f)
dθ∞(ht) +

∫ ∫
vn,m(f)f(h

t) dµ′(f)∫
f(ht) dµ′(f)

dθ∞(ht)

≤ ε/2 + ε/2 = ε,
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completing the proof of the first step.
2. For all T ,

⋂
t≥T Sn,m(ε, t) is co-shy.

We have
⋂
t≥T Sn,m(ε, t) ⊂

⋂
t≥T coSn,m(ε, t) ⊂

⋂
t≥T Sn,m(2ε, t). by the

definition of co and Step 1. The set
⋂
t≥T coSn,m(ε, t) is convex and closed.

Lemma 1 shows that it has no topological interior.
3. err(θ) =

⋂
ε,n,m,T

⋃
t≥T Sn,m(ε, t)

c (the ε ∈ (0, 1) and rational).
Since the θn are dense in ∆(X) and the diameters of the Un,m converge to 0,
every non-empty open U contains a Un,m. Therefore, µ ∈

⋂
ε,n,m,T

⋃
t≥T Sn,m(ε, t)

c

iff for all rational ε in (0, 1), all non-empty open U , and all T , there exists a
t ≥ T such that µ 6∈ Sn,m(ε, t), that is, iff µ ∈ err(θ).

Some technical comments:

A. Because the set of full support µ’s is prevalent inMλ, the set of full supported

elements of err(θ) is prevalent. This means that Theorem ?? does not arise

because of some generalized failure of support conditions.

B. In a similar vein, since Mλ++ ⊂MλB ⊂Mλ and Mλ++ is a prevalent subset of
M
λ, err(θ) ∩Mλ++ is a prevalent subset of Mλ++. Also, if f ∈ Cλ++, θf is full
support and err(θf ) is prevalent. Theorem ?? does not arise because the full

support θ need be outside the set of probabilities supporting µ.

C. The continuity of the densities can be weakened — the result holds if the

set of densities being considered are continuous with respect to a metric for

which: (a) λ is still full support, and (b) the Borel σ-field is still X .
D. When X ⊂ R, the Glivenko-Cantelli theorem tells us that θ∞-a.e., the em-
pirical cdf converges uniformly to the cdf of θ. Generically, Bayes estimators

behave much differently, not converging to the true θ nor to anything else.

When X = N, Freedman (1965) shows that a Baire large set of (µ, θ) pairs

in ∆(∆(N))×∆(N) are erratic. This uses a “Fubini” theorem for Baire sets.
Anderson and Zame (2001, Example 4, p. 57) show that no such Fubini

result is available for prevalent sets.

5. Concluding Remarks

These remarks concern whether or not genericity analysis is sensible in the

present context, some connections to the theory of learning, and some possible

explanations of fads, bubbles, and other seeming oddities.

5.a. Does it Make Sense? A genericity analysis becomes nonsensical if the

wrong setting is chosen — if the statistically relevant cases are two dimensional,
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then a three dimensional genericity analysis hides more than it reveals. The first

challenge then, is to understand the results found here in this light. Perhaps I

find that the set of consistent priors is small because I am working in the set of

all priors, and the set of all priors is an implausibly large space.

Supporting this point of view are some very attractive classes of priors for which

consistency can be guaranteed. They essentially involve the existence of a finite

dimensional pattern relating different observations to each other. A leading case

is in Freedman (1963) and Diaconis and Freedman (1986a), who discuss the class

of tail-free priors. Recall that it is, in good part, the near 0 relative likelihoods

of rare events that drives the inconsistency.

When X = N, each θ ∈ ∆(X) is specified by the countably many numbers θ(n).
Let Sk(θ) =

∑
n≤k θ(n). Picking a θ according to µ gives rise to countably many

random variables Yk = (1−Sk−1(θ))−1θ(k). Following Freedman (1963), a prior µ
is tail-free if µ(Sk < 1) = 1 for all k, and there exists a K such that the random

vector (θk)
K
k=1 and the random variables YK+1, YK+2, . . . are mutually independent

(see Ferguson (1973) for a wide set of applications of these ideas). With tail-free

priors, large observations in N have no information about the smaller observations,

and there is essentially only a finite dimensional set of relations between the

different observations. The extent to which these intuitions generalize to more

general X is somewhat unclear. However, the wiggles in densities that overfit can

be thought of as happening along linearly independent dimensions in the space

of densities.

However, it is not the intuitive or finite dimensional aspect of the set of priors

that is always at work in giving inconsistency. Arnold et al. (1984) and Diaconis

and Freedman (1986b) for very natural settings (competing risks and location

estimators respectively) in which Bayes estimators are not consistent. In sum,

limiting the set of priors can, in many cases, provide computationally tractable,

parametrized statistical models. As a general model of optimizing behavior, such

a step is clearly unsatisfactory. Further, even in these parametrized models,

Bayesian updating can be inconsistent. These considerations lead (me) to the

conclusion that the genericity of inconsistent updating is not an artifact of the

wrong setting being chosen, but reflects something more fundamental about the

models we use.
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5.b. Some Connections to Learning. Bayesian updating and optimization in

the face of uncertainty are intimately tied, nowhere more so than in the theory

of learning. Nachbar’s (1997) crucial result for infinitely repeated games is that,

when combined with optimization, Bayesian updating of priors about other play-

ers’ repeated game strategies often leads the players to play strategies that others

were certain were not going to be played. Generic inconsistency implies that for

interesting single agent games, Bayesian updating is “objectively” sub-optimal.

An open question is how much real difference this makes, after all, “infinitely

often” need not mean “a non-vanishing fraction of the time.”

Consider, for example, Example 3, in which, during each period t, an action

at must be taken before the realization of a random Xt, and the decision maker

maximizes E
∑
t β
tu(at, Xt). Let a

∗
t = a

∗(ht−1) be optimal given beliefs after
ht−1, and let at be optimal given the true distribution. It is conceivable that
∀µ ∈ ∆++(Z++) and for all ε > 0, lim supt P∞(h : |u(a∗t , Xt)−u(aft , Xt)| > ε) = 0.
Establishing the truth or falsity of this conjecture is a topic for future research,

and the work of Lijoi et. al. (2004) may be relevant.

5.c. Fads, Bubbles, and Other Oddities. Consider again Example 3, but

now suppose that the set of rationalizable actions is infinite. Another way to

understand the oddity of erratic updating is that as new observations on the

same process arrive, beliefs will wander arbitrarily far away from the historical

record infinitely often, and actions will follow them.

If a large population of people behaves in so erratic a fashion, one is tempted

to look for a model of irrationality. Responses against irrational explanations

have included a number of fully rational models of bank runs, informational

cascades, bubbles, or exogenous sources of variability such as sunspots. One

point to be taken from the present result is that one will, generically, observe a

huge variety of rational behavior, even in the quite limited case of iid observations

and unchanging, time-separable utility functions.
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