THE FINITISTIC THEORY OF INFINITE GAMES
C. J. HARRIS, M. B. STINCHCOMBE, AND W. ZAME

ABSTRACT. The additions to, or fixes for, game structures necessitated by use
of the usual model of infinite sets can be unified in the concept of a game
expansion. This paper identifies a class of expansions, the finitistic ones, that
sharpens the previous fixes, delivers a well-behaved theory for infinite games,
and clarifies the relation between classes of games and the requisite expansions.
Finitistic equilibria are the minimal closed set of expansion equilibria consistent
with the idea that continuous sets are the limits of finite approximations.

1. INTRODUCTION

The usual models of infinite sets are perfectly adequate for many mathemati-
cally intensive inquiries, but not for the study of strategic interactions. A series
of examples show that a theory of games based on the usual models fails even
minimal standards. The extant responses to, or fixes for, these failures varies
with the class of games. For some classes, the addition of cheap talk suffices. For
others, public signals or more general forms of correlation are required. For yet
other classes, endogenous sharing rule equilibria have been invented. These fixes,
as well as the information leakages and the as-yet-unnamed additions to game
structures described below, are unified in the definition of a game expansion.

Game expansions organize the previous literature as a series of matchings be-
tween classes of games and corresponding small expansions that deliver a class-
specific well-behaved theory. The relation between classes of games and the nec-
essary fixes can seem rather complicated. This paper identifies one class of expan-

sions, the finitistic ones. Finitistic expansions sharpen the previous fixes, make
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transparent the relation between games and the necessary expansions, and deliver
a well-behaved theory of infinite games, both extensive and normal form.

Finitistic sets are a class of limiting cases of large finite sets. While behaving
logically as if they are finite, they contain each element of the infinite set they
replace. The next section discusses this seeming paradox as an ‘intersection of
limit sets,” a more roundabout but perhaps more intuitive, equivalent formulation
of finitistic sets. Finitistic expansions of games replace the usual model of infinite
sets by finitistic models of those sets.

Examples of the failure to meet minimal standards are in Section 4, as are
sketches of the finitistic expansions and the previous fixes. Section 5 contains
three equivalent formulations of finitistic sets, proofs that the finitistic approach
meets the minimal standards for a theory of games — non-emptiness, closure,
and upper hemi-continuity, and a discussion of the minimality of the finitistic
class of expansions. Appendix A is a primer on the nonstandard analysis used
for the most convenient treatment of finitistic sets.

Section 6 defines general extensive form games and their expansions. Finitistic
expansion equilibria are equal to the limit sets identified in Section 5. Section
7 shows that finitistic expansions give equilibrium sets that are subsets of the
previous expansion equilibria. Models of infinite sets are fundamental to many
mathematically intensive fields. Section 8 is a discussion of some of the broader

issues involved in the change suggested here.

2. FINITISTIC APPROXIMATIONS

In order to take finitistic approximations, we proceed as follows.

3. AN INTERSECTION OF LIMITS INTUITION FOR FINITISTIC SETS

The following two person, normal form game with compact metric actions
spaces and continuous payoffs explains how sequences of finite sets can behave as

if they were exhaustive, that is, as if they contain every element in an infinite set.



Example 3.1 (Simon and Stinchcombe). The action spaces of the two players
are Ay = Ay = {—1} U [0, 1], and the symmetric utility functions are

0 Zf a; = -1
ui(ai,aj) = 2 Zf ai,aj € [0, 1]
—a; if aj =—1 and a; € [0,1]

The strategy a; = 0 weakly dominates every other strategy, but (ai, az) = (0,0)
is only a limit undominated equilibrium along sequences of finite approximations
that contain the point (0,0). In more detail, consider playing the game on a
sequence F' —y A; (“—py” is convergence in the usual Hausdorff metric on
closed sets) of finite subsets of A; that do not contain a; = 0. Let E(F™) be the
undominated equilibria when the strategy sets A; are replaced by F™. The limit
set (limes superior), lim,, E(F™), contains the point (a1, as) = (—1,—1), a weakly
dominated strategy pair.

Omissions of single points can change game theoretic analyses. By taking the
appropriate intersections, it is possible for sequence analyses to take account of

every point. For any F' = F} x F;, C A; x Ay, F finite, define

(1) Ly (E) = {li}ln]E(F") :FC F"aa.}, and

(2) L(E) = () L (B),

where “a.a.” stands for “almost always,” i.e. for all n sufficiently large. L(E) is
called the set of anchored E-limits, and, with E(-) defined as above, contains
only (0,0). In this way, L(E) is the set of (limits of) undominated equilibria for
large finite versions of the game that contains “all” of the points in A; x Ay, an
uncountably infinite set of strategy vectors.

A finitistic set, “F)” is an idealization of the intersection of limits of sequences,
an idealization taken from Robinson’s (1970) nonstandard analysis. For a finitistic
F = X1 F;, E(F) is the set of equilibria when the game is played with the
finitistic strategy sets F;. The set IL(E) will be shown to be equal to the union of



the points in A(A) (the probabilities on A) closest to E(F'), the union being taken
over finitistic F'. The above analysis becomes, “a; = 0 belongs to any finitistic F;,
it weakly dominates all other strategies, therefore weakly dominates all strategies
in Fj, so that E(F') contains only (0,0).”

Finitistic sets, idealizations of limits of sequences of finite sets, are closely tied
to infinitesimals, which are idealizations of sequences of points in [0, 1] converging
to 0. For example, the Hausdorff distance between a finitistic F' and [0,1] is
infinitesimal. Appendix A is a primer on the nonstandard analysis used for this,

the most convenient treatment of these limit sets and limit quantities.

4. THE FAILURE TO MEET MINIMAL STANDARDS

Games formulated with the usual models of the continuum often require ex-
pansion to be even moderately well-behaved. There is a wide and unpredictable
variety of requisite expansions. Finitistic expansions can make transparent what

these must expansions entail to deliver a well-behaved theory.

4.1. Overview of the Examples. There are two types of examples, five ex-
tensive form games with continuous payoffs, and three normal form games with
discontinuous payoffs. Extensive form games with discontinuous payoffs are con-
tained in the finitistic theory of games, but such games are not needed to see how

badly behaved the theory of games is with the usual model of the continuum.

4.1.1. Continuous Extensive Form Eramples. The first extensive form game has
compact action sets, continuous payoffs, one player, and no equilibrium. Any
finitistic version of this game has a sensible equilibrium. To achieve this same
outcome with the usual model of the continuum requires an expansion of the
information available to the player, specifically, a leakage of information.

The second example is a continuous signaling game. If the receiver plays in
her strict best response set, then, with the usual models of infinite set, it has

no Bayesian Nash equilibrium. Manelli [28] shows that adding cheap talk to



continuous signaling games delivers a well-behaved theory. This expansion is
larger than necessary for a well-behaved theory — a non-empty, closed subset,
sometimes a strict subset, of the cheap talk equilibria outcomes arise as the
equilibrium outcomes of finitistic expansions of the game.

The third example is a continuous game of almost perfect information with
no equilibrium. [16] and [17] show that the addition of public signals to this
class of games gives a well-behaved theory. Again, this expansion, the addition
of a public correlating device, is larger than necessary for a well-behaved theory
— a non-empty closed subset, sometimes strict, of the public signal equilibrium
outcomes arise as the equilibrium outcomes of finitistic expansions of the game.

Like the signaling example and unlike the previous example, the fourth exam-
ple has differential information. The players observe different continuous signals
then simultaneously pick their actions in compact sets. It is not known whether
such games have equilibria. Known sufficient conditions include restrictions on
the joint distribution of the signals [30], or that the game be 0-sum [27]. A com-
plicated argument for the existence of correlated equilibria can be found in [5].
Again, this expansion is larger than necessary for a well-behaved theory — the
finitistic equilibrium outcomes form a non-empty closed subset, sometimes strict,
of the correlated equilibrium outcomes [42].

With the exception of information leakage, the expansions mentioned so far
have been familiar. It might be hoped that a well-behaved theory of games
can be constructed from pasting together information leakage and these familiar
expansions. The fifth example is as continuous and regular an extensive form
game as can be imagined, but it requires complex expansions never seen before.
Different possible overlap patterns of the finitistic versions of the players’ action

sets explain the qualitative aspects of the requisite game expansions.

4.1.2. Dis-Continuous Normal Form Eramples. A separate class of expansion

issues arise when utilities are discontinuous. In the continuous extensive form



games, the requisite expansions of the signal sets or the action sets had no direct
effect on utilities. With discontinuous payoffs, this will not be true in general.

The first normal form game satisfies known sufficient conditions for equilibrium
existence ([6], hence [38]). However, the equilibria that exist are mixed, while
any finitistic version of the game has an obvious and more intuitive pure strategy
equilibrium. To represent this equilibrium as an expansion requires that utilities
depend directly on the added points. The pure strategy equilibrium of this game
can also be formalized as a pure strategy endogenous sharing rule equilibrium
(ESR). ESR’s are known to exist [40], but as expansions, they are too large for
two separate kinds of reasons.

The second normal form game has a unique Nash equilibrium which is also
the unique finitistic equilibrium outcome. However, because ESR’s can ignore
single points, it has (too) many ESR’s. The third normal form game does not
even have approximate equilibria when the usual models of infinite sets are used.
The finitistic approach to this game shows that ESR’s take too liberal a view of
convexification, allowing randomization that cannot arise as a limit of indepedent

randomization.

4.1.3. Taken Together. Taken together, the examples and the results make sev-
eral points. A well-behaved theory of games requires expansions if we use the
usual mathematical models of infinite sets. The requisite expansions can vary
widely and unpredictably across different classes of games. Finitistic expansions
are always constructed the same way, and they deliver a well-behaved theory of
games. As part of making transparent the properties of the requisite class of
expansions, they show that the expansions in the literature are larger than nec-
essary. Finally, because finitistic sets behave logically as if they were finite the

entire theory of finite games can be brought to bear on the analyses.!

IFormally, this is by transfer of statements that are true about finite games.



4.2. Extensive Form Examples. The presentation of these five compact and
continuous extensive form games may seem to have extraneous pieces. These
pieces are included to clarify the general structure into which infinite games fit.

An expansion of a set X is a pair ()/{\' ,¢3) where ¢ ¢ is an onto mapping from
X to X. To construct a game expansion, f, from a game, [, one expands some
or all of the spaces in the definition of I'. Some care must be taken to extend the
signals and utilities conformably with the expansion from I" to f, and the details
will be laid out below. If X is (say) a set of actions available in a game I', and
x is a point in X, then (p; (x) is the larger set of (say) actions that replace z in

the expanded game T

4.2.1. An Informational Discontinuity. In this single agent game, I', with contin-
uous signals, continuous payoffs, and compact action sets, there is no equilibrium,
at least with the usual model of infinite sets. The finitistic equilibria are intuitive,

and can be represented by a game expansion with information leakage.

Example 4.1. Nature picks w € Q = {—1,+1} with probability % each at t = 0.
The single agent does not observe Nature’s pick. FEquivalently, the single agent
observes the uninformative signal so(w) = 0. If Nature picked w at t = 0 and the
agent picks a1 € Ay = [—1,+1] at t = 1, then she sees the signal s, = —(a; —w)?.
After seeing s1 (and remembering s ), the situation is repeated at time t = 2: the
agent picks ay € Ay = [—1,+1], and the resultant signal is s, = —(ay — w)?. The
agent’s utility at the end of the two periods is the sum of the last two signals she
receives, U = §1 + So.

Knowing w would make everything easy for the agent, aj = w at t = 1,2 is
optimal. Not knowing Nature’s pick at time ¢ = 2 would make the optimal choice
a3 = 0. However, playing a; = 0 makes the first signal completely uninformative
and gives a maximal utility of —2. By contrast, for every ¢ # 0, picking a; = ¢
gives the completely informative signal s; = —(e — w)?. With w known at ¢ = 2,
a} = w, giving a maximal utility of —1 — ¢? + 0. This is greater than —2, but the

supremum is not achievable, meaning that there is no equilibrium.



With S; being the range of the signals, ¢ = 0,1, 2, the history space for this

game is
(3) H = (Q X So) X (A1 X Sl) X (AQ X SQ)

Let A(H) denote the set of probabilities on H. Let pu¢ € A(H) denote the

e-equilibrium distribution given above, i.e.
e 1 1
(4) 1S = 30 + 30ns,,

he = ((—1,0), (¢, —(e + 1)), (—1,0)), kS = ((+1,0), (¢, —(€ — 1)), (+1,0)), and
d; is point mass on z. The associated utility is —1 — €2. The limit outcome as

€ —0is
(5) 1’ = 30m0 + 500

where h® = ((-1,0),(0,—1),(—1,0)) and hS = ((+1,0),(0,—1),(+1,0)). The
associated utility is —1. Neither u° nor the utility —1 is achievable when the
game is modeled with the usual model of infinite sets unless we expand the game.
The set of possible outcomes is not closed, and because this failure of closure
interacts with equilibrium conditions, the equilibrium set is empty.

Expand Sy to (S, (¢g,) Where So = Sy x S, S! contains ©, (g, is projection
onto Sy, make utility independent of sf,, and set 5y(w) = (s¢, sp(w)) = (0,w). This
models information leakage, and u° is the unique equilibrium in this expanded
game.

If each set in H is replaced by a finite set and the signals are to make sense,
it must be the case that each finite replacement for S; contains the range of
the signal, s;, restricted to the finite replacement of its domain. Such a finite
replacement scheme is called conformable. For example, if A; is replaced by
Fy,, then a conformable S; must contain all points of the form —(f; — w)?,

f1 € Fa,, w € Q (being finite,  is its own finitistic replacement).



If E(F) is the set of equilibrium histories when each set in I' is conformably
replaced by a finitistic version of itself, then E(F') contains only the point p°
where € is a smallest non-zero element of Fl,, the finitistic replacement of A;.
Either smallest non-zero element of F4, is infinitesimal, and the unique closest
point in [—1,41] is 0 itself. The finitistic definition of IL(E) is the union of closest
points in A(H) to E(F'), the union being taken over finitistic F. Thus, L(E)
contains only u°. The statement, “When any non-zero a; is played, the signal
s1 is perfectly informative,” is still true in the finitistic game. The means that
associated with p° there must be a perfectly informative signal, in other words,
information leakage happens in all finitistic equilibria.

This is an example of the general pattern, game models built with the usual
models of infinite sets have outcome sets that are not closed. Containing the
limits requires an expansion of the game. If the failure of closure interacts with the
equilibrium conditions, the equilibrium set can be empty. In this case, non-empty
equilibrium set also requires an expansion of the game. Finitistic expansions work,
giving a closed set of possible outcomes and non-empty set of equilibria. They
also identify the qualititative characteristics of the requisite expansion, in this

case, that information leakage is required.

4.2.2. Signaling Games. This signaling game, I', has compact action and signal

spaces, continuous payoffs, but has no Bayesian Nash equilibrium.

Example 4.2 (van Damme, Manelli). Nature picksw € Q2 = {Heads, Tails} with
probability % each at time t = 0. Player 1 sees the signal so(w) = w, identified
with player 1°s type. After seeing so, player 1 picks a; € Ay = [0,2] at t = 1.
This gives rise to the signal s1(w,a1) = a1. At t = 2, player 2 see s1 and picks
as € Ay = {0,2} giving rise to an irrelevant signal, sy. Player 2’s payoffs are
given by u(aq, as) = az(1 — a1), independent of w. Player 1’s payoffs are given by
u(H,a1,as) = a1 - ag when w = Heads, and by u(T,a1,as) = (2 — a1) - (2 — az)
when w = Tails.

Player 2’s strict best response to a1 < 1 is ap = 2, her strict best response to

a1 > 11is as = 0, and she is indifferent between either action if a; = 1. Since 2’s



payoffs do not depend on w, in any Bayesian Nash equilibrium, player 2 must be
playing her strict best responses, but can respond to a; = 1 with any mixture,
vy, over Ag. For any 1,, player 1’s optimum will not exist at least % of the time
— no Bayesian Nash equilibrium.

Finitistic versions of a game always have equilibria. The following analysis
shows how a finitistic analysis brings out what kinds of expansions are needed to
restore equilibrium existence.

The history space for this game is
(6) H = (QxS)) x (A1 x S1) x (Ag x Sy).

Let E(F) be the set of Bayesian Nash equilibrium distributions when each set in
H is replaced by a finite set in a conformable? fashion and F is the corresponding
finitistic version of H. If 2 plays her strict best responses and player 1 plays 1 —e¢
(1 + ¢€), the first a; € Fy4, below (above) a; = 1 when w = Heads (w = Tails),
then 1’s expected payoffs are

(7) ll—e-2432-14+€)-(2-0=2—(e+¢),

that is, 2 minus an infinitesimal. Suppose, for the instant, that v, player 2’s

11

response to a; = 1, is (3, 5) randomization on Ay. In this case, E(F') contains

only the point u&¢ = %(5h(6) + %6h(e’) in A(F) where

(8) h(e) = ((w,w), (a1,a1), (ag, s2)) = ((Heads, Heads), (1 — ¢,1 — €), (2, s2)),

9)  h(€) = ((w,w), (a1, a1), (ag, s2)) = ((Tails, Tails), (1 + €, 1 + €'), (0, s2)).

In this equilibrium, player 1 signals Heads or Tails to player 2 by playing € below

or € above a; = 1, and the cost is infinitesimal.?

2Each finite replacement of a signal space, S;, contains the range of the corresponding s;(-)
restricted to the finite replacement of its domain. See above for more detail.

31f v, is point mass on either 0 or 2, the equilibrium involves 1 playing only below or only above
a; =1, but is otherwise unchanged.

10



Because I(E) is the union, over finitistic F', of the points in A(H) closest to
E(F), L(E) contains only u®°, the probability on H given by

(10) 1 = 0 (Heads) + 3On(Tails)

where h(Heads) is the history ((Heads, Heads), (1,1), (2, s2)) and h(Tails) is the
history ((Tails, Tails), (1,1), (0, s9)). The distribution u*° is not achievable, it is
in the closure of the achievable when the usual models of infinite sets are used,
and the failure of closure interacts with equilibrium conditions. If, with the usual
models of infinite sets, player 1 can talk cheaply, she can play a; and costlessly
signal w’s value to player 2, mimicking the finitistic equilibrium.

Let //1\1 be F4, with ‘pﬁl(fl) being the closest point to f; in A; (known as the
standard part of f;). By playing different points in 90;{ (a1), player 1 can, at the
cost of at most an infinitesimal, signal to 2. Intuitively, this is why the limits of
equilibrium outcomes taken along finite approximations are contained in the set

of cheap talk equilibria as in [28].

4.2.3. Continuous Games with Almost Perfect Information. This game demon-
strates that the lack of closure of the set of achievable outcomes using the usual
models of infinite sets can prevent the existence of equilibria even in games of

almost perfect information.

Example 4.3 (Harris, Reny, and Robson). Nature makes an extraneous choice
att = 0. Players A and B move simultaneously at t = 1, players C and D
observe the choices made at t = 1, and then move simultaneously at t = 2. The
player action sets are X4 = [—1,+1], Xp = X¢ = Xp = {L, R}. With a being
the typicaly element of X 4, utilities are

211- =L -1 foB:L
ua = —la| - Yap—sc} + la| - Hoprtoc) “32{4.1%:15—2 if tg=R ~

10 Vagtag) — 307

w — —a if xz¢ =L, za=a T —a ifxzp=L, xa=a
¢ +a if tc=R, xa=a’ b 4+a if zp=R, T4p=a "

11



Following [17], note that players C' and D “will choose L if A plays strictly to
the left of zero, and R if A plays to the right of zero. Player B wishes to guess
the choice of player C'. Player A has to trade off” preventing “player B from
guessing the action of player C',” wanting “players C' and D to coordinate,” and
the “cost %aQ associated with any non-zero action.”

[17] shows that this game has no subgame perfect equilibrium, though it and
other continuous games of almost perfect information do have equilibria once they
are expanded by the addition of a rich public signal at each stage. Specifically,
players C' and D observe the expanded signal is 53 = (s1,s§) where s¢ is e.g.
uniformly distributed on [0, 1] and independent of s;.

Only X4 is infinite in this game. Therefore, in any finitistic version of this
game, only player A has more options. A can randomize over points infinitely
close to the left and right of x4 = 0 in their replacement set, F4. Since all players
at time £ = 2 see the same signal, this, at no cost, can duplicate the public signal,
s{. Intuitively, the new information in the infinitesimals above and below x4 = 0
is seen equally by later players, that is, the new information is a public signal.
The arguments in [17] also show that L(E) contains only public signal equilibria
in this game.

Again, the public signal outcomes necessary for equilibrium existence cannot
be realized using the strategies in the original game without expansion. The

expansion is provided by finitistic sets.

4.2.4. Differential Information and Simultaneous Moves. The players in this game
see different continuous signals about Nature’s choice, then simultaneously pick
actions in compact sets. Payoffs are continuous in Nature’s choice and in the play-
ers’ choices. It is not known whether such games have equilibria. In the example,
the space of achievable histories is not closed.* This game also demonstrates that

the finitistic versions of Nature’s move need to be chosen carefully.

4Finding an existence counter-example requires matching up the failure of closure of the history
space with the equilibrium conditions, simple to say and, apparently, difficult to implement.

12



Example 4.4. At time t = 0, Nature picks a point in Q = Q1 x Q, ; = [0,1]
(with the usual Borel o-field), according to P, the uniform distribution on the
diagonal in Q). Att =1, each player i sees w;, and picks a; € A;, the two-point
set {a;, b;}. Utilities u;(w, a) are independent of w and given in the matriz

a9 bg
ai | (6,6) | (3,0)
b1 | (0,3) ](9,9)

The matrix game has three equilibria, Na = {(a1,a2), (b1,b2), ((3,3),(3,3)}-
Strategies, o = (01, 07) are measurable mappings from Q to A; x Ay, equilibrium
strategies have the property that ¢ € Na P-a.e. Consider the sequence of strate-
gies o™ that play (a—1, az) on the intervals [2k-27", (2k+1)-27"), k= 1,... 2"}
and (b1, by) on the complementary intervals. With ™ being the distribution over
outcomes generated by play of o™, u° = lim,, 4™ is not achievable by any strategy
when the usual model of €2 is used. In this game, the set of limits of equilibrium
strategies is the set of public signal equilibria.

Finitistic versions of sets can be modeled as equivalence classes of (generalized)
sequences of finite sets. When a finitistic version of €2 is produced from a sequence
Q% there should be a corresponding sequence P¢ giving the finitistic version of
P. The equality a.a. condition imposed is that for any (measurable) E C ©,
P%(E) = P(FE) a.a. Letting E be the diagonal in this game, finitistic approxi-
mations are constrained to have equal signals for the two players. Violating this
condition even by an infinitesimal widens the set of limit distributions. Formulat-
ing the approximations and the strategies as sequences: model Nature’s move as
Fox F* where F* = {f%, f&, ..., f%} (where K* — o0), let 1 play the strategy
“ay if the signal is f and k is odd, b, if k£ is even,” let 2 play the strategy “ap if
the signal is fi' and k is odd, b, if £ is even,” let () assign equal measures to all

points of the form (f3;, fsi_1), (f5, fsi), and (f5, 1, for), k=1,... ,K*/2 -1,

and let Q* conditional on the diagonal satisfy the equality a.a. condition; with

13



this probability, the given strategies are an equilibrium. Q¢ puts only % of its

mass on the diagonal, puts all of its mass within an infinitesimal of the diagonal.

Diagram here

The point in A(H) closest to the outcome lim, u® of the given equilibrium

strategies puts mass % on the three points (a1, az), (a1, b2), and (b1, by) indepen-

dent of w. This is a correlated equilibrium that is not a public signal equilibrium.

4.2.5. New Additions. In this extensive form game, there need not be an equi-
librium with the usual model of infinite sets. What distinguishes this example
from the previous one is that crucial strategic aspects of the game depend on
fine details of the finitistic F' that is used. If one wishes to use the usual models
of infinite sets in this game and to have a well-behaved theory, it will require

inventing a new class additions to mimic the finitistic expansions.

Example 4.5. At t = 0, Nature picks w € Q = {—1,+1} with probability «,
0 < a < 1, giving rise to the (uninformative) signal so(w) = 0. At t = 1,
player 1, who observes sy, picks a; € Ay = [0,1] which gives rise to the signal
s1(w, sg,a1) = a1. At t =2, player 2 observes s; and picks ay € Ay = [0,1] giving
rise to the (continuous) signal s, = w - |ay — as|. At t = 3, player 3 observes
Sy and picks a3 € Az (giving rise to an irrelevant signal). Player 2°s utility is
—(a1 — a3)?, player 3’s utility is arranged so that her optimal action depends on
whether or not w can be inferred.

The history space for this game is
(11) H = (Q X S()) X (Al X Sl) X (AQ X SQ) X (A3 X 53)

Again, conformability requires that the choice of the finitistic Fy_, 7 < ¢, con-
strains the choice of the Fg, to contain the finitistic range of the signals s;.

Four observations:

14



1. if the spaces in H are replaced with finitistic F4, and Fs,, then F,\Fa4, # 0
is possible, so that 1 can guarantee that 3 perfectly infers w,

2. for A C [0,1], it is possible that (Fa, N A)\(Fa, N A) # 0, (Fa, N A°) C
(Fa, N A°) while so that 1 can only guarantee that 3 perfectly infers w if she
avoids A,

3. Fa, C Fy, is also possible, in which case player 2 can choose whether or not
player 3 infers the correct value of w,

4. if it is not required that the F4, contain each element of the A;, then Fy, N
F4, = () is possible, making it impossible for 3 to be ignorant of w no matter
what players 1 and 2 desire.

The finitistic equilibrium outcome set may contain very different types of out-
comes depending on which of the first three observations holds. The exhaustive
aspect of finitistic sets implies that Fa, N Fa, # 0, so that the fourth strategic
situation is not relevant.’®

Again, the usual models of infinite sets do not capture many of the limit phe-
nomena in game models. If we keep to the usual models by expanding the game,
required, at a minimum, are expansions allowing the 1’st and 2'nd players, but not
both simultaneously, to choose whether or not the 3’rd player receives complete
information about w. Further, these informational expansions may be different

in different parts of 1’s action space.

4.3. Normal Form Examples. There are three normal form examples with
compact action spaces but discontinuous payoffs. They are presented with some

extraneous pieces.

4.3.1. Omitting the Obvious. The first game has mixed but no pure equilibria.
The pure strategy finitistic equilibrium is quite intuitive, but omitted in analyses

conducted with the usual models of infinite sets.

5Suppose one were to take the position that the usual models of infinite sets are not only in-
convenient, but more generally irrelevant (see, for example, [33]). In this case, being exhaustive
loses some of its appeal, making F4, N F4, = 0 a reasonable proposition.

15



Example 4.6. At t = 0, Nature makes an irrelevant pick, wy, in the set Q =
{wo}, giving rise to the uninformative signals s;o(wo). At t =1, two legislators
offer bills a1 and ay in the interval [0,1]. The probability of a bill a; winning
passage is given by the proportion of the interval closer to a; than to a;, © # j,
and ties are evenly split. Legislator 1 is in the minority party and believes that
the only politically feasible bills are in the interval A; = [0, %], while Legislator 2
believes that Ay = [1,1] is available. The interval [f, 3] may be chosen by either.

As the Legislators are interested in winning, we may assume that payoffs are
linear in the probabilities, making this a constant sum game. It has no pure

strategy equilibrium because

1 2
12 (Vi) supu1<a1,u2>z§] and (Vi) [sum(ul,@)z—

3
al a2 3

1 2

and no vector of pure strategies delivering the payoffs (3, 3) is an equilibrium.

This game satisfies [6]’s hence [38]’s sufficient conditions for the existence of an
equilibrium. Indeed, equation (12) and a bit of further analysis implies that there

is a mixed strategy equilibrium in which both agents randomize over (3, 3). While

characterizing the mixed strategy equilibrium for this game is not particularly

difficult,® one can surely understand the first impulse to search for the equilibrium

in which Legislator 1 plays as far to the right as possible, a; = %, while Legislator

1 2

2 plays just to the right of Legislator 1, giving payoffs of approximately (3, 3).

In any finitistic version of the game, play of a; = % € Fy4, and ay the least

element of Fy, greater than % is an equilibrium with payoffs infinitesimally close

to (3,2). Thus, with E(F) being the equilibrium strategies, and for any finitistic

F = F4, x Fa,, Lp(E) contains the point (3, 3).
A direct game expansion that captures this equilibrium sets to 121\, = A; x AS.
Here A{ contains two points that can be understood as “+” and “—.” The

equilibrium can then be represented as @ = (d1,d2) = ((3, —), (3, +)) with u(@) =
(%, %) There is a crucial difference in this expansion — the expanded strategies

6Legislator 2’s density o must satisfy fyl/ % py(a)da — fly/ 4 ¢2(a)da = 2yps(y) for Lebesgue

almost every y in (4, %), and a similar formula holds for ¢;.
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directly affect utility (e.g. play of ((3,4), (5, —)) would reverse the payoffs, giving

30
(3 3):
A less direct but more generally applicable class of game expansions are the

endogenous sharing rule equilibria (ESR’s) due to [40].

4.3.2. Endogenous Sharing Rules as Expansions of Normal Form Games. To con-
struct an ESR in a normal form game, close the graph of v in X;erA4; 1 X [—1, +1]%.
Denote the correspondence with the resulting graph by v(-), and take the point-
wise convex hull of 1. A sharing rule is a (measurable) selection v = (v;);es from
the resulting upper hemicontinuous, convex-valued correspondence. An ESR,
(v,0%), is a sharing rule v and a vector of mixed strategies, o*, that form an
equilibrium of the game with strategy spaces A; and payoffs (v;);c;. ESR’s exist
provided the A; are dense in compact metric spaces and the payoffs are bounded.”

Any ESR, (v,0*), can be represented as a game expansion: Expand € to
Q = {wo} x [0,1] with ©g(wo, ) = wo. Have P be point mass on wp times
Lebesgue measure, A. For each A;, let A\Z = A; with ¢z equal to the identity
map (so there is no distinction between the A; and the 121\,) Take the extended
signals, §;0, to be everywhere equal to the uninformative s;o. For each a € A,
take %((wo,7),a) to be a point in ¥ (a) such that f[O,l} U((wo, ), a)dA(r) = v(a).
Standard selection theorems (e.g. [20, Theorem ?.77, p. ??]) show that it is
possible to pick u to have this property and to be a jointly measurable function.
For each ¢ € I, and each a; € A;, playing a; against ¢* gives ¢ expected utility
vi(0*\a;). Thus, 0* is an equilibrium for the given expansion. Further, it is easy

to see that an equilibrium o’ for a given 7 in this expansion is an ESR.

4.3.3. ESR’s Include too Much. ESR’s involve a referee, either in the form of a
convexifier, v, or in the form of a choice of u, picking how to assign utilities at

discontinuities. The next two examples show that way payoffs are picked in ESR’s

"The intuitive pure strategy equilibrium in Example 4.6 is represented by a selection satisfying
v(3, %) = (3, %) in addition to the play of the pure strategy (3, 3).
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is disconnected from the players’ actions in at least two unpalatable ways. The

first lack of connection arises because ESR’s have no exhaustiveness properties.

Example 4.7. The game starts, at t = 0, with an irrelevant move of Nature and
an uninformative signal. At t = 1, the two players simultaneously pick in their
action spaces, A; = [0,1], and the utility functions are

2 if a;=0 l—ay i a=0
U1(a1,a2)={a1 if a1>05 u2(a1,a2)={ a22 if a1>0'

It is easy to check that v; (a1, as) = a; and ve(ay, az) = as is a selection from
¥(+), indeed, it is the unique continous selection. For this selection, the unique
equilibrium is (aj,az) = (1,1). What is missing from this ESR is the crucial
strategic aspect of a; = 0, player 1’s ability to guarantee her/himself a payoff of
u; = 2. This is not missing from any finitistic expansion of the game, and the
unique finitistic expansion equilibrium outcome is (0, 0).

The second lack of connection arises because taking the convex hull of 1(a)
casts too wide a net, only the limits of the products of independent randomiza-

tions should be included.

Example 4.8. The game starts, at t = 0, with an irrelevant move of Nature and
an uninformative signal. Att =1, the two players simultaneously pick in A; = N,
and the utility functions are symmetric,

if a; > a; + 2

if a; = a; + 1

)
)
) if a; = Gy
)
)

ui(ai, 0,]') = 4 (—2, —2

a%;’ Zf a; = aj -1
| (~10,10) - a%»aj if a; <a;—2
The A; are dense in A; := N U {oo}, their metrizable one point compacti-

fications. Further, the only discontinuity point for the u; happens at (oo, c0).
The convex hull of the limits of the possible at payoffs at (co,00) is V =
co{(10,-10),(8,4),(—-2,-2),(4,8),(—10,10)}. Any selection from V combined

with play of (oo, 00) is an endogenous sharing rule equilibrium. In particular, the
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utility levels (5,7) can occur because (5,7) = 2(4,8) + 1(8,4). This is the unique
expression of (5,7) as a convex combination of points in V. However, no utilities
for product probabilities are in the neighborhood of (5, 7).

The equilibrium in the finitistic version of the game gives: utility (10, —10) if
the largest point in F4, is 2 or more larger than the largest point in Fjy,; utility
(8,4) if the largest point in F4, is 1 larger than the largest point in Fl4,; and so
forth, with symmetry.

4.4. Summary of Lessons from the Examples. With the usual model of
infinite sets, a minimally well-behaved game theory, a non-empty, closed set of
predictions immune to the inclusion of particular points, requires that games be
expanded. Even from the small set of examples given here, the requisite ex-
pansions must include forms of information leakage, public randomization, cheap
talk, complex correlating devices, choices of conditions under which early agents
can choose whether or not later agents are informed, and endogenous sharing
rules. Further, the exact shape of the requisite expansions depends critically on
the game in question. By contrast, finitistic versions of these games, needing no
further expansion, are relatively simple to analyze.

As a preview of why finitistic expansions work so well, note that when Fx
is a finitistic version of X, for any topology 7 on X, no matter how large, any
T-compactification of X is contained in F'x as a collection of equivalence classes.
In other words, Fx contains a huge number of idealizations of the behavior of
generalized sequences in X. In discussing related results, Lindstrgm [21, p. 58]
notes “that a very general limit construction is built, once and for all, into the

existence of sufficiently saturated, nonstandard models.”

5. FINITISTIC MODELS OF INFINITE SETS

There are three characterizations of the class of large finite sets we use: (i)
they are the anchored limits of sequences of finite approximations, (ii) they are

the limit sets when the class of finite sets is partially ordered by reverse inclusion,
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and (iii) they are exhaustive, star-finite sets. The three results in this section
are (a) the three approaches are equivalent, (b) if E(B) is non-empty for finite
B, then the limit sets are non-empty, and (c) sufficient conditions for the upper-
hemicontinuity of the the correspondence from utility functions to limit sets. The
proof of the equivalence contains a minimality result for finitistic game expan-
sions. These results also hold when there are restrictions on the allowable class
of finite subsets.

The equivalences are expressed in terms of E-sets, approximate E-sets, and
L(E)-sets, “E” being a mnemonic for “equilibrium,” “E¢” for “approximate equi-
librium,” and L for “limit.” Throughout, X is a compact Hausdorff space, the set
of Borel probabilities on X, A(X), has the weak* topology, Px denotes the finite
subsets of X, and when X is a product space, Px denotes the set of products of
finite subsets, Px = X;erPkx;-

Under study is the limit behavior of a correspondence E(-) (respectively, E(-))
that maps each F in P (respectively, and each ¢ > 0) to a non-empty subset
of probabilities in A(X) that are concentrated on F. Limits are taken along a
subset, P§ of Px that is rich, that is, for each z € X, (AF € P{)[z € F], and
has a lattice structure, that is, if F, F' € PY, then (3F" € Px)[F" > F U F].
Clearly Px is rich and has a lattice structure. In the next section, we will see
that conformable finitistic F' replacements of H is rich and has a lattice structure
in extensive form games. It is assumed throughout that P§ is rich and has a
lattice structure, the theory is only interesting when P is infinite.

The ‘typical’ interpretations of E and E¢ are irrelevant to results in this section,
though they can help the intuition. If X = Xx;c;X; is a metric space of strategy
vectors and F' € P¢, then E(F) (respectively E¢(F)) will typically be equilibria
(respectively e-equilibria) of the game in which the players, i € I, are restricted
to the actions in F;. If X is the set of possible histories for a dynamic game with
infinite action sets, then E(F") (respectively E¢(F')) will typically denote a set of

equilibrium outcomes (respectively e-equilibrium outcomes) when P is replaced
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by a generalized sequence of distributions of Nature’s move, P", that satisfy the

equality a.a. condition of Section 4.2.4.

5.1. Definitions. A sequence or generalized sequence F™ in P§ converges to X,
F™ — X, if for each z € X and each neighborhood G, of z, F*" NG, # () a.a.®
Because P is rich and has a lattice structure, there exist generalized sequences
in P that converge to X.

For any F € P, S(F) denotes the set of F' € PS such that F C F'.

Definition 1. The set of anchored E-limits is L (E) = ﬂFepg Ly (E) where
(13) Ly (E) = {lim, p" : p" € E(F"), F" - X, F" € S(F) a.a.]}.

The set of anchored approximate E-limits is L**(E") = ﬂ6>0’ Fepg L3 (E)
where B¢ replaces E in eqn. (13).

While L (E) and L$"(E°) depend on the choice of F' and ¢, the sets L*" (E)
and L**(E") do not.
Partially order P{ by Fy = F, if F; D F,. Limits as F' 1 co are defined in P{

relative to this partial ordering.

Definition 2. The set of partial order E-limits s

(14) 1/°(E) = {limptoo p* : up € B(F'), F' = F},
and the set of partial order approximate E-limits is

(15) 1P (EY) = {lim o, pro0 ur : p~ € EC(F'), F' = F}.

Nonstandard objects® belong to an R-saturated extension, *V(Z), of a super-

structure V' (Z) where the base set, Z, contains X, R, and X is a cardinal greater

8This is the usual Hausdorff convergence of F™ to X when X is a compact metric space.

9GSee Lindstrgm (1988) or Hurd and Loeb (1985) for good expositions, Appendix A is a primer
that tries to make it clear that the crucial properties of nonstandard objects are at least rea-
sonable.
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than the cardinality of V' (X). The class of finite subsets of any bounded Y in the
superstructure V(Z) is denoted Py, and is itself bounded in V(Z). The *-finite
(read star-finite or hyperfinite) subsets of Y are *Py-.

Definition 3. An F € *P{ is exhaustive if for allx € X, x € F. An element
of *P$ is a finitistic version of X, or simply, finitistic, if it is erhaustive.

The set of finitistic subsets of X is denoted T.

Because P is rich and has a lattice structure, N-saturation implies F # 0.
When X is infinite, any finitistic version of X is a strict expansion of X — it
contains all of the points in X and others as well (e.g. [21, Lemma 2.7]). When
(Z,7) is a topological space and z € *Z is nearstandard, the standard part of z
is denoted by °z or st (z). The standard part of z the point 2’ in Z closest to z.
Recall that A(X) has the weak* topology.

Definition 4. The set of finitistic E-limits and finitistic approximate E

limits are
(16) L/(E) =°{*EB(F): F €F}, and L''(E") = °{*E°(F) : F € F, e ~ 0}.

There is a topological interpretation of finitistic sets directly tied to the partial
order on P§. Let C denote the set of bounded, real-valued functions, ¢, on P with
the property that limpss c(F') exists. Because C is a sup norm closed algebra of
functions separating points in P¢, there is a compactification, Zx, of P defined
by the property that each ¢ € C has a unique continuous extension from P¢ to
Zx, and that all continuous functions on Zx are extensions of elements of C (see
e.g. [19, Thm. II1.7.3, p. 157]). The filterbase S = {S(F) : F € P{} converges
to a unique point, call it oo, in Zx. The finitistic sets are the infinitesimal

neighborhood, i.e. the monad, of co in Zx.

Definition 5. When (Z,7) is a topological space, and z is a point in Z, the
monad of z in *Z is the set m(z) =({*U:z€ U, U € 7}.

22



Lemma 1. F € F if and only if F € m(oo) and F # oc.

Proof: If F' € T, then for all ¢ € C, *¢(F) =~ *c(o0), which is equivalent to
F € m(00) because the ¢’s define the topology on Zx. If F' ¢ T, then there exists
B € P§ such that F is not a superset of B. Define ¢ to be equal to 1 for all
supersets of B and equal to 0 otherwise so that ¢ € C. Because ¢(F) = 1 and
¢(00) =0, F is not in m(cc). |

5.2. Equivalence, Existence, and Minimality. All three of the approaches,
anchored, partial order limits, and finitistic, give the same closed, non-empty

limiting sets, and there is a strong sense that this set is minimal.

Theorem 1 (Equivalence). With D being E or E*, 1L*"(D), LP°(D), and L'*(D)

are equal, closed, and non-empty.

Proof: The proof for E* is a minor modification of the one for [, and is not given
here. For the purposes of this proof, introduce the set L'(E) = repg ol E(S(F)).

The set I (E) is closed and non-empty because it is the intersection of the class of
sets {clE(S(F)) : F € P{}, a collection of closed subsets of the compact space
A(X) having the finite intersection property. The steps L' C Lr°, IP° C Lo,
L ¢ I/, and I = /* will complete the proof.

Step 1 — L' C IP°: pu € L/ if and only if for all F € P, there is a sequence
u$ in E(S(F)) such that lim, u% = u. This implies that there exists F' — a(F)
such that limpe po" = p and p2") belongs to E(F') for some F' = F so that
we Lp.

Step 2 — IP° C L*": If p € 1P°, then p € L% because F™ 1 oo implies both that
F™ — X and for every F', F" € S(F) a.a.

Step 3 — 12 C I': Suppose that u € I/, i.e., for some F € P, u & clE(S(F)).
This implies that p ¢ L%, which in turn implies that p ¢ L.

Step 4 — 1! = I/%: For any subset S of a topological space, the standard part
of *S is the closure of S (e.g. [21, Thm. 7?.7]), so that ° *E(S(F)) = clE(S(F)).
Thus, a point p satisfies p ¢ L if and only if p & ﬂFePg °*E(S(F)) if and only
if there exists an F' € P§ such that u & °*E(S(F)). Because F' € F if and only
if F' = F for all F € PY, this is in turn equivalent to (VF' € F)[u & °*E(F")].
Combining, p ¢ I/ if and only if u ¢ L%, I
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The intersection formulation of I shows that L**, 17°, and L/* identify the
smallest closed set containing the limits of E(-) applied to finite sets. The limits
sets are the minimal closed sets consistent with the idea that continuous quantities
are the limits of finite approximations.

In light of Theorem 1, the superscripts on L%, 17°, and L/* will be omitted.

5.3. Upper-hemicontinuity. Let E(B,u) denote the set E(B) when u is the
utility function, and L(E,u) the corresponding limit set. For many of the in-
teresting E’s, u — E(B,u) is not upper-hemicontinuous even for fixed B € PY.

Re-consider Example 3.1 with the new but still symmetric utility functions,

0 if g; =—1
ui(a;, a;) = 2 if a;,a; € [0, 1]
—a; —e€ if a;j =—1 and q; € [0,1]
The sup norm distance between u and u€ is €, but for all ¢ > 0, there are no
weakly dominated strategies. If E(B,u¢) is defined as, for example, the perfect
equilibria, then for all ¢ > 0, L(E, u¢) contains both play of (0,0) and play of
(—1,—1). By contrast, L(IE, u) contains only play of (0,0).

Metrize the possible utility functions, I/, with the sup norm, || - ||co-

Definition 6. The closure of u — L(E, u) from U to A(X) x [-1,+1]" is

(17) L(E u) = “{"E(F,u): F € F, |Ju— u||oc ~ 0}.

If u — E(B,u) is uhc for fixed B € PY, then d(E(B,u),*E(B, u)) ~ 0 when-

ever ||u — uf||o =~ 0 for each u € U.

Theorem 2 (Upper hemi-continuity). The correspondence u — L(E, u) is upper-

hemicontinuous.

Proof: Let ¥ be the correspondence on Zx xU having as graph the closure of the
graph of the correspondence (B, u) — E(B,u) on P§ x U. The correspondence
u +— L(E,u) is the correspondence u — (oo, u), the graph of which is closed
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because it is the intersection of two closed sets. In the presence of the compactness
of the range space, this is sufficient. 1

Replacing E by E* in the definition of closure leads to a version of Theorem 2

for ET that is true for the same reasons.

6. GAMES, EQUILIBRIA, AND EXPANSIONS

This section specifies general extensive form games and their expansions. A
general extensive form game is one in which Nature’s actions, the players’ actions,
and the signals on which they base their actions take their values in measure
spaces. An expansion of an extensive form game expands each measure space
in the game, and extends the signals and utilities in a conformable fashion (to
be carefully specified below). Replacing the spaces that define an extensive form
game by finitistic versions of the same space gives rise to an particularly inter-
esting class of expansions, especially for compact and continuous extensive form

games. The following are in force throughout.

Assumption 6.1 (Blanket Technical Regularity).

1. The sets below are non-empty and come equipped with a o-field of measurable
subsets for which point masses are well-defined;

2. probabilities are countably additive;

3. the set of probabilities on any o-field is given the smallest o-field containing
sets of the form {u : p(E) > r} where E is measurable and r € R;

4. product spaces have the product o-field; and

5. the functions and sets below are universally measurable.
6.1. Games. Specifying a game requires: the finite set of agents, I = {1,...,I};

the moves of Nature; a specification of the possible outcomes; of when and under

what conditions which agents can move; what the agents know when they make
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their moves; and the utilities. Formally, a game is 4-tuple

(18) I'= ((Q,P)a (Ai,t)ieI,teTa (Si,taSi,t('))ieI,te{O}UTa (uz())zel)
\_\1,._/ - ; e - ‘3r - \_\4,._/

The rest of this subsection gives the definitions of the parts of a game, the as-

sumptions they satisfy, as well as the definitions of outcomes and equilibria.

6.1.1. The pieces. The agents pick their actions at any time ¢ in T = {1,... T},
T an integer, while Nature’s move is a point w in € picked at time ¢t = 0 according
to P. Signals at t € {0} U T take their values in S; = x;¢15;;. Player ¢’s actions
at t € T, points in A;;, are based on their signals at ¢ — 1, points in S; ;_;.

The random initial history, hg, is of the form (w, (si0)icr) Where so = (si0)icr

is a function of w. Thus, hg is a point in
(19) H() = x So.

Each player ¢’s actions at t = 1 are points a;; in A;;. The actions are picked as
functions of the signals s;o. Signals at time ¢ € T, s;, on which actions at ¢ + 1
will be based, are a function of h;_; and a;, i.e. the domain of s; is H;_1 X A;.

The set of t-partial histories is thus a subset of
(20) Ht = (Ht,1 X At) X St-

A behavioral strategy for ¢ is a function, 0;4(s;:—1), of their signal. Each o;;
takes values in the set of probabilities on A;;. If A;; has only one point, the
intended interpretation is that player ¢ has no choice to make at ¢.

Utilities are given by u; : Hr — [—1,+1], and u = (u;)ie;-

6.1.2. Perfect recall. By assumption, the game is one of perfect recall. Define

mit(hi—1) to be the subvector of h;_; containing all of i’s signals and actions

previous to t, m; ¢(hi—1) = (Sir, Qir)o<r<t—1-

Assumption 6.2 (Perfect Recall). For alli, t, and for all partial histories hy_,

the vector s;(hy—1) contains m;(hi—1) as a subvector.
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6.1.3. Outcomes. Fix a vector o = (0;)ier, ter Of strategies, and a partial history
hi—1. Define 0., = (0i4)icr, and after each h;_;, identify the vector o.;(hi—1) of
probabilities with the product probability on x;c;A;, with the given marginals.
Also, define 0;. = (0i¢)ier. The one-step-ahead distribution over A; x S; that

follows h;_; when o is being played is defined by its value on rectangles, £ x F',

(21) QUE x Flhyy) = 0.4(he—1) (E N (s(he1, )" (F))).

Given a distribution, p; ; on H; ; and D C H; | define y; on H; by

(22) D (B x F)) = [ QuE x Flhucr) diacs (i)

As an example, if g 1 is point mass on h; 1, then py(-) is the product of point
mass on h;_; and the one-step-ahead probability Qt(-|ht_1).

Inductively applying this construction to pg, the initial distribution on H)
determined by Nature, gives the outcome, OQ(c), associated with play of o.
Applying this construction to a point mass on a point h;_; gives the outcome,

O(c|hs_1), associated with play of o following the partial history h; ;.

6.1.4. Equilibria. For i € I and ¢t € T, S;;—1 is the minimal o-field making s; ¢
measurable, u(0) := u(0(c)), and u(c|h;_1) = u(O(c|hi_1)).

Definition 7. ¢* is an equilibrium and O(c*) an equilibrium outcome if

for all i € I and for all strategies o;, u;(c*) > u;(c*\oy).

Definition 8. ¢* is ¢ Bayesian Nash equilibrium and O(c*) ¢ Bayesian
Nash equilibrium outcome if for all i € I and allt € T, E (ui(0*)|Sis1) >
E (ui(0*\0:)|Si 1) with Q;_y (o) probability 1 where Q,_; (o) is the marginal of

O(o) on Hy_1, and conditional expectations are taken with respect to Q1 (c*).

6.2. Expansions. An expansion of ' is a game, f, in which there may be extra
moves by Nature, extra signals, and extra actions. The extras arise from the

expansion of the measure spaces in T'.
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Definition 9. An expansion of a measure space (X, X) is a measure space

()/(\', .jf'\) and a mapping Oy : X — X that is both onto and measurable.

If z is a point in a set of (say) actions X, then go;?l(x) is a corresponding
larger set of (say) actions available in an expanded game. Also, (X, X) can be
understood as the set of ¢ ¢-equivalence classes in X , X = X /0%

In increasing order of complexity, three expansions of (X, X’) are: X = X and
¢ is the identity mapping; X=Xx [0,1] and ¢ is projection onto X; and Xis
a subset of X x [0, 1] such that, when ¢4 is projection to X, it is onto. A fourth
expansion, much used below, is available when (X, X") is a compact Hausdorff
space and its Borel o-field, ()? , by ) is a finitistic version of X and a Loeb o-field,
and ¢4 is the standard part mapping.

6.2.1. Ezamples of erxpansions in games. Extra signals can give rise to informa-
tion leakages that remove informational discontinuities. In Example 4.1, the
action taken at time 2 depends on the signal s; = —(a; —w)?. One informational
leakage expansion takes S; to be S; x € and have apg(sl) = {s1} x Q and has
the expanded signal 57 = (s;,w). With this expanded signal, the player knows w
when choosing at ¢ = 2 even if s; is uninformative.

Extra actions with no utility consequences, if observed by subsequent players,
add cheap talk to signaling games such as Example 4.2. One formulation of the
cheap talk expansion sets A, = A; x Q with cpii (a1) = {a1} x Q. If player 1
plays the expanded strategy o1 = (1,w) and S, = @y, then at ¢ = 2, player 2 can
coordinate her action with w.

In a directly parallel fashion, extra moves with no utility consequences, if com-
monly observed by later players, can add a public signal to games of nearly perfect
information such as Example 4.3. Different players seeing different aspects of an
extra move by Nature adds a correlating device. In Forges ([11]) and Myer-
son ([31]), the correlating device depends on the entire previous history. Extra

actions that determine the information content of the extra signals can make
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substantially alter the strategic aspects of a game such as Example 4.5. Section
4.3.2 discusses the game expansion that deliver ESR’s, the addition of a referee

determining payoffs associated with given actions.

6.2.2. Formalities of expansions. Fix a game

= ((Q,P), (Ai,t)ieI,te'JI‘a (Si,taSi,t('))ieI,te{O}U'ﬂ‘a (uz())zeI)

An expansion of I', T, is a game

~

)y (Aiicriers (Sin8in()icrscqurs @i(-))ier)

)

T'= (&,

in which some or all of the spaces €2, A;;, and S;; are replaced by expansions.

Because P is fixed in T', the first requirement of T that P be the image law of
P under ©g- The additional requirements involve extending the signals s;; and
the utilities v from their domains in I' to their larger domains in T

Let (X, X) and (Y,)) be two measure spaces, (()?,é?),go)?) and ((?,?),(p?)
two expansions, and f : X — Y a function from X to Y. An extension, f, is a
function from X to Y that “corresponds” to f. For each x € X, an extension,
f, of f, has A, = go)i(l(:v) as part of its domain, and B, = f(Aw) is the image,
in Y, of this part of the domain. Thus, the set C; = ¢ (B;) should bear some
relationship to the set {f(z)} if f is to be an extension of f.

Definition 10. f: X — Y is an exact extension of f if

(Ve € X)[{f(z)} = Ca].

It is a selection extension if
(Vo € X)[{f(x)} C Cs].

In finitistic expansions, exact extensions appear when extending continuous

functions, selection extensions appear when extending measurable functions.
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Definition 11. Let (X, X) be a compact Hausdorff space with its Borel o-field.
(X, &), ¢%) is a finitistic expansion of (X, X) if

1. X isa finitistic version of X,

2. N s a finitistic version of X that meets every element of )/(\',

3. X = o(N), i.e. X is the o-field generated by N, and

4. pg 1s the standard part mapping.

Lemma 2. Suppose that (X, X) and (Y,Y) are two compact Hausdorff measure
spaces with finitistic expansions, that Y contains “f ()? ) where f is a function
mapping X to'Y, and set f: “fix- The for eachz € X, Cyp = go;,(f(go)i(l(x)) is
equal to the closed set, Ny, ey 1 f(U) where T is the topology on X.

Proof: Note that 2’ € go;?l (z) if and only if 2’ is in the intersection of the monad

of z and X. The rest follows from the Overspill principle (e.g. Lindstrgm, Thm.
?7.77) and the exhaustiveness of X. 1

In particular, if f is continuous (respectively measurable), then fis an exact

(respectively a selection) expansion of f.

Definition 12. T is an (exact) expansion of T if each measure space in T is
replaced by an expansion, and the signals and utilities in T are selection (ezxact)

expansions of the corresponding signals and utilities in I
The vector of ¢’s associated with an expansion is denoted ¢g or ¢j.

Definition 13. * is an (exact) expansion equilibrium of I' if it is a equi-
librium of an (exact) expansion T. In this case, the image law of Q(c*) on Hr

under g is called an (exact) expanded equilibrium outcome.

6.3. Finitistic Expansions of Compact Extensive Form Games. Fix a

game

I'= ((Q,P)a (Ai,t)iEI,te'JI‘; (Si,taSi,t('))ieI,te{O}UTa (uz())zeI)
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Definition 14. The game T" is compact if Hr is compact, I' is compact and

continuous if it is compact and the signals and utilities are continuous.

For the rest of this paper, all games are assumed to be compact. This directly
contains much of the previous literature: [28] studies cheap talk expansions of
compact and continuous signaling games; [16] and [17] study public signal ex-
pansions of compact and continuous I' with almost perfect information; [11] and
[31] study extensive form correlation expansions of more general compact and
continuous I'. Following Appendix 2, it can be made to contain the rest of the

previous literature.

Definition 15. A finite set, F' € Py, is conformable if the finite approrima-
tion to each S;; contains s;(F') where F' is the projection of points in F into

the domain of s;4.

Induction on t shows that ’PST, the set of conformable finite approximations
is rich and has a lattice structure. The IL(E) sets are defined using limits along

'PST rather than allowing non-conformable versions of the game.

Definition 16. When I is compact, T is a finitistic expansion of I' if each

measure space in ' is replaced by a conformable finitistic expansion, and for all
ECQ, PCENFy) = P(E).

The last condition is the equality a.a. condition discussed in Section 4.2.4. As
shown there, it is strictly stronger than the condition that P is the image law of
P under Vg -

Lemma 2 delivers the following.

Lemma 3. Finitistic expansions of I are expansions, and if T' is compact and

continuous, finitistic expansions are exact.

The following Theorem says that the standard parts of € equilibrium outcomes,

€ ~ 0, in finitistic conformable versions of a game are the finitistic expanded
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equilibria. It is a direct consequence of the lifting and pushing down theorems of

[2, Theorems 5.2 and 5.3].

Theorem 3. If E(-) is the set of € Bayesian Nash equilibrium outcome corre-
spondence, then L(E™) is the set of finitistic expanded Bayesian Nash equilibrium
outcomes. If T is compact and continuous, then IL(ET) is the set of finitistic

exact expanded Bayesian Nash equilibrium outcomes.

Taking E as a strict subset of E¢ picks out further closed non-empty subsets
of the expanded equilibrium outcome sets. For example, if E(B), B € ”PgT,
is the set of sequential equilibrium outcomes, then L(E) provides the finitistic
sequential equilibria of . Replacing “sequential” by “Bayesian Nash” or “divine”

or “stable” provides the corresponding set.

7. FINITISTIC EXPANSIONS & PREVIOUS WORK

The definition of expansions unifies the previous work on compact games, while
finitistic expansions sharpen and simplify the previous expansion results in the
literature. We take the different classes of compact games in increasing order of

complexity.

7.1. Normal Form Games. In summary, compact and continuous normal form
games need no expansion, the class of compact normal form games with discon-
tinuous payoffs does need expansion. Endogenous sharing rule equilibria (ESR’s)
are expansions. ESR’s form a superset, strict for at least two kinds of reasons, of
the set of finitistic expansions.

I is a normal form game if Q is a singleton set, Q = {wp}, and the time set
is T = {1}. A small extension of [12] (to account for exhaustiveness) shows that

compact and continuous normal form games need no expansion.

Theorem 4 (Fudenberg and Levine). If T is a compact and continuous normal
form game, then o* is an equilibrium if and only if o* belongs to L(E™) where
E¢(B) is the set of e-equilibria for the finite version of T played on B.
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Compactness by itself is easy to arrange for general measure spaces (e.g. [2,
§3]), and Appendix 2 discusses why this means that there is no loss in assuming
that € is compact. However, functions on a measure space that is itself a product
of measure spaces are often difficult to extend to the product of separate compact-
ifications. Algebraic, measure theoretic, and compactification characterizations
of abstract normal form games in which measurable extensions exist are available
in [18]. The set-valued theory of integration needed to integrate non-measurable
functions, including those that arise in games, is available in [43].

When T is a compact normal form game that fails to be continuous, equilibria
may not exist. [40] study existence questions through a superset of the class of
expansions called endogenous sharing rule equilibria (ESR’s). Section 4.3.2 de-
fines ESR’s, and, after modifying the definition of % on a null set, it can be shown
that ESR’s are selection expansions. Intuitively, the proof adds an unobserved,
random device that determines the players payoffs in co (¢/(a)) when a is played
(1(a) is the set of limits of payoff vectors taken as a™ — a). Because the ran-
dom device is not observed by the players, the players choices in ESR’s are not
correlated.

Limits of products of independent randomizations form a subset of the convex
hull. Example 4.8 exploited this to show that ESR’s need not be interpretable as
limits of finite approximations — taking the convex hull of 1(a) casts too wide a
net. Example 4.7 shows that by failing to satisfy exhaustiveness, ESR’s cast too

wide a net in a different direction.

Theorem 5. IfE*(B) is the set of e-equilibria for the finite version of the normal
form game T played on B, then I(E™) is a closed, non-empty subset, strict in
some games, of the endogenous sharing rule equilibria.

Proof: The closure and non-emptiness of L(E™) are established in Theorem 1.
Pick an arbitrary finitistic version of A = X;c;A;, F = XierF;. Let p* be an e
equilibrium for the game played on F', ¢ ~ 0. It suffices to show that there exists
a selection v from the correspondence a — co (1(a)) such that play of u = st (u*)
is an equilibrium when the action spaces are the A; and the payoffs v. In outline:
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1) p* will be modified to ' by shifting an infinitesimal amount of weight so as to
put weight only on points f; € F; that deliver payoffs infinitesimally close to the
maximum achievable against p*; 2) v will be a carefully constructed version of
the conditional expectation F (u|5) where § is the minimal o-field making the
standard part mapping measurable; 3) by the exhaustiveness of the F;, playing
any a; against p cannot deliver a payoff higher than playing u;.

1) Let C; C F; be the set of f; € F; such that pf(f;) > 0, and let @; be the *max
of {u;(u*\f; : fi € F;}. Define the internal set D; C R, as the set of §; such
that there exists an S; C C; such that

(23) ui(p*\fi) > u; — 6;, and Z pi (fi) > 1=

fi€S;

Because p* is an e-equilibrium, € ~ 0, D; contains arbitrarily small non-infinitesimal
numbers. Because D; is internal, overspill implies that it contains an infinitesimal.
Pick one such infinitesimal, call it &}, and let S} be the corresponding S;. Let p(-)
be 1*(+|S!) and note that 4/ is in the weak* monad of u because [ gdu' ~ [ gdu*
for any continous g on A (only an infinitesimal amount of mass was moved and ¢
is bounded). Redefine u; as the *max of {u;(¢/\ f;) : fi € F.}, changing its value
by at most an infinitesimal.

2) Let S denote the minimal sub-o-field making the vector of standard part
mappings from F; to A; measurable and let T; be the standard part of S;. The
function v = FE(°u|S) is S-measurable, so, by a Theorem of Doob’s (e.g. [8,
Ch. 1, No. 18]), v can be taken to be a function of a, a € X;cfT;. For each
1 € I, take S to be a sequence of o-fields generated by a nested sequence of
disjointifications of finite €] covers of T;, €' — 0. By the martingale convergence
theorem, v" = E(°u| ®;c; SI') converges a.s. to v. By construction, the distance
from v"(a) to co (¢(a)) converges to 0 a.s. We can measurably modify v on a set
of measure 0 if necessary (e.g. [20, Theorem 7.7?, p. ??]) and conclude that v is
a measurable selection from a +— co (1)(a)). Define v to be an arbitrary selection
from co (¢(a)) on the complement ;¢ 7;.

3) Pick arbitrary i € I and a; € A;. Because integration against Loeb measures is
infinitely close to *finite summation and pushing down gives a Loeb measurable
function,

(24)
Ev= f vi(a) du(a) = / w(P AL~ S wl(f) e Ter(f;)

(fi)jer€XjerS;
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where L(4') is the Loeb measure generated by p'. Because ' is an €'-equilibrium,
€' ~ 0, the last term in (24) is infinitesimally close to @;, that is, playing u; against
(145)j: when the payoffs are given by v, ¢ gets utility °%,;. Consider deviating from
1i to a;. This gives payoff

(25)
/vi(a) d(p\ai)(a) :/Oui(f) dL(p'\ai)(f) =~ Z Uz’(aia(fj)#i)nj#z'lﬁ;’(fj)-
A r (fi)j#i€X 5]

Because Fj; is exhaustive, a; € F;. This implies that the last term is less than or
equal to T;, implying [, vi(a) d(p\a;)(a) < °u;, so that 4 is an equilibrium when
the payoffs are given by v. 1

Finitistic equilibria also deliver an upper hemicontinuous theory for normal
form games. Suppose that I'(u) is a compact normal form game with possibly
discontinuous payoffs u, and that v’ € U is a utility function satisfying ||u —
U]l = 0. Then p* is an e-equilibrium for I'(u) and for some € ~ 0 if and only
if 4* is an €'-equilibrium for I'(u') and for some € ~ 0. In terms of Theorem 2,
this means that L(E*,u) = L(ET), so that the mapping v + L(E*) from U to

XierA(A;) is upper hemicontinuous.

7.2. The Simplest Extensive Form Games. The simplest extensive form
games have non-trivial © and signals while sharing the time set T = {1} with
normal form games. The study of this class of compact and continuous I' has a
long history, though it is still not known if these games have equilibria in general.
The example in Section 4.2.4 shows that the set of outcome distributions is not
generally closed. [30] gives conditions on P under which the set of outcome
distributions is closed and the set of equilibria is non-empty and closed. Without
the conditions on P, [5] gives a complicated existence proof when this class is
expanded by the addition of a correlating device.

Passing through a finitistic expansion of T, [42] proves that L(E") is a closed,
non-empty subset, sometimes strict, of the correlated equilibria. In more detail,
finitistic signals are informationally innocuous in this class of games — condi-

tioning on the finitistic signal tells the players no more about any £ C ) than
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conditioning on the original signal. It is also true that any finitistic expansion is
equivalent to expanding the game by the addition of a standard correlating de-
vice — each finitistic expanded equilibrium, that is, each element of L(E™), is an
expanded equilibrium for an expansion in which: Qis Q x [0,1]; g is projection;

the probability Pis P x A; the expanded signals, 5; are of the form (s;, s )-

7.3. Signaling Games. If the expansion of a signaling game is again a signaling
game, then each expansion outcome is the outcome of some cheap talk expansion.
If it also true that @, the expanded utility function, is an exact extension of wu,
then each expansion equilibrium outcome is the equilibrium outcome of some
cheap talk expansion. Finitistic expansions of signaling games are also signaling
games, and they are exact expansions if the payoffs are continuous. This means
that finitistic equilibrium outcomes form a closed and non-empty subset of the
cheap talk equilibrium outcomes. The construction of a game in which they form

a strict subset is below. The notation for signaling games was set in §4.2.2.

Theorem 6. If T is an expansion of a compact metric signaling game I' in which
the Receiver sees the Sender’s expanded action and nothing more, Sy(h) = @,
then every expanded outcome for I' can be realized as the outcome of a cheap talk
eTpansion.

Expansions in which 55 can be directly informative about @ are not signaling
games.

Proof: Fix expanded strategies o; and o, for players 1 and 2. The proof consists
of showing that there is a vector of cheap talk strategies that induce the outcome
0 = ¢:(0(a,, widehato,).

Let Q be the marginal of g on on Q x A;. Taking o (w) to be a regular
conditional probability (rcp) for @ with respect to w gives a strategy in I' that
induces (). Because 5, (/};) = ay, all that is left is to show that the marginal of o
on A; X Ay can be induced by cheap talk strategies.

Let R be the marginal of p on A; X Ay. Taking an rcp for R with respect to a;
gives a measurable mapping a; — R,, such that for R-a.a. a1, R,, is concentrated

on {a;} x As. Let p(a;1) denote the marginal of R,, on Ay. Play of the cheap talk
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strategy vector
(26) (01", 0%") = ((01(w), p(0 (), P(07))

induces p. Because [0, 1] is Borel isomorphic to A(Ay) (all uncountable Borel
subsets of compact metric spaces are Borel isomorphic), this strategy can be
recast in the cheap talk form described above. 1

Theorem 7. If T is an expansion of a compact metric signaling game I" in which
So(h) = a1 and for every outcome h, {u(h)} = {ﬁ(g@%l(h)}, then every expanded
equilibrium outcome for I' is also cheap talk equilibrium outcome.
Proof: Proof goes here. 1

Theorems 6 and 7 directly imply

Theorem 8. If E°(B) is the set of e-equilibria for the compact and continuous
signaling game T played on the conformable, finite set B, then Lt (E) is a closed,
non-empty subset of the cheap talk equilibrium outcomes for T.

A crucial aspect of the strict subset result is the fact that st ~!(a) is a singleton

set if a is an isolated point.

7.4. Games of Almost Perfect Information. The set of finitistic expansion
equilibria is a closed and non-empty subset, strict in some games, of the public
randomization equilibria.

Again, a crucial aspect of the strict subset result is the fact that st ~'(a) is a

singleton set if a is an isolated point.
7.5. A General Result on Exact Expansions.
Theorem 9. Forges-Myerson equilibria are exact expanded equilibria.

8. CONCLUSIONS

We are arguing that a fundamental piece of our mathematical models in game
theory should be expanded, not an argument lightly made. That the theory of

games needs expansion is clear: Not having equilibria in simple games is not
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acceptable for a general theory of games; Precluding obvious equilibrium phe-
nomena is equally unacceptable; Failures of closure of an equilibrium set mean
that limits of equilibria may not be equilibria, and this is, at best, very hard to
interpret. A potential counter argument to the need for expansion is the existence
of many games in which the usual model of infinite sets do not cause problems.
For such games, there is no need to switch to finitistic models. However, even
in these games, finitistic expansions are often the easiest method of discovering
whether or not such problems arise.

A second class of potential objections arise from the observation that finitistic
sets are non-unique in two very different fashions. First, there are many different
finitistic versions of any given set. Second, as noted in [24], within a given model
of Zermelo-Frankel set theory, there is a unique (up to isomorphism) model of the
continuum, but there are many nonstandard models. The first non-uniqueness is
no more than the observation that there are many sequences/nets of finite sets
converging to a given infinite set. Rather than picking one particular sequence/net
and deciding it is the best one, we allow all sequences. Correspondingly, the non-
standard definition of I(E) is the union, taken over finitistic F', of the sets E(F).
The second non-uniqueness is irrelevant for a simpler reason — independent of
the choice of model of nonstandard objects, the nonstandard definitions used here
are equivalent to standard limit definitions.

At a more general level, the choice between different models of quantities de-
pends on the stories one wishes to tell, not on some deeper underlying truth.!°
There is no deep reason to prefer R over Q, (the dyadic rationals) or Q¢ (the
decimal rationals) or some finitistic version of R as a model of continuous quanti-

ties. Distinguishing between any pair of these four models of quantities requires

10Finitistic sets and nonstandard probabilities have been used to provide a strictly coherent
model of beliefs in infinite contexts ([41, §3]). Conditioning by Bayes’ Law in finitistic proba-
bility spaces is equivalent to Popper systems of beliefs in infinite contexts ([26, Theorem 1]).
Continuous time martingales and stochastic integration have transparent finitistic formulations

([1]; [33))-
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being able to distinguish “lengths” infinitely smaller than 1,000~%%° times “di-
ameter” of the smallest known subatomic particle, and it is not clear that this is
meaningful.

The marvelous edifice of real analysis, supported by the usual model of the con-
tinuum, is internally consistent and powerful. Having all “lengths” represented,
including the length of the diagonal of a unit square, is crucial to the reasoning
in some fields — imagine not having a way to refer to the Gaussian distribution
in statistics or the length of a diagonal in geometry. However, more is needed for
game theory, and the “more” can only be represented using the usual models once
one has figured out what the “more” is. With the proposed finitistic additions,
the “more” is automatically represented, and, by minimality, only what is needed
is added.
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APPENDIX A. PRIMER ON NONSTANDARD ANALYSIS

The nonstandard constructions presented here are “all the same.” We start
with an object or class of objects, G. The nonstandard version of G, denoted
by *G (read “star G”), is defined as the set of equivalence classes of G-valued
sequences, where the equivalence relation is chosen carefully. There is a strong
parallel with the construction of the real numbers as equivalence classes of Cauchy
sequences rational numbers.

A.1. A Cauchy detour. A sequence in G is a mapping from an infinite directed
set (M, >) to G. A sequence z™ in the rationals, Q, is a Cauchy sequence if

(Vg >0, ¢ € Q(AM € M)(Ym, m' > M)[|z™ — 2™ | < q].
Two Cauchy sequences, z™,y™, in Q are Cauchy equivalent if
(Vg >0, g€ Q)(IM e M)(Ym > M)[|z™ — y™| < ¢

The set of real numbers, R, is, by definition, the set of equivalence classes of
Cauchy sequences in Q. Letting [z™] denote the equivalence class of a sequence



{z™}, the operations of addition and multiplication are defined pointwise: [z™]+
[y™] = [z™+y™] and [z™]-[y™] = [z -y™]. The mapping ¢ — [¢,4,4, - ..] embeds
Q in R, so that Q is regarded as a subset of R. Any sequence approaching an
irrational number is not equivalent to any [g, ¢, q,...], implying that R is a strict
expansion of Q.

A.2. The equivalence relation for nonstandard expansions. The equiva-
lence relation, ~, for constructing nonstandard versions of G from the set of all
sequences in G is based on a finitely additive, {0, 1}-valued measure p on the set
of all subsets of M|, such that u(M) = 1, and y is equal to 0 on all finite sets.'!
Two sequences, {a™} and {0} in G are p-equivalent, written {a™} ~, {0™}, if
pu{n € M : a™ = b} = 1. *G is, by definition, the set of ~ equivalence classes.
The set *G is, for most but not all purposes, independent of M and .

The following salient properties of y are easily derived from its definition and
imply that ~ is an equivalence relation.

1. If {Ax : 1 <k < K} is a finite partition of M, then u(Ax) = 1 for one and

only one of the Ayg;

2. If A=n{A;:1 <k < K} is a finite intersection of subsets of M such that

u(Ag) =1for 1 <k < K, then p(A) = 1.

Let (a™) denote the equivalence class of a sequence {a¢™} in G. The mapping
a+— {(a,a,a,...) embeds G in *G, and G is regarded as a subset of *G. Equiv-
alence classes of constant sequences are called standard points, others points in
*GG are called nonstandard. Standard points are denoted by the same symbol
whether we are thinking of them as elements of G or of *G, e.g. 0= (0,0,0,...).

If G is finite, then *G is equal to G — any sequence {a™} in G can be partitioned
into finitely many sets Ay = {m € M : a™ = g}, g € G. By the first property
of u, exactly one Ay, call it ¢’, has p-mass 1. Thus, {a™} is in the equivalence
class of the constant sequence {¢’,¢',...}, written (¢™) = ¢'. If G is infinite,
then *G is strictly larger than G. For example, the nonstandard point (™) in
*R is infinitesimal if 2™ is a sequence converging to 0 with each 2™ # 0. This
is written (z™) ~ 0. If (z™) ~ 0 and (y™) ~ 0, then (™) + (y™) ~ 0 by the
continuity of addition. For another type of nonstandard real, consider the point
(2™) in *R when 2™ is a sequence increasing without bound. In that case (2™) is
called infinite.

A.3. Extending relations and functions to *G'. Given a relation R on G, it is
extended to *G by defining (z™)R(y™) if u{m : 2™ Ry™} = 1. Several examples:

"7Zorn’s Lemma implies the existence of a free ultrafilter, I/, on M. Setting pu(A) = 1if A € U,
and u(A) = 0 otherwise gives a measure with these properties. Conversely, any such measure
determines a free ultrafilter.



(™) < (y™) if u{m : 2™ < y™} =1, so that
if (™) is infinitesimal, then for every e € R, 0 < (™) < ¢, and
for every n € N, n < (1/2™).
Addition and multiplication are functions from R x R to R, functions can
be identified with their graphs and their graphs are relations. Following this
logic, (™) + (y™) is defined as (z™ + y™) and (z™) - (y™) as (™ - y™).
5. If S C R, then *S is the set of elements, (z™), of *R such that pu{m : 2™ €
S} =1, written *S C *R.
6. If f is a function on S C R, then f((z™)) = (f(z™)) so that if (z™) # 0,
then 1/(z™) = (1/z™).
Metric spaces play a crucial role in this paper. For any set X, the definition
of ordered pairs gives (X x X) =*X x *X. A metric d on X is a mapping from
X x X to R, , and its extension to *X is, following the logic above, defined by

d({z™),(y™)) = (d(z™,y™)) € "Ry.

A.4. Standard parts, transfer, and monads. As one’s familiarity with non-
standard objects grows, the need to keep track of the equivalence class construc-
tion shrinks. Here is the definition of standard parts and nearstandard points in
a metric space (X, d) without [and with] the equivalence classes notation.

==

Definition 17. If there ezists an x € X such that d(z',x) ~ 0, then x is called
the standard part of z' € *X. A point ' € *X is nearstandard if it has a
standard part. [If there exists an x € X such that {(d(z,z™)) is the equivalence
class of some sequence converging to 0, then x s called the standard part of
the equivalence class (z™) € *X. A point (z™) € *X is nearstandard if it
has a standard part.]

Taking the standard part of a point in *X is much like taking the limit of a
sequence in X. In particular, the limit may not exist, but if it does, it is unique.
The uniqueness of limits is an application of the triangle law, for all z,y,z € X,
d(z,y)+d(y,z) > d(z, z). Using the equivalence class construction, a uniqueness
proof can easily be transmuted into a proof of the statement that there is at most
one standard part of a point in *X. An alternative strategy of proof is to transfer
the triangle law directly to *X, i.e. to note that d(z™, y™)+d(y™, z™) > d(z™, 2™)
for all m implies that for all z,y, z € *X, d(z,y) + d(y, z) > d(z, z). With this in
hand, suppose that = # z are two points in X so that d(z, z) is a strictly positive
number in R, while d(z,y) ~ 0 and d(y, z) ~ 0 both hold, i.e. z and z are both
the standard part of y. The triangle law implies that d(x,y) + d(y, z) > d(z, 2),
a contradiction that implies that the standard point of y € *X, if it exists, is
unique.

The transfer principle is a powerful tool, a statement P about objects in GG
is true if and only if the corresponding statement, *P, is about objects in G.



A statement of the transfer principle requires a bit of formal logic and will not
be given here, though illustrative examples of its use are given below. At the
simplest level, they expand on the notion used above — if it’s true for every m
in the sequence, then it’s true for the nonstandard equivalence class.

The monad of a point z € X is defined by m(z) = st ~!(z) where st (-) maps
the nearstandard points in *X to their standard parts in X. Thinking of the
sequence construction of *X | m(z) consists of the set of equivalence classes of
sequences converging to z. Since (generalized) sequences characterize topologies,
so do monads. Here are three examples involving metric spaces (X, d) and (Y, p)
with proofs leaning on transfer rather than the sequence construction.

Lemma 4. x is isolated if and only if m(z) = {z}.
Proof: =z is isolated if and only if there exists a d > 0 in R such that
() (vy e X)[d(z,y) <o y=z]

If z is isolated and y € m(z), then y must satisfy d(z,y) < . Transfer of the
statement () is

(1) (Vy € X)[d(z,y) <6 <y =a]
If x is not isolated, then

(1) (VeeR )@y e X)ly#z & d(z,y) <]
Transfer of the statement () yields

(") (Vee Rip)(Fy € X))y # 7 & d(z,y) <e.
Any y guaranteed by (*1) when € ~ 0 is another point in m(z). 1
Lemma 5. A function f: X — Y is continuous at = if and only if d(z,2") ~ 0
implies p(f(z), f(2')) =0, that is, f(m(z)) C m(f(z)).
Proof: Thinking of m(x) as the sequences in X converging to z and m(f(z)) as
the sequences in Y converging to f(x), the result is intuitively clear.

f is continuous at z iff (V6 € Ry )(Fe € Ry, )[[d(z,2") < €] = [p(f(z), f(2')) <
d]]. Pick any § € R, and any corresponding e. Transfer

() (va' € X)[ld(z,2') < e] = [p(f(2), f(2')) < 6]] yields

(1) (V2 € X)[[d(z,2) < e = [p(f(2), (")) <]},

so that d(z, z') ~ 0 implies p(f(x), f(2')) < 0. Since 6 was arbitrary, p(f(z), f(z')) ~
0.
If f is not continuous at z’, then there exists a § > 0 such that

(1) (Ve eR.)(Es" € X)[d(z,2') < e & p(f(z), f(2)) = d].



Transfering (1) and taking € ~ 0 gives an 2’ € *X such that d(z,z') ~ 0 but
p(f(x), f(z')) = 6. B

Lemma 6. If (X,d) is compact, then every z' € *X 1is nearstandard.'?

Proof: Pick an arbitrary 2’ € *X where X is compact. Let D denote the
diameter of X. To start the induction, set Ay = X and note that z’ belongs
to *Ag for the closed Ay C X of diameter less than or equal to D/2°. Suppose
that z' belongs to *A, for some closed 4, of diameter less than or equal to D/2".
Take a finite cover of A, by D/2"*'-balls and disjointify it into the sets A, j,
ke {l,...,k(n)}. Transfer of the statement

(1) (Vzee X)3ke{1,...  k(n)})[z € Ank] gives

(*1) (Vz e X)(3k e {1,...,k(n)})[z € "Anxl

Because k(n) is finite, *{1,... ,k(n)} is equal to {1,...,k(n)}, implying that 2’
belongs to one of the *A, ;. Define A, as the closure of A, ;. This induction
gives a nested sequence of closed sets, A,, with diameter converging down to 0
such that z' € *A4, for each n. Because X is compact, N,A4, = {z} for some
z € X. Since z,2' € *A,, for each n and the diameter of *4,, is less than or equal
to D/2", d(x,z') ~ 0, i.e. = is the standard part of 2. 1

A.5. Star-finite sets, exhaustiveness, and saturation. Of particular inter-
est for this paper is the case where G contains the class, P(X), of finite subsets
of a compact metric space X. An element of *P(X) is a star-finite subset of
X. A key property of star-finite sets is their exhaustiveness — an F' € "P(X) is
exhaustive if for every x € X, x € F. Exhaustiveness requires more structure
for 4 and ML

An example: Suppose that M is the integers, and F' = (F™) where F™ is
the set of m’th order dyadic rationals, F™ = {k/2™ : k = 0,1,...,2™}. For
every dyadic rational ¢, {m : ¢ ¢ F™} is finite so that u{m : ¢ € F™} =1, i.e.
g € F. Statements true about finite sets can be transfered to give statements
that are true about F' even though every dyadic rational belongs to F'. To have a
star-finite F' that contains every x € X for general X requires a property called
saturation.

A collection Ay, b € B, has the finite intersection property (fip) if for any finite
B' C B, MyeprAp # 0. A subset A of *G is internal if it is the equivalence
class of some sequence of subsets of G. The purely finitely additive, {0, 1}-valued
measure j is k-saturated for ordinal k if every collection of internal sets A,

12The result that every 2’ € *X is nearstandard if and only if X is compact is sometimes known
as Robinson’s Theorem.



b € B, having the fip and indexed by a set B satisfying #B < &, Mpepdp # 0.
From e.g. [21, Theorem III.1.2], if M has infinite cardinality x, there exists a
kt-saturated u where k™ is the successor of k. In other words, if any given level
of saturation is needed, it is available. u is polysaturated if it is saturated for
some k greater than the cardinality of the set V(G) where V(G) is inductively
defined by G° = G, G"*' = G" U2%" | and V(G) = U,enG™.

With saturation, the existence of exhaustive star-finite sets is easy. For every
B € P(X), let Ap denote the finite subsets of X containing B. The collection
of internal sets *Ap is indexed by P(X), a set having the same cardinality as
X. In any model that is k-saturated for a sufficiently large k, e.g. polysaturated,
ﬂBEP(X)*AB 75 (Z), and any F e nBEP(X)*AB is exhaustive.

A.6. Weak* limits, the standard part mapping, Loeb measures. Soley to
avoid (even more) complications, we treat only compact metric spaces.’® A(X)
denotes the set of Borel probability measures on the compact metric space (X, d).
The weak* topology on A(X) is compact, and can be metrized in many ways, all
equivalent to P" —,,» P if and only if [ fdP™ — [ fdP for all f € C(X).

For B € P(X), A(B) C A(X) denotes the set of probabilities supported on
the set B. Fix an exhaustive star-finite ' C *X. Any P € A(F) C *A(X)
has a weak* standard part, sta(x)(P). At issue is the relation between sta(x)(:)
and the standard part mapping from *X to X. If P is point mass on some
r € F, then stacx)(P) is point mass on st(z) € X — for any f € C(X),
[ fdé, = f(z) ~ f(st(z)). In this case, it is exactly true that if we draw a
point in F' according to P and take the standard part, the resulting distribution
on X is stacx)(P). For general P € A(F), it is difficult to speak of drawing a
point according to P because we have neither a o-field nor a countably additive,
[0, 1]-vauled probability. This is (one place) where Loeb measures arise.

Let X denote the Borel o-field on X. *X is a field of internal subsets of X.
The next Lemma shows that *X is not closed under countable union (unless X is
finite).

Lemma 7 (Loeb). If A,, n € N, is a sequence of internal sets, A = U, A, is
internal of and only if A= U,<nA, for some integer N.

Proof: The finite union of internal sets being internal is easy, so suppose that
A is internal. A\A,, n € N, is also a sequence of internal sets, and it satisfies
Ny (A\A,) = 0. By saturation, the collection (A\A,) must fail to have the fip,
i.e. Np<n(A\A,) = 0 for some N, implying A = Up<nAp. 1

The mapping °P : *X — [0, 1] is a finitely additive probability on a field of sets.
By Lemma 7 and Caratheodory’s extension theorem, ° P has a unique extension to

13[3] and [23] contain more complete treatments.



o(*X). This extension, due to Loeb [22], is called a Loeb measure and denoted
by L(P). The relevant facts are (1) the mapping st : *X — X is measurable, and
(2) for every E € X, L(P)(st '(E)) = stacx)(P)(E). Thus, drawing a point in
(F,o(*X)) according to L(P) and taking the standard part is the same as drawing
a point in X according to the weak* standard part of P.

A.7. Connections of nonstandard analysis to this paper. In this paper,
infinite sets of actions and signals in games are replaced by exhaustive star-finite
sets. The resulting nonstandard games have equilibria by transfer of Nash’s
existence theorem or the more refined existence theorems that build on Nash’s
result. These equilibria give rise to a distribution, P, on a star-finite set of
histories. The standard part of these distributions are the finitistic expansion
equilibrium outcomes. If A is a history for the game and h is not isolated, st ~*(h)
will contain many elements in addition to h. These elements provide the extra
signals and actions needed to make the theory of games well-behaved.

APPENDIX B. COMPACTIFICATIONS OF

Imbed Q x H in Q x H in the usual fashion, extend the utility functions (being
measurable that is easy), and make sure that 2 is compact.



