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0. Organizational Stuff

Meetings: Mondays and Wednesdays, 2-3:30 and Wednesdays 8:30-9:30, in BRB 1.120.

Teachers: My office is BRB 2.118, phone number is 475-8515, e-mail address is maxwell@eco.utexas.edu

office hours Mondays and Wednesdays 10-12. You are very lucky to have Lori Stuntz as the

T.A. for this course. Her office is 4.116, e-mail address is stuntz@eco.utexas.edu, office

hours TBA.

Texts: For the statistical part of the course, we’ll use George Casella and Roger Berger’s

Statistical Inference, 2’nd ed. (Duxbury 2002), following it fairly closely. For the optimiza-

tion and analysis parts of the course, we’ll use Sheldon M. Ross’s Applied Probability Models

with Optimization Applications (Dover Publications, 1992) and A. N. Kolmogorov and S.

V. Fomin’s Introductory Real Analysis (Dover Publications, 1970). Throughout, you will be

refering to the microeconomics textbook, Microeconomic Theory, by Mas-Colell, Whinston,

and Green.

Topics: Completeness properties of R and R`, summability and valuation of streams of

utilities, convex analysis and duality; further properties of R` and related spaces, (including

compactness, continuity and measurability of functions on R`, summability of sequences,

existence of optima, fixed point theorems, cdf’s, other metrics, other metric spaces, the

Theorem of the Maximum); Probabilities and expectations (including domains, modes of

convergence, convergence theorems, orders of stochastic dominance, conditional expecta-

tions and probabilities); Dynamic programming (including properties of sequence spaces and

probabilities on them, Bellman and Euler equations, the role of the Theorem of the Max-

imum, growth models); Statistics (including specific distributions [uniform, gamma, beta,

Gaussian, t, F , χ2, Poisson, negative exponential, Weibull, logistic], estimators and their

properties [consistency, Glivenko-Cantelli, different kinds of “best” estimators, Bayesian es-

timators, MLE estimators, information inequalities, sufficiency, Blackwell-Rao], properties

of hypothesis tests [types of errors and their associated distributions, the Neyman-Pearson

Lemma]).
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1. Some Basics About Numbers and Quantities

Readings: Marinacci’s “An Axiomatic Approach to Complete Patience and Time Invari-

ance,” Journal of Economic Theory 83, 105-144 (1998). Mas-Colell, Whinston, and Green

on support functions and the supporting hyperplane theorem. §1.6 below is for you to read
and work on, either by yourself or in a study group.

1.1. Lengths and measurements. N and Q from elementary school. As models of mea-

surements of quantities, we’re done.

1.2. Why we want more. Irrationality of easily described lengths, clt and integration.

Sequences in Q, convergence implies settling down, but not the reverse. Subsequences.

Cauchy sequences and R as the completion of Q.

Implications of completeness: decreasing and increasing bounded sequences have limits,

equivalently, every bounded set has a sup and an inf. The idea of completion also shows up

in the major limit theorem in statistics (i.e. the CLT).

1.3. Valuing sequences of rewards. This section is based on classic analyses as well as

the more recent Marinacci’s “An Axiomatic Approach to Complete Patience and Time In-

variance,” Journal of Economic Theory 83, 105-144 (1998). Patience about finite sequences,

(r1, r2, . . . , rt), of rewards seems to be about being indifferent between all time permutations

of the sequence. In the dynamic programming models used in game theory and macro, one

often achieves infinite sequences of rewards. These may not be entirely believable, but they

do a pretty good job of capturing the idea of an indefinite future.

1.3.1. Classic analyses. lim inft rt ≤ lim supt rt, equality for limits.
XY notation, e.g.’s 23, R`, RN.

Summability for x ∈ RN.
u : R → R, u(x) := (u(xt)t∈N) ∈ RN, u bounded. From here on, we’ll just use x for the

elements in RN and try to value them, thinking that they are bounded streams of utilities.

Vlim inf(x) := lim inft xt (that is, lim inft u(xt)) which always exists (by completeness). The

infinite extension of a simple of idea of patience is here — any permutation of the integers

fails to change Vlim inf(x).

Thinking about a finite sequence of rewards, a useful definition of patience is that any

permutation of the reward sequence is indifferent, having the good stuff early is just as

desirable as having it late. If π : N → N is 1-1 and onto, then xπ denotes the sequence
(xπ(t))t∈N. π is a permutation of N.

Theorem 1.3.1. For any permutation π, Vlim inf(x) = Vlim inf(xπ).
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Other ideas of patience include taking the limit of time averages and discounting with a

discount factor close to 1. V1(x) := limT
1
T

∑T
t=1 xt exists iff V2(x) := limδ↑1(1− δ)

∑∞
t=1 δ

txt

exists, in which case V1(x) = V2(x) (Froebenius and Littlewood).

The sequence of xt

0101010101010101 · · ·
has Vlim inf(x) = 0 < V1(x) = V2(x) =

1
2
.

1.3.2. Marinacci’s extension of the classic analyses. The sequence of xt

11︸︷︷︸
21

0000︸︷︷︸
22

11111111︸ ︷︷ ︸
23

· · ·

is of the form xπ for a peculiar kind of π. Further V
average
lim inf (x) := lim infT

1
T

∑T
t=1 xt =

1
3
<

V averagelim sup (x) := lim supT
1
T

∑T
t=1 xt =

2
3
. An alternate criterion combining the averaging and

minimizing is V3(x) := limT→∞{infj≥1 1T
∑T
t=1 xt+j}. Note V3(x) = 0 < 1

3
.

The π above is “peculiar” because it does not preserve upper densities — A ⊂ N has
a natural density δ(A) := limT

1
T
#{t ≤ T : t ∈ A} when the limit exists, otherwise

A does not have a density. A permutation preserves x’s upper densities if for all r ∈ R,
δ({t : xt ≥ r}) = δ({t : xπ(t) ≥ r}).
Marinacci defines patience as invariance under permutations that preserve upper densities,

and asks for all such π, V (x) = V (xπ). He arrives at the Polya criterion —

VPolya(x) := lim
ε→0

lim inf
T

1

εT

T∑
t=(1−ε)T

xt

 .
VPolya(x) exists for all x ∈ RN, and for x such that V averagelim inf (x) = V averagelim sup (x), VPolya(x) =

V averagelim (x).

1.4. Convex analysis. R`, vectors. Two important examples of convex sets from microe-

conomics:

1. Netput vectors in production, intermediate micro x2 ≤ f(x1), x1 the input, x2 the

output, becomes Y = {(y1, y2) : y1 ≤ 0, y2 ≤ f(|y1|)}.
2. Given a utility function u : R`+ → R and a utility level u, Cu(u) := {x ∈ R`+ : u(x) ≥ u}
is a upper contour set of u. Decreasing marginal rates of substitution are captured by

the assumption that each Cu(u) is a convex set.

The extreme values of linear functions over convex sets play a crucial role in neoclassical

economics.

In the first example above, the profit function is π(p) := max{p · y : y ∈ Y } where
p� 0 is a price vector. In the second example above, the expenditure function is e(p, u) :=
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min{p · x : x ∈ Cu(u)}, again, p � 0 a price vector. One of the things we will see is that
Dpπ = y∗(p) where y∗(p) is the solution to max{p · y : y ∈ Y }, and Dpe(p, u) = h(p, u)

where h(p, u) is the solution to min{p ·x : x ∈ Cu(u)}. y∗(p) is the supply/demand function
for the firm, h(p, u) is the Hicksian demand function.

1.4.1. Convexity of sets. Dfn convexity of sets, e.g.’s hyperplanes H≤p (r) := {x : p ·x ≤ r},
triangles, squares, the set Y above when f ′′ < 0. A function is concave when its subgraph
is a convex set. In the production function example, you should recognize decreasing returns

to scale (DRTS). When the epigraph is a convex set, the function is convex. There is no

such creature as a concave set.

1.4.2. Three basic results.

Theorem 1.4.1. If {Kα : α ∈ A} is a collection of convex sets, then K := ∩αKα is convex.
Proof.

Corollary 1.4.1.1. If u : R`+ → R is concave, then for each u, Cu(u) := {x ∈ R`+ : u(x) ≥
u} is a convex set.
Proof.

In intermediate micro, one starts with a utility function, u, that represents preferences,

that is, x % y iff u(x) ≥ u(y), and then derives demand behavior, x(p,m) from the solutions

to

max u(x) subject to p · x ≤ m, x ∈ R`+.
The demand function, x(p,m), is unaffected by monotonic transformations of u, that is, if

f : R → R satisfies [[r > s]⇒ [f(r) > f(s)]] and v(x) := f(u(x)), then x(p,m) also solves

the problem

max v(x) subject to p · x ≤ m, x ∈ R`+.
Utility functions do not measure anything. They are no more than a convenient device to

represent preferences.

The property that Cu(u) is a convex set is preserved under monotonic transformations

of u, that is, for every v, Cv(v) := {x ∈ R`+ : v(x) ≥ v} is a convex set. This leads to
a definition, with K a convex subset of R`, v : K → R is quasi-concave if for all v,
{x ∈ K : v(x) ≥ v} is a convex set.
Two sets, E,E ′ are disjoint if E ∩ E ′ = ∅. Stronger than disjoint is being at a positive

distance. For A,B ⊂ R`, A + B := {a + b : a ∈ A, b ∈ B}, draw some pictures, show that
A,B convex ⇒ A + B is convex. For x ∈ R` and ε > 0, B(x, ε) := {y : ‖x− y‖ < ε}. Two
sets, E,E ′ ⊂ R` are ε-separated if E +B(0, ε) and E ′ +B(0, ε) are disjoint.
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Theorem 1.4.2 (Separating Hyperplane). If K and K ′ are disjoint convex subsets of R`,
then ∃p ∈ R`, p 6= 0, such that ∀x ∈ K, x′ ∈ K ′, p · x ≤ p · x′. If K and K ′ are also
ε-separated, then ∃p ∈ R`, p 6= 0, and ∃δ > 0 such that ∀x ∈ K, x′ ∈ K ′, p · x+ δ ≤ p · x′.
Pictures of what this means, proof will come later. An interesting application uses the

idea of a closed set, intuitively, one containing its boundary. In order to get to interesting

economics, I am providing an interim definition of closed sets, one that applies only to

convex sets. We will return to the idea of closed sets later.

Definition 1.4.3. The convex-closure of K ⊂ R` is K := ⋂{H≤p (r) : K ⊂ H≤p (r)}. A
set K is convex-closed if K = K.

The class of convex-closed sets is closed under intersection, that is, if Kα, α ∈ A, is a

collection of convex-closed sets, then ∩αKα is convex-closed.
Pictures. The SHThm gives us

Lemma 1.4.4. If K is convex, then for all ε > 0, K ⊂ K +B(0, ε).

1.4.3. A worked example. Y = {(y1, y2) : y1 ≤ 0, y2 ≤
√|y1|}, ΠY (p) := sup{p · y : y ∈ Y },

find the input demand function, the supply function, the profit function, show that the profit

function is convex, “application” to stability of prices, refer to homework on derivative tests.

Given a convex profit function Π(·), YΠ := {y : ∀p > 0, p · y ≤ Π(p)}, relate to convex-
closed sets, do the work in the example to show the basic duality result for profit functions,

Y = YΠY .

This means that I can give you a profit function and I have implicitly specified the technology,

or I can give you a technology, and I have implicitly specified the profit function, and these

two representations are (loosely) duals of each other.

Applications of this idea to expenditure functions (recovering upper contour sets from

expenditure functions and vice versa), costs functions (same idea).

1.4.4. Support functions. The inf-support function of a set K is µinfK (p) := inf{p ·x : x ∈ K}.
[Beware: this is the support function that most people use, not the next one.] The sup-

support function of a set K is µsupK (p) := sup{p ·x : x ∈ K}. Note that µsupK (p) = −µinfK (−p),
so these are essentially the same function.

Conventions with ±∞ and 0 < α < 1 in the definition of concave and convex functions.

Theorem 1.4.5. An inf-support function is concave, a sup-support function is convex.

Corollary 1.4.5.1. An expenditure function is concave, and a profit function is convex.

Behavioral implications.

The general duality theorem relating closed convex sets to their support functions is
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Theorem 1.4.6. If K is convex-closed, then K = {x : ∀p, p · x ≤ µsupK (p)}.

This is what we did with the profit function above.

Another important duality result is that the derivative of the support function is the

solution to the optimization problem. Suppose that K is convex and that the problem

max{p◦ · x : x ∈ K} has a unique solution, x◦. It can be shown that µsupK (·) is differentiable
at p◦. Assuming (but not proving) that differentiability, we will argue that Dpµ

sup
K (p

◦) = x◦.
To see why, look at the function ξ(p) := µsupK (p) − p · x◦, ξ(p) ≥ 0 and ξ(p◦) = 0. This
implies that Dpξ(p

◦) = 0, and Dpξ(p◦) = Dpµ
sup
K (p

◦)− x◦.

1.5. Problems.

Problem 1.1. Show that the sequence of xt

0101010101010101 · · ·
has Vlim inf(x) = 0 < V1(x) = V2(x) =

1
2
.

Problem 1.2. Show that the sequence of xt

11︸︷︷︸
21

0000︸︷︷︸
22

11111111︸ ︷︷ ︸
23

· · ·

is a permutation of the sequence

0101010101010101 · · · .
Further show that V averagelim inf (x) =

1
3
< V averagelim sup (x) =

2
3
, and that V3(x) = 0.

Problem 1.3. Let Y = {(y1, y2) : y1 ≤ 0, y2 ≤ log (1− y1)}, find the supply and demand
function, the profit function ΠY , and explicitly show that Y = YΠY .

Problem 1.4. Prove Lemma 1.4.4.

Problem 1.5. Find the function µsupK (p) when

1. K = B(0, ε),

2. K = B(x, ε),

3. K = H≤p (r),
4. K = {x, y}, x, y ∈ R`, x 6= y,
5. K = {αx+ (1− α)y : 0 ≤ α ≤ 1}, x, y ∈ R`, x 6= y,
6. K = R`+.

Problem 1.6. Show that for all K, µsupK (p) = µ
sup

K
(p).
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Problem 1.7 (Cauchy-Schwarz inequality and dot products). Consider vectors x = (xk)
n
k=1,

y = (yk)
n
k=1 and z = (zk)

n
k=1 in R

n. The (dot) product is defined by x · y :=∑k xkyk, some-

times written as xy. Following the logic of Pythagoras’s theorem, the length of a vector is

‖x‖ :=√∑k x
2
k =
√
x · x.

1. Show that xy = ‖x‖‖y‖ cos θ where θ is the angle determined by x and y. [Hint: Drop
a perpendicular from x to the line spanned by y to get the point ty for some t ∈ R. Use
Pythagoras’s theorem and the definition of the cosine to relate ‖x‖, ‖ty‖ and ‖x− ty‖.
Rearrange.]

2. Sketch at the following sets for at least three values of r:

(a) H≤y (r) = {x ∈ R2 : x · y ≤ r}, y = (1, 2)T ,
(b) H≤y (r) = {x ∈ R2 : x · y ≤ r}, y = (3, 1)T , and
(c) H≤y (r) = {x ∈ R2 : x · y ≥ r}, y = (−1, 3)T .

3. A further rearrangement of xy = ‖x‖‖y‖ cos θ gives the Cauchy-Schwartz inequality,
(
∑
k xkyk)

2 ≤ (∑k x
2
k)(
∑
k y
2
k). Under what conditions is the inequality satisfied as an

equality?

4. Define d(x, y) = ‖x − y‖ so that d : Rn × Rn → R+. Show that (Rn, d) is a metric
space. [That is, show that d(x, y) = d(y, x), d(x, y) = 0 iff x = y, and d(x, y)+d(y, z) ≥
d(x, z). The hardest part is the last inequality, known as the triangle inequality.]

5. Define ρ(x, y) =
∑
k |xk − yk| so that ρ : Rn×Rn → R+. Show that (Rn, ρ) is a metric

space.
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1.6. Self-guided tour to differentiability and concavity. This section develops the

negative semi-definiteness of the matrix of second derivatives as being equivalent to the

concavity of a twice continuously differentiable function. It also develops the determinant

test for negative semi-definiteness. Before reading this, you should know the equivalent of

the math camp review of matrix multiplication and determinants.

You are responsible for handing in the problems scattered throughout this section by the

middle of the semester. I would recommend that you do it before that.

1.6.1. The two results. Before giving the results, we need some terminology.

A function f : C → R is strictly concave if ∀x, y ∈ C, x 6= y, and all α ∈ (0, 1),
f(αx+ (1− α)y) > αf(x) + (1− α)f(y).
A symmetric matrix n× n matrix A = (aij)i,j=1,... ,n is negative semi-definite if for all

vectors z ∈ Rn, zTAz ≤ 0, it is negative definite if for all z 6= 0, zTAz < 0.
Theorem 1.6.1. A twice continuously differentiable f : Rn → R defined on an open, convex
set C is concave (respectively strictly concave) iff for all x◦ ∈ C D2xf(x

◦) is negative semi-
definite (respectively negative definite).

The principal sub-matrices of a symmetric n × n matrix A = (aij)i,j=1,... ,n are the

m×m matrices (aij)i,j=1,... ,m, m ≤ n. Thus, the 3 principal sub-matrices of the 3×3 matrix

A =

 3 0 0

0 4
√
3

0
√
3 6


are

[
3
]
,

[
3 0

0 4

]
, and

 3 0 0

0 4
√
3

0
√
3 6

 .
Theorem 1.6.2. A matrix A is negative semi-definite (respectively negative definite) iff

the sign of m’th principal sub-matrix is either 0 or −1m (respectively, the sign of the m’th
principal sub-matrix is −1m). It is positive semi-definite (respectively positive definite) if
you replace “−1m” with “+1m” throughout.
In the following two problems, use Theorem 1.6.1 and 1.6.2.

Problem 1.8. The function f : R2+ → R defined by f(x, y) = xαyβ, α, β > 0, is strictly

concave on R2++ if α+ β < 1, and is concave on R
2
++ if α + β = 1.

Problem 1.9. The function f : R2+ → R defined by f(x, y) = (xp+yp)1/p is convex on R2++
if p ≥ 1 and is concave if p ≤ 1.
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1.6.2. The one dimensional case, f : R1 → R.
Problem 1.10. Suppose that f : (a, b) → R is twice continuously differentiable. [Read the
third part of this before starting the first two.]

1. Show that if f ′′(x) ≤ 0 for all x ∈ (a, b), then f is concave. [Hint: We know that
f ′ is non-increasing. Pick x, y with a < x < y < b and pick α ∈ (0, 1), define
z = αx+ (1− α)y. Note that (z − x) = (1− α)(y − x) and (y − z) = α(y − x). Show

f(z)− f(x) =
∫ z
x

f ′(t) dt ≥ f ′(z)(z − x) = f ′(z)(1− α)(y − x),

f(y)− f(z) =
∫ y
z

f ′(t) dt ≤ f ′(z)(y − z) = f ′(z)α(y − x).

Therefore,

f(z) ≥ f(x) + f ′(z)(1− α)(y − x), f(z) ≥ f(y)− f ′(z)α(y − x).
Multiply the lhs by α, the rhs by (1− α), and . . . .]

2. Show that if f is concave, then f ′′(x) ≤ 0 for all x ∈ (a, b). [If not, then f ′′(x◦) > 0
for some x◦ ∈ (a, b) which implies that f ′′ is strictly positive on some interval (a′, b′) ⊂
(a, b). Reverse the above argument.]

3. Repeat the previous two problems for strict concavity, changing whatever needs to be

changed.

1.6.3. The multi-dimensional case, f : Rn → R.
Problem 1.11. Suppose that f : C → R is twice continuously differentiable, C an open
convex subset of Rn.

For each y, z ∈ Rn, define gy,z(λ) = f(y+λz) for those λ in the interval {λ : y+λz ∈ C}.
1. Show that f is (strictly) concave iff each gy,z is (strictly) concave.

2. Show that g′′(λ) = zTD2xf(x
◦)z where x◦ = y + λz.

3. Conclude that f is (strictly) concave iff for all x◦ ∈ C, D2f(x◦) is negative semi-definite
(negative definite).

1.6.4. A fair amount of matrix algebra background. The previous has demonstrated that we

sometimes want to know conditions on n×n symmetric matrices A such that zTAz ≤ 0 for
all z, or zTAz < 0 for all z 6= 0. We are trying to prove that a A is negative semi-definite
(respectively negative definite) iff the sign of m’th principal sub-matrix is either 0 or −1m
(respectively, the sign of the m’th principal sub-matrix is −1m). This will take a longish
detour through eigenvalues and eigenvectors. The detour is useful for the study of linear

regression too, so this section is also background for next semester’s econometrics course.
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Throughout, all matrices have only real number entries.

|A| denotes the determinant of the square A. Recall that A is invertible, as a linear
mapping, iff |A| 6= 0. (If these statements do not make sense to you, you missed the math
camp and need to do some review.)

Problem 1.12. Remember, or look up, how to find determinants for 2×2 and 3×3 matrices.
A vector x 6= 0 is an eigenvector1 and the number λ 6= 0 is an eigenvalue for A if

Ax = λx. Note that Ax = λx iff A(rx) = λ(rx) for all r 6= 0. Therefore, we can, and do,
normalize eigenvectors by ‖x‖ = 1, which corresponds to setting r = 1/‖x‖. There is still
some ambiguity, since we could just as well set r = −1/‖x‖.
In general, one might need to consider λ’s and x’s that are imaginary numbers, that is

λ = a + bi with i =
√−1. This means that x will need to be imaginary too. To see why,

read on.

Lemma 1.6.3. A = λx, x 6= 0, iff (A− λI)x = 0 iff |A− λI| = 0.
Proof: You should know why this is true. If not, you need some more review.

Define g(λ) = |A − λI| so that g is an n’th degree polynomial in λ. The fundamental
theorem of algebra tells us that any n’th degree polynomial has n roots, counting multiplic-

ities, in the complex plane. To be a bit more concrete, this means that there are complex

numbers λi, i = 1, . . . , n such that

g(y) = (λ1 − y)(λ2 − y) · · · (λn − y).
The “counting multiplicities” phrase means that the λi need not be distinct.

Problem 1.13. Using the quadratic formula, show that if A is a symmetric 2× 2 matrix,
then both of the eigenvalues of A are real numbers. Give a 2×2 non-symmetric matrix with
real entries having two imaginary eigenvalues. [This can be done with a matrix having only

0’s and 1’s as entries.]

The conclusion about real eigenvalues in the previous problem is true for general n × n
matrices, and we turn to this result.

From your trigonometry class (or from someplace else), (a+bi)(c+di) = (ac−bd)+(ad+
bd)i defines multiplication of complex numbers, and (a+ bi)∗ := a− bi defines the complex
conjugate of the number (a + bi). Note that rs = sr and r = r∗ iff r is a real number
for complex r, s. By direct calculation, (rs)∗ = r∗s∗ for any pair of complex numbers r, s.
Complex vectors are vectors with complex numbers as their entries. Their dot product is

defined in the usual way, x · y :=∑i xiyi. Notationally, x · y may be written xTy. The next
proof uses

1“Eigen” is a german word meaning “own.”
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Problem 1.14. If r is a complex number, then rr∗ = 0 iff r = 0. If x is a complex vector,
then xTx∗ = 0 iff x = 0.

Lemma 1.6.4. Every eigenvalue of a symmetric A is real, and distinct eigenvectors are

real, and orthogonal to each other.

Proof: The eigenvalue part: Suppose that λ is an eigenvalue and x an associated eigenvector
so that

Ax = λx.(1)

Taking the complex conjugate of both sides,

Ax∗ = λ∗x∗(2)

because A has only real entries.

[Ax = λx]⇒ [(x∗)TAx = (x∗)Tλx = λxTx∗],
[Ax∗ = λ∗x∗]⇒ [xTAx∗ = xTλ∗x∗ = λ∗xTx∗].

Subtracting,

(x∗)TAx− xTAx∗ = (λ− λ∗)xTx∗.
Since the matrix A is symmetric,

(x∗)TAx− xTAx∗ = 0.
Since x 6= 0, xTx∗ 6= 0. Therefore,

[(λ− λ∗)xTx∗ = 0]⇒ [(λ− λ∗) = 0],
which can only happen if λ is a real number.
The eigenvector part: From the previous part, all eigenvalues are real. Since A is real,

this implies that all eigenvectors are also real.
Let λi 6= λj be distinct eigenvalues and xi, xj their associated eigenvectors so that

Axi = λixi, Axj = λjxj.

Pre-multiplying by the appropriate vectors,

xTj Axi = λix
T
j xi, xTi Axj = λjx

T
i xj .

We know that xTi xj = x
T
j xi (by properties of dot products). Because A is symmetric,

xTj Axi = x
T
i Axj .

Combining,

(λi − λj)xTj xi = 0.
Since (λi − λj) 6= 0, we conclude that xi · xj = 0, the orthogonality we were looking for.
The following uses basic linear algebra definitions.

Problem 1.15. If the n × n A has n distinct eigenvalues, then its eigenvectors form an
orthonormal basis for Rn.
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A careful proof shows that if A has an eigenvalue λi with multiplicity k ≥ 2, then we can
pick k orthogonal eigenvectors spanning the k-dimensional set of all x such that Ax = λix.

There will be infinitely many different ways of selecting such an orthogonal set. You either

accept this on faith or go review a good matrix algebra textbook.

Problem 1.16. Find eigenvalues and eigenvectors for[
4
√
3√

3 6

]
and

 3 0 0

0 4
√
3

0
√
3 6

 .
Let λ1, . . . , λn be the eigenvalues of A (repeating any multiplicities), and let u1, . . . , un

be a corresponding set of orthonormal eigenvectors. Let Q = (u1, . . . , un) be the matrix

with the eigenvectors as columns. Note that QTQ = I so that Q−1 = QT . A matrix with
its transpose being its inverse is an orthogonal matrix. Let Λ be the n× n matrix with
Λii = λi and with 0’s in the off-diagonal.

Problem 1.17. Show that QTAQ = Λ, equivalently, A = QΛQT .

Expressing a symmetric matrix A in this form is called diagonalizing the matrix. We

have shown that any symmetric matrix can be diagonalized so as to have its eigenvalues

along the diagonal, and the matrix that achieves this is the matrix of eigenvectors.

Theorem 1.6.5. A is negative (semi-)definite iff all of its eigenvalues are less than (or

equal to) 0.

Proof: zTAz = zTQTΛQz = vTΛv, and the matrix Q is invertible.

1.6.5. The alternating signs determinant test for concavity. Now we have enough matrix

algebra background to prove what we set out prove, A is negative semi-definite (respectively

negative definite) iff the sign of m’th principal sub-matrix is either 0 or −1m (respectively,
the sign of the m’th principal sub-matrix is −1m).
We defined g(y) = |A − yI| so that g is an n’th degree polynomial in λ, and used the

fundamental theorem of algebra (and some calculation) to tell us that

g(y) = (λ1 − y)(λ2 − y) · · · (λn − y)
where the λi are the eigenvalues of A. Note that g(0) = |A− 0I| = |A| = λ1 ·λ2 · · ·λn, that
is,

Lemma 1.6.6. The determinant of a matrix is the product of its eigenvalues.

We didn’t use symmetry for this result.
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Recall that the principal sub-matrices of a symmetric n× n matrix A = (aij)i,j=1,... ,n
are the m×m matrices (aij)i,j=1,... ,m, m ≤ n. The following is pretty obvious, but it’s useful

anyway.

Problem 1.18. A is negative definite iff for all m ≤ n and all non-zero x having only the

first m components not equal to 0, xTAx < 0.

Looking at m = 1, we must check if

(x1, 0, 0, . . . , 0)


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann




x1

0

0
...

0

 = a11x
2
1 < 0.

This is true iff the first principal sub-matrix of A has the same sign as −1m = −11 = −1.
Looking at m = 2, we must check if

(x1, x2, 0, . . . , 0)


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann




x1

x2

0
...

0

 < 0.

This is true iff the matrix [
a11 a12

a21 a22

]
is negative definite, which is true iff all of its eigenvalues are negative. There are two

eigenvalues, the product of two negative numbers is positive, so the m = 2 case is handled

by having the sign of the determinant of the 2× 2 principal submatrix being −12.
Looking at m = 3, we must check if a11 a12 a13

a21 a22 a23

a31 a32 a33


is negative definite, which is true iff all of its eigenvalues are negative. There are three

eigenvalues, the product of three negative numbers is negative, so the m = 3 case is handled

by having the sign of the determinant of the 3× 3 principal submatrix being −13.
Continue in this fashion, and you have a proof of Theorem 1.6.2. Your job is to fill in

the details for the negative semi-definite, the positive definite, and the positive semi-definite

cases as well.
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Problem 1.19. Prove Theorem 1.6.2.
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2. Some Basic Results in Metric Spaces

This section will cover continuity, compactness, the Theorem of the Maximum, and the

Separating Hyperplane Theorem.

Readings: Kolmogorov and Fomin, intro to metric spaces, Ch. 2, sections 5-8.1, pp. 37-71.

Readings: Kolmogorov and Fomin, more on metric spaces, Ch. 3, sections 10-11.4, pp.

92-104.

Readings: Mas-Colell, Whinston, and Green on the Theorem of the Maximum, support

functions and the supporting hyperplane theorem.

Readings: Sheldon Ross, Tables 1 and 2, p. 4.

2.1. Metrics. Let X be a set. This could be R` or a subset thereof, RN or a subset (e.g.

the bounded sequences, or `2) the set of probability distributions on R or R
` or a subset

thereof, the set of convex preferences on R` or a subset thereof, the set of possible demand

functions or a subset (e.g. the set of differentiable demand functions), the set of technologies

satisfying some natural set of restrictions, the set of budget sets or a subset thereof.

Definition 2.1.1. A metric on X is any function d : X ×X → R+ such that
1. d(x, y) = d(y, x),

2. d(x, y) = 0 iff x = y, and

3. d(x, y) + d(y, z) ≥ d(x, z).

In checking that something is a metric, the hardest part is usually the last inequality,

known as the triangle inequality. For r > 0, B(x, r) := {y ∈ X : d(x, y) < ε}. Draw some
pictures. Kolmogorov and Fomin give many metrics on many spaces, read about them,

figure out what the B(x, r) “look like.”

We will mostly use convergence of sequences. A sequence in X is a point in XN, denoted

(xn)n∈N or xn.
Dfn xn → x. Pictures about tail behavior should come to mind. Dfn closed set, open set,

there are sets that are neither open nor closed.

2.2. Probability distributions as cdf’s. We introduce a metric on cdf’s as a metric on

∆(R), the set of probability distributions on R. This is a precursor to prob/stats material

involing the CLT.

Dfn cdf. These give probabilities on the field F0 generated by {(−∞, a] : a ∈ R} by
addition. We assume continuity from above at the empty set, which in our case is the

same as right continuity (e.g. of problems is F (x) = 1
2
1{0}(x) + 1(0,∞)(x), An = (0, 1n ],

PF (An) = F (
1
n
)− F (0) ≡ 1

2
but ∩nAn = ∅).
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A metric on cdf’s is

ρ(F,G) = inf{ε > 0 : ∀x ∈ R, G(x) ≤ F (x+ ε) + ε

and F (x) ≤ G(x+ ε) + ε}.
Levy ribbons and the triangle inequality. Weak∗ convergence aka convergence in distribu-

tion turns out to be equivalent to ρ-convergence. Let F∞ be the cdf of δ0, look at B(F, ε),
let Φ be the standard normal cdf, look at B(Φ, ε).

Example: Xt iid ±1 12 each, FT the cdf of ST := T−1
∑
t≤T Xt, T an even number. By

Tchebyshev we can show that for all ε > 0, P (|ST − 0| > ε) → 0, let F∞ be the cdf of δ0,
and note that FT (0) 6→ F∞(0). Rather, FT (0) ≡ 1

2
.

Dfn continuity point of F using sequences.

Dfn Fn →weak F iff Fn(x)→ F (x) for all continuity points of F . Compare CLT.

Theorem 2.2.1. Fn →weak F iff ρ(Fn, F )→ 0.
2.3. Continuity. Metrics, τX is the collection of open sets, closedness, closed subsets of

complete metric spaces are complete. Dfn: f : X → Y is cts if f−1(τY ) ⊂ τX . Lemma: cts

iff f−1 of the closed sets is a subset of the closed sets iff ε-δ iff sequence definition of ctuity.
Equality of topologies with different metrics, completeness does not survive change of

metrics, ρ(x, y) = |F (x)− F (y)|, F (r) = er/(1 + er).

2.4. Compactness and the existence of optima.

1. Heine-Borel If [a, b] ⊂ ∪α∈A(rα, sα), then ∃ finite AF ⊂ A, [a, b] ⊂ ∪α∈AF . Pf.
2. Finite intersection property (fip) A collection {Fα : α ∈ A} of closed subsets of
[a, b] has the finite intersection property (fip) if ∩α∈AFFα 6= ∅ for all finite AF ⊂ A.

Any collection of closed sets in [a, b] with the fip satisfies ∩α∈AFα 6= ∅. By DeMorgan,
this is equivalent to Heine-Borel.

3. If f : [a, b] → R is cts, then ∃x∗ ∈ [a, b], f(x∗) ≥ f([a, b]). Pf: By finite subcover of

f([a, b]) ⊂ ∪n∈Z(n, n + 2), f([a, b]) is bounded, hence has a supremum, call it f . The
collection {f−1([r − 1

n
, r]) : n ∈ N} has the fip, therefore x∗ ∈ ∩nf−1([r − 1

n
, r] 6= ∅.

4. Turn Heine-Borel/fip into a dfn for metric spaces. Closed subsets of compact metric

spaces are compact. Cts functions on compact metric spaces achieve their maximum.

2.5. The Theorem of the Maximum. For E a subset of X, define Eε = ∪x∈EB(x, ε),
this is the ε-ball around the set E. For compact A,B ⊂ X, define m(A,B) = inf{ε > 0 :
A ⊂ Bε}. The Hausdorff distance between compact sets is

d(A,B) = max{m(A,B), m(B,A)}.
Draw some pictures.
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Definition 2.5.1. A compact-valued, non-empty-valued correspondence Γ : X −→ Y is

1. upper hemicontinuous (uhc) at x if for all ε > 0 ∃δ > 0 [x′ ∈ B(x, δ)] ⇒
[m(Γ(x′),Γ(x)) < ε],

2. uhc if it is uhc at all x,

3. lower hemicontinuous (lhc) at x if for all ε > 0 ∃δ > 0 [x′ ∈ B(x, δ)] ⇒
[m(Γ(x),Γ(x′)) < ε],

4. lhc if it is lhc at all x,

5. continuous (cts) at x if it is both uhc and lhc at x, and

6. cts if it is cts at all x.

Explosions of a correspondence can be uhc but not lhc, implosions of a correspondence

can be lhc but not uhc.

A single valued Γ is uhc iff it is a continuous function.

Let K(Y ) denote the compact subsets of Y . Γ is cts iff it is cts when viewed as a function
from X to K(Y ).
Theorem 2.5.2 (Theorem of the Maximum). If u : X × Y → R is cts and Γ : X −→ Y is

cts, compact and non-empty valued, then v(x) := max{u(x, y) : y ∈ Γ(x)} is a cts function
and x 7→ {y : u(x, y) ≥ u(x,Γ(x))} is an uhc correspondence.
Applications: consumer choice theory, producer theory, general equilibrium, game theory.

We will see this theorem in dynamic programming too.

2.6. The Separating Hyperplane Theorem. Hyperplanes, separation, the theorem, the

proof. Applications: the 2’nd Welfare Theorem (existence of prices), existence of Lagrange

multipliers [pass through saddle points and the simplest form of the Kuhn-Tucker theorem].

We did the basic duality theorem with applications to the recovery of preferences and

technology from demand and supply behavior.

2.7. Problems.

Problem 2.1. 1A(x) is the indicator function of a set A, taking the value 1 when x ∈ A
and taking the value 0 otherwise. Show that (X, ρ) is a metric space when X is non-empty

and ρ(x, y) = 1{x 6=y}(x, y).

Problem 2.2. The closure of a subset E of a metric space (X, d) is denoted E, and is

defined as the smallest closed set containing E. Show that the following are equivalent

definitions of E:

1. E =
⋂{F : E ⊂ F, F closed}.

2. E =
⋂{Eε : ε > 0}.

3. E = {x ∈ X : ∀ε > 0, ∃e ∈ E, d(x, e) < ε}.
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4. E = {x ∈ X : ∃en in E en → x}.
Since the intersection of any collection of closed sets is another closed set, the first really

does capture the notion of the “smallest closed set containing E.”

Problem 2.3. Show that if K ⊂ R` is convex, then K = ⋂{H≤p (r) : K ⊂ H≤p (r), p ∈
R`, r ∈ R}.
Problem 2.4. In showing that f : X → R achieves its maximum when f is continuous and
(X, d) is compact, we used the fip. Reformulate this part of the proof using the open cover

argument and the definition of a supremum.

Problem 2.5. Define a preference relation % on R`+ to be continuous if for all y ∈ R`+,
the sets {x ∈ R`+ : x % y} and {x ∈ R`+ : y % x} are closed. Prove that for every non-empty,
compact K ⊂ R`+, ∃x∗ ∈ K such that x∗ % K.

Problem 2.6. (X, d) is compact iff for all sequences in X, ∃x◦ ∈ X, ∃ a subsequence xnk
such that xnk → x◦.

Problem 2.7. Show that the closure of the ball around 0 with radius ε is compact in R`.

Show that the closure of the ball around 0 with radius ε is NOT compact in C[a,b].

Problem 2.8. K-M, §5.2, #1, #8 (p. 45).
Problem 2.9. K-M, §5.2, #3, 4, 5 (p. 54).
Problem 2.10. K-M, §5.2, #9, 10 (p. 54-5).
Problem 2.11. For each n, let Xnk, k = 1, . . . , n, be independently distributed Bernoulli(λ/n)

and define Yn =
∑
k≤nXnk. Let Fn be the cdf of Yn. Show that Fn →weak Fλ where Fλ is

the cdf of a Poisson(λ) distribution.
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3. Dynamic Programming, Deterministic and Stochastic

Readings: Ross, Chapters 1, 2.1-2, 2.4, 4.1-3, and 6.1-5.

Optimization in dynamic contexts is more difficult, and substantive results that are true

in generality are hard to come by. By contrast, in neoclassical demand theory, the general

result is that demand functions have a negative semi-definite Slutsky matrix. Don’t expect

anything so definite here without piles of extra assumptions.

3.1. Compactness and continuity in spaces of sequences. In consumer demand the-

ory, max u(x) s.t. x ≥ 0, px ≤ m has a solution if u is continuous because the constraint

set is compact. There is a parallel result for dynamic programming.

Each (Yt, dt) compact, t = 0, 1, . . . , Y := ×tYt, the metric on Y is
d(x, y) :=

∑
t

2−tmin{1, dn(xt, yt)}.

Theorem 3.1.1. (Y, d) is compact.

Proof: Diagonalization.

If u : Y → R is d-cts, then it is asymptotically tail-insensitive, indeed, to within any
ε > 0, a cts u depends ctsly on only finitely many coordinates. To say this more precisely,

for x, y ∈ Y and t ∈ N let x/ty ∈ Y be the point (i.e. sequence) which is x up to and

including time t and is y thereafter, i.e.

x/ty = (x0, x1, x2, . . . , xt−1, xt, yt+1, yt+2, . . . ).

Note that many of the ways we valued sequences of rewards are NOT continuous, e.g.

Vlim inf(x) is discontinuous — let r̃ denote the sequence (r, r, r, r, . . . ), for any x and any r,

x/tr̃ →t x, and for all t, Vlim inf(x/tr̃) = r. More specifically, Let x = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, . . .),
Vlim inf(x) = 0, (x/tr̃)→t x, and Vlim inf(x/tr̃) 6→ 0 unless r = 0.
Theorem 3.1.2. If u : Y → R is continuous, then for all ε > 0, ∃T ∀t ≥ T ,

max {|u(x/ty)− u(x/ty′)| : x, y, y′ ∈ Y } < ε.

Proof: Uniform continuity and shape of the d-balls.

3.2. Deterministic Dynamic Programming. Deterministic dynamic programming prob-

lems that economists use are almost always problems that maximize continuous functions

over compact subsets of compact Y ’s of the form given. They almost always have the fol-

lowing structure: (i) one starts with x0, picks x1, then restarts with x1 and picks x2, and

on and on; (ii) the possible xt are constrained by xt−1; (iii) in each period t, the reward
depends on the “state,” xt−1 and the action, xt; (iv) rewards are added across periods and
discounted; (v) this period’s action becomes next period’s state.
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Some notation, (x0, x1, x2, . . . ) = (x0, x1+).

1. Yn ⊂ X for some metric space X,

2. ∃ϕ : X ×X → R cts such that
u(x0, x1+) = ϕ(x0, x1) +

∑
t≥1

βtϕ(xt, xt+1)

for some β ∈ (0, 1), and
3. xt ∈ Γ(xt−1) for some continuous, compact-valued correspondnce Γ from X to X.

Some assumptions are needed on the relation of ϕ and Γ to guarantee that u(·) is cts, the
simplest is that ϕ be cts and bounded, another, less “primitive” assumption is summability

for the largest possible ϕ(xt, xt+1)’s, the leading example of which has the maximal growth

rate eventually a fraction of the discount rate.

If there’s time, discuss the finite horizon value function.

The basic fish/tree growth model, intuitions. The value function for the infinite horizon

case. Γ∞ : X −→ XN, Γ∞(x0) := {(xt)t≥1 : x1 ∈ Γ(x0), xt+1 ∈ Γ(xt), t = 1, 2, . . .},
U(x0, (xt)) := ϕ(x, x1)+

∑
t≥1 β

tϕ(xt, xt+1). As Γ∞ is a cts compact-valued correspondence
and U : X × XN → R is a cts function, V (x0) := max{U(x0, (xt)) : (xt) ∈ Γ∞(x0)} is cts
(by the Theorem of the Maximum), and the solution set is uhc.

Theorem 3.2.1. For all x ∈ X, if (x∗t ) ∈ Γ∞(x) satisfies V (x) = U(x, (x∗t )), then V (x) =
ϕ(x, x∗1)+βV (x

∗
1) and for all t, V (x

∗
t ) = ϕ(x

∗
t , x

∗
t+1)+βV (x

∗
t+1). Further, V (x0) = U(x0, (x

′
t))

iff for each t ≥ 1, x′t solves max{ϕ(xt−1, y) + βV (y) : y ∈ Γ(xt−1)}.
A crucial implication is that once one has found V , the optimal policy can be found by

P ∗(x) = arg max{ϕ(x, y) + βV (y) : y ∈ Γ(x)}.
While there may be many best ways to do something, that is, P ∗(x) may contain more than
one point, the value of doing any one of the best things is unique. The remaining problem

is how to find V . There is an approximation method based on the Contraction Mapping

Theorem.

Let Cb(X) denote the cts bdd functions on X. Define d(f, g) = supx∈X |f(x)− g(x)|.
Lemma 3.2.2. (Cb(X), d) is a complete metric space.

Proof: An ε/3 argument.

For any W in Cb(X), define Ψ(W ) by

Ψ(W )(x) = max{ϕ(x, y) + βW (y) : y ∈ Γ(x)}.
Interpret, e.g. W ≡ 0, interative applications of Ψ. Ψ is a contraction mapping from Cb to

Cb. The content of the next theorem is that Ψ must have a unique fixed point. We care

about this result since the unique fixed point turns out to be the value function.
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Definition 3.2.3. Let (Y, d) be a metric space. A function f : Y → Y is a contraction

mapping if ∃β ∈ (0, 1), ∀x, y ∈ Y , d(f(x), f(y)) ≤ βd(x, y).

Any contraction mapping must be cts,

[d(yn, y)→ 0]⇒ [d(f(yn), f(y)) ≤ β · d(yn, y)→ 0].

Lemma 3.2.4. Ψ : Cb(X)→ Cb(X) is a contraction mapping.

Proof: Ψ(W ) ∈ Cb by the Theorem of the Maximum. The rest is the usual argument, it’s
in the text, and I’ll give it in lecture.

Since Cb(X) is a complete metric , we can apply

Theorem 3.2.5 (Contraction Mapping). If f : Y → Y is a contraction mapping and Y is

a complete metric space, then there exists a unique y∗ such that f(y∗) = y∗. Further, for
any y0 ∈ Y , the inductively defined sequence yn = f(yn−1) converges to y∗.

Proof: Step 1 — if such a y∗ exists, it is unique. To see why, suppose that f(y∗) = y∗ and
f(y′) = y′ so that d(y∗, y′) = d(f(y∗), f(y′)). By the definition of a contraction mapping,
d(y∗, y′) ≤ βd(f(y∗), f(y′)) for some β < 1. Combining, d(y∗, y′) ≤ βd(y∗, y′), and this is
only possible if d(y∗, y′) = 0.
Step 2 — existence. Pick an arbitrary y ∈ Y . Inductively define f 0(y) = y and fn(y) =

f(fn−1(y)). Applying the definition of a contraction mapping n times, we have

d(fn+m(y), fn(y)) ≤ βnd(fm(y), y).

Using the triangle inequality m times, we have

βnd(fm(y), y) ≤ βn[d(fm(y), fm−1(y)) + · · ·+ d(f(y), y)].
By the definition of a contraction mapping,

βn[d(fm(y), fm−1(y)) + · · ·+ d(f(y), y)] ≤ βnd(f(y), y)[1 + β + · · ·+ βm−1].
This last term, βnd(f(y), y)[1+β+· · ·+βm−1], goes to 0 as n ↑ ∞. Since Y is complete, there
exits a y∗ such that y∗ = limn fn(y) = limn fn+1(y). Because the function f is continuous,
f(y∗) = f(limn fn(y)) = limn fn+1(y) = y∗.
Discuss starting at W ≡ 0 and applying Ψ.

3.3. Stochastic Dynamic Programming. Discrete Markov chains and Markovian dy-

namic programming (Ross, parts of Chapters 1, 2, 4, and 6).

Chapter 1. Random variables: as distributions, as functions on ([0, 1],B, λ), as char-
acteristic functions. State (but do not yet prove) uniqueness and convergence results for

characteristic functions.

Conditional probabilities and expectations: discrete cases, E(Y |X = x) is a function of

x, Y = 1A and E(Y |X = x) = P (A|X = x). Stochastic process: we’ll have discrete time

processes.
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Chapter 2. Poisson processes (star-finite dfns), interarrival and waiting time distributions

(negative exponential and gamma), nonhomogenous and compound processes.

Chapter 4. Markov chains, Examples 2 and 3 of embedded Markov chains, classification of

states, limit theorems, special emphasis on finite state spaces and the contraction mapping

proof of Froebenius’s theorem for positive matrixes.

Chapter 6. Markov decision processes with discrete state spaces and finite actions, a

(triumphant) return to the contraction mapping. Application of these ideas to sequential

testing.

3.4. Problems.

Problem 3.1. Which, if any, of the criteria for valuing sequences given above, V1, V2,

V averagelim inf , V3, VPolya, are continuous? Prove your answers.

Problem 3.2. A complex number z is a vector in R2. For complex numbers (u, v) and

(x, y), complex addition is defined by (x, y)+(u, v) = (x+u, y+v) and complex multiplication

by (x, y)(u, v) = (xu− yv, xv+ yu). The first component of z = (x, y) is called its real part,
the second component the imaginary part so that z = (x, 0)+(0, y) expresses z as the sum of

its real and imaginary parts. The complex conjugate of z = (x, y) is defined as z = (x,−y).
The absolute value of z = (x, y) is defined by |z| = √x2 + yn. The complex number i is
defined as (0, 1). Typical notation is z = x+ iy where x, y ∈ R. The more complete, clumsy
notation is z = x(1, 0) + y(0, 1). For z 6= (0, 0), define 1/z := z/|z|.
1. Restricted to the real axis, complex addition and multiplication are the usual addition

and multiplication.

2. Show that i2 = −1.
3. Interpret zz.

4. Show that 1/z = (x/(x2 + y2),−y/(x2 + y2). Interpret geometrically.
5. Any z can be identified with a pair (r, θ) of polar coordinates where r = |z| and θ is
the angle between z and the line segment starting at (0, 0) and extending through (1, 0).

There is some ambiguity in this because θ + 2nπ is also the angle for any n ∈ N. We
take the value in [0, 2π).

(a) Give the formula for coverting z = (x, y) into (r, θ).

(b) Give the polar coordinate formula for complex multiplication.

Problem 3.3. This problems asks you to go through the two major parts of the central limit

theorem in their simplest forms.

1. For each n, let Xnk, k = 1, . . . , n, be independently distributed Bernoulli(λ/n). Define

Yn =
∑
k≤nXnk. Calculate the characterstic function, ϕn(u) of Yn, and show that for

all u, ϕn(u)→ ϕλ(u) where ϕλ(·) is the characteristic function of a Poisson(λ).
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2. For each n, let Xnk, k = 1, . . . , n, be independently distributed with P (Xnk = −1) =
P (Xnk = +1) =

1
2
. Define Yn =

1√
n

∑
k≤nXnk. Calculate the characterstic function,

ϕn(u) of Yn, and show that for all u, ϕn(u) → ϕGaussian(u) where ϕGaussian(·) is the
characteristic function of the standard Gaussian distribution.

Problem 3.4. Ross, Chapter 1, #1, 2, 4, 7, 8, 11.

Problem 3.5. Ross, Chapter 2, #1, 3, 7.

Problem 3.6. Ross, Chapter 4, #1, 2, 3, 5, 8, 12, 14.

Problem 3.7. Ross, Chapter 6, #1, 2, 3, 4, 5, 6.
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4. An Overview of the Statistics Part of this Course

Concepts we will see ofter are marked with a “†.”

4.1. Basics. The basic statistical model has data† X = (X1, . . . , Xn) independent†, and
identically distributed with distribution Pθ, θ ∈ Θ. Given θ, the likelihood† ofX is L(X|θ) =
ΠiPθ(Xi). Maximum likelihood estimators

† (MLE’s) solve the problem maxθ∈Θ L(X|θ) for
θ̂(X). When the Pθ’s all have densities, we use those. Generally, taking the logarithm of L

makes the calculations easier.

There are many ways to arrive at sensible estimators. MLE’s are not the only class of

estimators that we will look at, but they are a very good starting point.

Any function of the data is a statistic†. Writing θ̂(X) makes it clear that estimators are
statistics. We often solve for them as a function of the possible values that X may take on,

that is, we solve for θ̂(x) := (θ̂(X)|X = x), x = (x1, . . . , xn).
As a first, and very informative example, suppose that the data, X1, . . . , Xn, are indepen-

dent† random variables, distributed Bernoulli(p), p ∈ [0, 1]. We want p̂ = p̂(X1, . . . , Xn), an
estimator† of p. From intro stats, Prob((X1, . . . , Xn) = (x1, . . . , xn)) = ΠipXi(1 − p)1−Xi ,
from this find the maximum likelihood estimator† (MLE), p̂n = 1

n

∑
i≤nXi.

This is a linear statistic, and it satisfies, ∀p ∈ [0, 1], conditional on p being the true value,
we have the expectation of p̂n is p, written as E (p̂n|p) = p, that is, it is unbiased†. Indeed,
amongst the set of unbiased linear statistics, it minimizes variance. Further, by the Law of

Large Numbers† (LLN), Prob(p̂n → p) = 1, that is, the estimator is consistent†.
Having an estimator is fine and lovely, one of my favorites is 1

7
. What we would like to

know is Prob(|p̂n−p| > r) for different values of r and different values of p. More generally,

we would like to know different aspects of the distribution of p̂ for different p. Graph the

distributions for p̂ ≡ 1
7
and for the MLE.

In general, we would like to know about the likelihood that our estimator is very far off,

and how that depends on the true value. We can do explicit calculations, or we can use the

Central Limit Theorem† (CLT) for the mean, as you should remember. If X1, . . . , Xn are iid
with mean µ and variance σ2, then 1√

n

∑
i(Xi−µ)/σ is, to a good degree of approximation,

distributed N(0, 1).

4.2. Other properties of estimators. Suppose now that p is the true value, that we do

not know it, and want an estimator p̂′ with low mean squared error†, (MSE) that is,
such that E ((p̂′ − p)2|p) is small. It is a true fact that shrinking p̂n = 1

n

∑
i≤nXi lowers

MSE. We’ll do the algebra for non-negative statistics, passing through MSE = Var + Bias.

Generally, the amount of shrinkage to be done to minimize MSE depends on the true value

of the parameter we’re interested. When we put our estimate of the parameter into the

formula for the optimal shrinkage and shrink, we may actually increase the MSE.
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The Best MSE estimators are biased, the better ones are called “shrunken” estimators.

Suppose that θ̂ ∈ R++ is an unbiased estimator of a location parameter θ ∈ R++ based on an
iid. sample Xi, i = 1, . . . , n. The question to be asked is what multiple of θ̂ minimizes mean

squared error? To answer the question, we take a detour through the following calculation:

E(θ̂ − θ)2 = E((θ̂ −Eθ̂) + (Eθ̂ − θ))2(3)

= E(θ̂ − Eθ̂)2 + E(Eθ̂ − θ)2 + 2E(θ̂ − Eθ̂)(Eθ̂ − θ)(4)

= Var(θ̂) + Bias2(θ̂),(5)

where the last equality happens because Eθ̂ is unbiased.

We now apply this to the class of estimators aθ̂ where θ̂ is unbiased. Define

f(a) = E(aθ̂ − θ)2 = a2Var(θ̂) + θ2(a− 1)2.
Let v = Var(θ̂), so that f(a) = a2v+ θ2(a− 1)2. Because f is a quadratic in a with positive
coefficients on a2, the first order conditions are sufficient for a maximum. Taking derivatives,
1
2
f ′(a) = av + θ2(a− 1) so that

a∗ =
θ2

v + θ2
=

1

1 + v◦
< 1,

where v◦ := v
θ2
(which is known as the standardized variation of θ̂). Thus, the optimal MSE

(Mean Squared Error) estimator which is a linear function of θ̂ is given by a∗θ̂. Because
a∗ < 1, these are sometimes called shrunken estimators.
Note that as v◦ becomes large, a∗ becomes small. As n ↑ ∞, v◦ ↓ 0 for the estimators

that we will study, so that as more data arrives, a∗ approaches 1. It can be shown that for
the negative exponential distribution, a∗ = n

n+1
. In general, one must estimate v◦ to figure

out what a∗ should be, so the resulting estimate is â∗θ̂. One could avoid thinking about this
problem simply by insisting on unbiased estimators, this has the effect of forcing a∗ = 1,
but there doesn’t seem to be much justification for that. However, in some cases, â∗θ̂ turns
out to have even higher MSE than θ̂ did originally. (Onwards, bravely, through the fog.)

4.3. Bayesians. Another way to look at the whole problem gives very direct answers to

questions about the value of Prob(|p̂n − p| > r) and, more generally, the distribution of

p̂n. This approach is called Bayesian statistics
†, and, at its best, it sensibly uses the prior

knowledge we have about the problem at hand.

Suppose that we know that the true value of θ (changing the notation for p here) is in the

interval [1
2
, 1], and that intervals of equal size in [1

2
, 1] are equally likely, that is, our prior

distribution† is U [1
2
, 1]. The posterior density as a function of the data is

P (θ|x) = kxθ · ΠiθXi(1− θ)1−Xi, θ ∈ [1
2
, 1],
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where kx is some constant chosen to make
∫
[ 1
2
,1]
kP (θ|x) dθ = 1. Take logarithms and

maximize over [1
2
, 1] to find the Bayesian MLE estimator, watch out for corner solutions.

One of the fascinating aspects of the study of statistics is the interplay between the ideas

implicit in the MLE approach and this Bayesian approach. The basic issues in epistemology

appear, how do we know the information in the prior? And how sure of it are we? One way

to answer these questions appear when there is a lot of data. In this case, there is a tight

relation between Bayesian estimators and MLE estimators.

Suppose that θ ∈ Θ, and a Bayesian has a prior distribution with density p(θ), and we
observe X1, . . . , Xn with density f(x|θ). Then the posterior distribution has density

P (θ|X1, . . . , Xn) = kp(θ)L(X1, . . . , Xn|θ)
for some constant k. A Bayesian might well solve the problem maxθ P (θ|X1, . . . , Xn).
Taking logarithms, this gives

maxθ[log p(θ) +
∑
i log f(Xi|θ)] = maxθ

∑
i[log f(Xi|θ) + 1

n
log p(θ)].

You should be able to convince yourself that the solution to this problem approaches the

MLE as n ↑ ∞. We interpret this as saying that the prior distribution becomes irrelevant,
it is eventually swamped by the data. For moderate n, the approximation may not be that

good.

4.4. Classical statistics.

Hypothesis — A supposition or conjecture put forth to account for known facts;

esp. in the sciences, a provisional supposition from which to draw conclusions that

shall be in accordance with known facts, and which serves as a starting-point for

further investigation by which it may be proved or disproved and the true theory

arrived at. (OED)

Hypothesis testing involves formulating a supposition, or conjecture, or guess, called the

“null hypothesis,” written H0, and the “alternative hypothesis,” H1 or HA, then observing

data that has different distributions under H0 and H1, and then picking between the two

hypotheses on the basis of the data. Under study are the possible processes of picking on

the basis of the data. This is formulated as a decision rule, aka a rejection rule, that is, for

some set of possible data points we reject H0, for others we accept it.

There are two types of errors that a rejection rule can make, unimaginatively called Type

I and Type II errors:

1. you can reject a null hypothesis even though it is true, this kind of false rejection of

a true null hypothesis is called a Type I error, the probability of a Type I error is

denoted α.
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2. you can accept the null hypothesis even though it is false, this kind of false acceptance

of a null hypothesis is called a Type II error, the probability of a Type II error is

denoted β.

If you adopt a rejection rule that makes α small, you are very rarely rejecting the null

hypothesis. This means that you are running a pretty high risk of making a Type II error,

that is, β is fairly large. This works the other way too, getting β small requires accepting

a large α. The Neyman-Pearson Lemma concerns a class of situations in which we can find

the best possible decision rule for given α.

The essential ingredients are

1. The basic statistical model, X ∼ f(x|θ), θ ∈ Θ,
2. a null hypothesis, H0 : θ ∈ Θ0, Θ0 ⊂ Θ,
3. the alternative, H1 : θ 6∈ Θ0,
4. a decision rule, reject H0 if x ∈ Xr and accept H0 if x 6∈ Xr.
We can then examine the probabilistic properties of the decision rule using the power

function, β(θ) = P (Xr|θ). The perfect power function is β(θ) = 1Θc0(θ), that is, reject if
and only if the null hypothesis is false. (Sing a bar of “To dream the impossible dream.”)

However, the idea behind the basic statistical model is that we do not observe θ directly,

rather we observe the data X, and the data contains probabilistic information about θ. In

statistics, we don’t expect to see perfect power functions, they correspond to having positive

proof or disproof of a null hypothesis.

Continuing in our simplest of examples, we suppose H0 : p = p0, H1 : p = p1, p0 6= p1.

Notice how much structure we’ve already put on the problem of picking a decision rule.

We’ll suppose that p0 < p1, the opposite case just reverses inequalities. There is a pretty

strong intuition that the best decision rule is to accept H0 if p̂n < p∗, and to reject otherwise,
for some p∗ ∈ (p0, p1). Work through why this is true, thinking of the analogy with filling
bookcases with the lightest possible set of books.

4.5. An Information Inequality. We saw the Cauchy-Schwarz inequality for vectors,

xy = ‖x‖‖y‖ cos θ, equivalently, ∑i xiyi =
√∑

i x
2
i

√∑
i y
2
i cos θ, so that (

∑
i xiyi)

2 ≤∑
i x
2
i

∑
i y
2
i . When Ω = {1, . . . , n} with P (ω) ≡ 1/n, we get an inequality about ex-

pectations that is also an inequality about Variances and Covariances,

Cov(X, Y )2 ≤ Var(X)Var(Y )
with equality iff X − EX is linear function of Y − E Y .
Go through definition Cov(X, Y ) = E(X−E X)(Y −E Y ) = EXY −E XE Y . Defining

the L2 norm, and minλ ‖X − λY ‖ for a more general version.
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Now, Var(Y ) > 0 iff P (Y 6= E Y ) > 0, so division yields

Var(X) ≥ Cov(X, Y )
2

Var(Y )

for all of the interesting Y ’s.

We are going to take R = p̂, S = Dp log f(X|p) and look at

Varp(R) ≥ Covp(R, S)
2

Varp(S)
.

Here EpX is the expectation of the rv X when the true value is p. We will show that when

R is unbiased, Covp(R, S)
2 = 1. We will also show that Ep(Dp log f(X|p)) = 0. This means

that for any unbiased estimator, p̂, of p,

Varp(p̂) ≥ 1

Ep(Dp log f(X|p))2 ,

known as the Cramèr-Rao lower bound. It really is a bound on all unbiased estimators,

the right hand side does not depend on which p̂ you choose. If we have an unbiased estimator

where this inequality is satisfied as an equality, then we have found the smallest possible

variance amongst all unbiased estimators. Sometimes there is no estimator satisfying the

bound.

The quantity Ep(Dp log f(X|p))2 is called the Fisher information of the sample, and the
inequality, in this form, is often called the information inequality. It should be intuitive

that having Ep(Dp log f(X|p))2 large means that the sample tells us a great about the value
of the parameter, that we can estimate it more closely. This is especially true when we

think about the MLE’s.

4.6. Mis-Specification. The basic statistical model is X1, . . . , Xn is i.i.d. Pθ for some

θ ∈ Θ. Any subset of the parts of the model may be incorrect.
1. Independence is typically violated in time series contexts, e.g. Xt+1 = f(Xt) + εt and

Cov(εt, εt+1) 6= 0. Think about panel data sets in labor.
2. Identical distribution may be violated, e.g. p is lower for the first half than for the

second half of the treatment because of learning on the part of the administrators.

Errors for predictive equations may be systematically smaller in absolute value for

some identifiable part of the sample.

3. If X1, . . . , Xn is iid µ and µ 6∈ {Pθ : θ ∈ Θ} ⊂ ∆.
(a) Random Xi’s and X

′
i’s, Yi = β0+β1Xi+β

′
1X
′
i + εi, εi iid N(0, σ

2), Xi, X
′
i iid some

distribution. We are interested in estimating the β’s and σ2. Suppose we use the

model Yi = β0+ β1Xi++εi, εi iid N(0, σ
2), Xi iid some distribution. It’s not hard

to write down the MLE from the mis-specified model, and if Cov(Xi, X
′
i) 6= 0, the
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estimator of β1 is biased (famous cases, fertilizer and yield, education and wages).

The good properties of MLE’s need not survive mis-specification.

(b) The Xi’s in the above model might not be random, they could have been designed

(not generally true in econ), or might not be replicable (generally true in econ), in

which case our analysis/estimators are conditional on the data rather than having

more generalized good properties.

4.7. Problems.

Problem 4.1. Suppose that X1, . . . , Xn are iid, EXi = µ, Var(Xi) = σ2. A linear esti-

mator of µ is a function of the form µ̂α(X1, . . . , Xn) =
∑
i αiXi, α = (α1, . . . , αn). An

estimator, µ̂, is unbiased if for all µ, E(µ̂|µ) = µ.
1. Characterize the set of unbiased linear estimators.

2. Amongst the unbiased linear estimators, find the one with the lowest variance.

Problem 4.2. Suppose that X1, . . . , Xn are iid Exponential(β), β ∈ R++.
1. Find β̂MLE(X1, . . . , Xn) and show that it is unbiased.

2. Show that the optimal shrinkage for β̂MLE is
n
n+1
, independent of β.

Problem 4.3. Suppose that X1, . . . , Xn are iid Poisson(λ), λ ∈ R++.
1. Find λ̂MLE(X1, . . . , Xn) and show that it is unbiased.

2. Show that the optimal shrinkage for λ̂MLE depends on λ.

Problem 4.4 (Neyman-Pearson). Suppose that X = (X1, . . . , Xn) has pdf (or pmf, in

which case the integrals below are replaced by sums) f(x|θ), θ ∈ Θ = {θ0, θ1}. We have
seen that there is typically a tradeoff between α, the probability of a Type I error, and β,

the probability of a Type II error. Let us suppose that we dislike both types of errors, and in

particular, that we are trying to devise a test, characterized by its rejection region, Xr, to

minimize

a · α(Xr) + b · β(Xr)
where a, b > 0, α(Xr) = P (X ∈ Xr|θ0), and β(Xr) = P (X 6∈ Xr|θ1). The idea is that the
ratio of a to b specifies our tradeoff between the two Types of error, the higher is a relative

to b, the lower we want α to be relative to β. This problem asks about tests of the form

Xa,b = {x : af(x|θ0) < bf(x|θ1)} =
{
x :

f(x|θ1)
f(x|θ0) >

a

b

}
.

This decision rule is based on the likelihood ratio, and likelihood ratio tests appear regularly

in statistics.

1. Show that a test of the form Xa,b solves the minimization problem given above. [Hint:

let φ(x) = 1 if x ∈ Xr and φ(x) = 0 otherwise. Note that a · α(Xr) + b · β(Xr) =
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a
∫
φ(x)f(x|θ0) dx+b

∫
(1−φ(x))f(x|θ1) dx, and this is in turn equal to b+

∫
φ(x)[af(x|θ0)−

bf(x|θ1)] dx. The idea is to minimize the last term in this expression by choice of φ(x).
Which x’s should have φ(x) = 1?]

2. As a function of a and b, find the Xa,b when (X1, . . . , Xn) is iid Bernoulli(θ), θ ∈ Θ =
{θ0, θ1} ⊂ (0, 1).

Problem 4.5. Suppose that X1, . . . , Xn are iid Poisson(λ), λ ∈ R++. Show that λ̂MLE(X)
achieves the Cramèr-Rao lower bound.
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5. Basic Probability, Transformations, and Expectations

5.1. Basic Probability and Expectations. Dfn (Ω,F , P ). Countable additivity as con-
tinuity from above at the empty set. On R, cdf’s and pdf’s or pmf’s, the fundamental

theorem of calculus, the uniqueness of prob’s from cdf’s, look through the Table of Com-

mon distributions, p. 621-7, finding the expectation of X from FX . Properties of σ-fields,

the role of [En i.o.] and [En a.a.], DeMorgan’s Rules and the complements of [En i.o.] and

[En a.a.]. Conditional probabilities and independence, disjointness versus independence,

Bayes Law and legal theory, the Monte Hall story.

5.2. Transformations and Expectations. Chain rule and FY (y), Y = g(X), g mono-

tonic, g not monotonic, Leibniz’s rule, applications from Chapter 2.

Differentiating under the integral sign. From Lebesgue’s Dominated Convergence Theo-

rem — if (x, y) 7→ h(x, y) is continuous at y0 for each x and |h(x, y)| ≤ g(x) for some g(x)

satisfying
∫
R
|g(x)| dx <∞, then

lim
y→y0

∫
R

h(x, y) dx =

∫
R

lim
y→y0

h(x, y) dx.

Corollary, if (x, θ) 7→ f(x, θ) is differentiable at θ0 for every x, that is,

lim
θ→θ0

f(x, θ)− f(x, θ0)
(θ − θ0) =

∂

∂θ
f(x, θ)|θ=θ0,

by which I mean that the indicated limit exists, and there exists a function g(x, θ0),∫
R
|g| dx < ∞, such that |(f(x, θ0 + δ) − f(x, θ0))/δ| ≤ g(x, θ0) uniformly in x for all δ

small, then

∂

∂θ

[∫
R

f(x, θ) dx

]
|θ=θ0 =

∫
R

[
∂

∂θ
f(x, θ)|θ=θ0

]
dx.

Applications to finding how n’th moments change with parameters.

For summation and differentiation, if
∑
n h(θ, n) converges for all θ in an interval, and

h(·, n) is continuously differentiable ∀n, and ∑n
∂
∂θ
h(θ, n) converges uniformly on compact

subsets of the interval, then ∂
∂θ

∑
n h(θ, n) =

∑
n
∂
∂θ
h(θ, n). Application to find EX for

geometric.

5.3. Problems.

Problem 5.1. Cassella and Berger, Chapter 1, #9, 12, 25, 33, 36, 38, 39, 52, 53, 55.

Problem 5.2. Cassella and Berger, Chapter 2, #14, 15, 18, 28, 33, 39.

Problem 5.3 (Legal theory and Bayes’ Theorem). Suppose that your prior probability that

the new fellow in town is a Werewolf (the event B) is P (B) = 0.001 (this means that you

watch too much late night TV). Now let us suppose that the probability that someone’s
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eyebrows grow straight across (the event A) is P (A) = 0.0025 = 1
400
. That is, ahead of time,

you would have thought it rather unlikely that the new fellow in town has eyebrows that grow

straight across. On the other hand, your exiled Hungarian step-granmother who grew up on

the cold slopes of the Caucasus mountains (facing the Black Sea) has told you that 99 times

out of a 100, a werewolf ’s human form will have eyebrows that grow straight across. She’s

your grandmother, so you believe everything she says. Thus, there is this moderately rare

condition, A, which is almost always true if B is true.

1. What is P (B|A)? That is, if the new fellow’s eyebrows grow straight across, what is
the probability that he’s a Werewolf? [If he’s a clever Werewolf, he’ll shave the space

between the eyebrows, but let’s ignore this possibility.]

2. What aspect(s) should an event E have to be good evidence that the fellow is not a

werewolf? Should it be common? Rare? Should its intersections with B and Bc be

large? Small?

Problem 5.4 (Planting and Leibniz’s Rule). The monsoons will come at some random time

T in the next month, T ∈ [0, 1]. A farmer must pre-commit to a planting time, a. As a
function of the action, a, and the realized value of T , t, the harvest will be

h(a, t) =

{
K − r|a− t| if a ≤ t

K − s|a− t| if a > t

where K > r, s > 0. The random arrival time of the monsoon has cumulative distribution

function F (·), and f(x) = F ′(x) is its strictly positive probability density function.
1. Graph the function h(a, ·) for two different values of a.
2. Suppose that the farmer wants to maximize V (a) = E h(a, T ). Show that the solution

to the problem maxa∈[0,1] V (a) is the point a∗ = a∗(r, s) satisfying F (a∗) = r/(r + s).

(Leibniz’ rule will be useful here. Be sure to check second derivatives.)

3. Find ∂a∗/∂r and ∂a∗/∂s. Tell me whether these derivatives are positive or negative
and explain the intuition for your answers.

4. Now suppose that the last n monsoon times came at the iid times T1, . . . , Tn. Find an

estimator, â∗n, of a
∗, with the property that MSE(â∗n)→ 0 as n ↑ ∞.

Problem 5.5 (Some hazard rate models). When T > 0 is a random variable with a density

giving the random length of life of something, or the random waiting time till the next event,

then the hazard rate at t is defined by

hT (t) = lim
δ↓0

P (t ≤ T < t+ δ|T ≥ t)

δ
.

This is the proportional rate of change of the probability of surviving another instant given

that survival to t has happened, hT (t) = − ddt ln(1− FT (t)).
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Suppose that X ∼ exponential(β), i.e. X > 0 is a random variable with the property that

P (X > t) = e−t/β. Define gγ : R+ → R+ by g(r) = r1/γ.
1. Y = gγ(X) has a Weibull (γ, β) distribution.

2. If T ∼ exponential(β), hT (t) ≡ 1/β. [Note the memorylessness of this.]
3. If T ∼ Weibull(γ, β), hT (t) = γ

β
tγ−1. [You should vary γ above and below 1, notice

the graphs of g(x) = xγ and see why we have the increasing or decreasing hazard rate

properties here.]

4. If T ∼ logistic(β), hT (t) = 1
β
FT (t) where FT (t) = (1− e−(t−µ)/β)−1.
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6. Some Continuous Distributions

This section is mostly about getting used to doing calculations and using some of the

common distributions. We’ll look at discrete and cts distributions, scale and shift them

(location and scale families). A particularly important class is the class of exponential

distributions.

6.1. Uniform distributions, U [θ1, θ2]. The probability integral transformation shows

that every random variable is a transformation of the uniform distribution. First the uniform

distribution, then a specific example, then the general construction.

A random variable X has the uniform distribution on [0, 1], written X ∼ U [0, 1], if it has

density

fX(x) =

{
1 if 0 < x < 1

0 otherwise

The cdf is

FX(x) =


0 if x ≤ 0
x if 0 < x ≤ 1
1 otherwise

[Note that you can give the density or the cdf to specify a continuous random variable,

where by “continuous rv” I mean one with its cdf being the integral of its derivative.]

Suppose that X ∼ U [0, 1] and Y = aX + b. Then Y ∼ U [b, b + a]. Give the density and

cdf. Going in the reverse direction, if Y ∼ U [θ1, θ2], then X =
Y−θ1
θ2−θ1 ∼ U [0, 1].

Now, take the transformation Y = g(X), where g(x) = − log x. g(·) is a monotonically
decreasing function on the interval (0, 1), check the derivative, g((0, 1)) = (0,+∞). To get
the cdf of Y ,

FY (y) = P (Y ≤ y) = P (− log x ≤ y) = P (logx ≥ −y) = P (x ≥ e−y) = 1− FX(e−y) = 1− e−y.
This gives you the negative exponential rv’s as monotonic transformations of U [0, 1].

Given a cdf, FY (x), it is possible to express the random variable Y as the weakly mono-

tonic transformation of X where X ∼ U [0, 1]. Show how. This is a method used to generate

rv’s for simulation.

Suppose that θ ∈ Θ = [0,∞) is the unknown size of the largest fish in a given body of
water. Suppose that Pθ = U [0, θ], so that if θ is true, then the data, the size of the n fish

you’ve caught, are independent and uniformly distributed over the interval [0, θ]. Here are

two possible estimators:

θ̂1(X1, . . . , Xn) = max{Xi : i = 1, . . . , n},
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θ̂2(X1, . . . , Xn) = 2 · 1
n

n∑
i=1

Xi.

We know that θ̂2 is not biased, that is, Eθθ̂2 = θ. We also know that θ̂1 is biased downwards,

that is Eθθ̂1 < θ. Being unbiased, we can see that a substantial part of the time, θ̂2 will be

a really stupid estimator, that is, we’ll have θ̂2 < θ̂1, and since we know that θ̂1 < θ, this is

really not sensible. This suggests the estimator θ̂3 := max{θ̂1, θ̂2}, which is less biased than
θ̂1 and less regularly stupid than θ̂2. Yet another approach is Bayesian, suppose that your

prior distribution is that θ ∼exponential(2), write out the likelihood, look at the MLE.
The moral of the story, for later purposes, is that there are many estimators and we need

ways to choose between them.

6.2. The normal or Gaussian family of distributions, N(µ, σ2). The random variable

Z has the standard normal distribution, aka the standardized Gaussian, if it has

density

fZ(z) =
1√
2π

e−z
2/2, −∞ < z <∞.

Important: From now on, we will reserve Z to mean a random variable with this distribution.

It is written Z ∼ N(0, 1).

The constant 1√
2π
is there to make the density integrate to 1, that is,

∫ +∞
−∞ e−z

2/2 dz =
√
2π,

a result that comes from changing to polar coordinates and doing a rotation integral.

No-one knows a closed form formula for the cdf of the Gaussian, that is

FZ(a) =

∫ a
−∞

1√
2π

e−z
2/2 dz

is the best we can do. This cdf turns out to be so useful that its numerical values have been

calculated to very high degrees of precision and the results have been tabulated. These are

included in all statistical software and many spread sheets.

z2 is symmetric about 0, so that e−z
2/2 is symmetric. This implies that E Z = 0. That was

the easy way to get the result, now we’re going to do it by change of variable, a technique

that is useful enough that simple reviews are worthwhile.

E Z =

∫ +∞
−∞

ze−z
2/2 dz =

∫ 0
−∞

ze−z
2/2 dz +

∫ +∞
0

ze−z
2/2 dz.

Using the change of variable x = −z so that dz = −dx, and noting that (−z)2 = z2,∫ 0
−∞

ze−z
2/2 dz =

∫ +∞
0

−xe−x2/2 dx = −
∫ +∞
0

xe−x
2/2 dx.
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Combining,

E Z =

∫ 0
−∞

ze−z
2/2 dz +

∫ +∞
0

ze−z
2/2 dz = −

∫ +∞
0

ze−z
2/2 dz +

∫ 0
−∞

ze−z
2/2 dz = 0.

If Z ∼ N(0, 1) and Y = σZ, then we write Y ∼ N(0, σ2), and E Y = 0 and Var(Y ) = σ2.

Since Z is symmetric about 0, the sign of σ does not matter, and by convention, σ > 0. We

need to get the density of Y . We’ll get an expression for the cdf, and use the chain rule to

get the density.

FY (a) = P (Y ≤ a) = P (σZ ≤ a) = P (Z ≤ a/σ) = FZ(a/σ).

Therefore,

fY (a) = F
′
Y (a) =

d

da
FZ(a/σ) = fZ(a/σ) · 1

σ
=
1

σ

1√
2π

e−(a/σ)
2/2 =

1

σ
√
2π

e−a
2/2σ2 .

If Y ∼ N(0, σ2) and X = Y +µ, then we write X ∼ N(µ, σ2), and EX = µ, Var(X) = σ2.

To get the density of X, we note that

FX(a) = P (X ≤ a) = P (Y + µ ≤ a) = P (Y ≤ (a− µ)).
Applying the chain rule again, this yields

fX(a) = fY (a− µ) = 1

σ
√
2π

e−(a−µ)
2/2σ2 .

Going in the other direction, if X ∼ N(µ, σ2), then the standardized version of X is the

rv Xs =
X−µ
σ
, and Xs ∼ N(0, 1). Shifting and scaling are all that are at work in all of this.

Go through a couple of problems on standardizing and then reading from the normal tables.

6.3. A useful device. Claim: (Thm. 3.5.1 in text) If f(x) is a pdf, then for all µ and all

σ > 0, g(x|µ, σ) = 1
σ
f(x−µ

σ
) is a pdf. We can see why, this is shifting and scaling an rv.

6.4. The gamma family, Γ(α, β). This is a family of strictly positive rvs. For y > 0,

yα−1e−y > 0, and it should be pretty easy to believe that for any α > 0, the integral∫∞
0
yα−1e−y dy is finite. Therefore, if we define the function Γ(α) =

∫∞
0
yα−1e−y dy, then for

every α > 0, the following is a density,

f(y) =
1

Γ(α)
yα−1e−y, y > 0.

Such a rv is written Y ∼ Γ(α, 1), and the role of the 1 will become clear soon.
Look at a couple values of α, e.g. α = 1, 2, 4, we get a sense of what this class of distri-

butions is about.
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You should check that Γ(1) = 1. Integration by parts gives Γ(α + 1) = α · Γ(α) for
α > 0. Therefore, Γ(2) = (2 − 1) · 1 = (2 − 1)!, Γ(3) = (3 − 1) · (2 − 1)! = (3 − 1)!,
Γ(4) = (4− 1) · (3− 1)! = (4− 1)!, . . . , Γ(n) = (n− 1)!.
Review of integration by parts:∫ b

a

fdg = fg|ba −
∫ b
a

gdf,

this comes from the product rule, dfg = fdg + gdf so that fdg = dfg − gdf .

Γ(α + 1) =

∫ ∞
0

yαe−ydy,

set f = yα, dg = e−ydy so that df = αyα−1 and g = −e−y, and we have∫ ∞
0

yαe−ydy = −yαe−y|∞0 −
∫ ∞
0

αyα−1(−e−y)dy = (0− 0) + α
∫ ∞
0

yα−1e−ydy = αΓ(α− 1).

It may not come as a surprised that when α is not an integer, we do not have any closed

form expression for
∫ d
c

1
Γ(α)

yα−1e−y dy, so, we have tables and numerical integration programs
to find it for us.

If Y ∼ Γ(α, 1), then E Y = Var(Y ) = α. This is not at all obvious until you’ve fooled

with the integrals a bit. ∫ ∞
0

y
1

Γ(α)
yα−1e−y dy.

Now, for all α > 0, Γ(α) =
∫∞
0
yα−1e−y dy. Therefore,

E Y =
1

Γ(α)

∫ ∞
0

yyα−1e−y dy =
1

Γ(α)

∫ ∞
0

y(α+1)−1e−y dy =
Γ(α + 1)

Γ(α)
= α.

The same logic (more or less) tells us that E Y 2 = α(α+1), so that Var(Y ) = α(α+1)−α2 =
α.

The Γ class of distributions can be scaled, but not shifted. This last is mostly for conve-

nience, we want them all to be distributed on the interval [0,∞).
If Y ∼ Γ(α, 1), and X = β · Y , β > 0, then we can use the same technique we had above

to find the density of X.

FX(x) = P (X ≤ x) = P (βY ≤ x) = P (Y ≤ x/β) = FY (x/β) =

∫ x/β
0

1

Γ(α)
yα−1e−y dy.

Therefore,

fX(x) =
d

dx
FY (x/β) = fY (x/β) · 1

β
=
1

β

1

Γ(α)
(x/β)α−1e−(x/β).
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After re-organizing the β terms, we get

fX(x) =
1

βαΓ(α)
xα−1e−(x/β),

and we write this as X ∼ Γ(α, β). This gives a large class of distributions connected to any
number of random phenomena.

From the usual rules, if X ∼ Γ(α, β), then EX = αβ and Var(X) = αβ2.

6.5. Special cases of Γ(α, β) distributions. There are some special Γ(α, β) distributions,

ones that have their own special names and uses.

6.5.1. Waiting times. If Y ∼ Γ(1, β), we say that Y has an exponential distribution
with parameter β. We’ve seen this as the waiting time for the first Poisson arrival with

an arrival rate λ = 1/β. From above, E Y = β, and Var(Y ) = β2.

Example: Suppose that Y ∼ Γ(1, 100) and X = min{Y, 200}, find the cdf and the
expectation of X.

Along this line, it turns out that all of the Poisson waiting time distributions are contained

in the Γ family. If Y ∼ Γ(α, 1), α an integer, then for any t > 0,

P (Y > t) =

∫ ∞
t

1

Γ(α)
yα−1e−y dy =

α−1∑
n=0

tne−t

n!
= P (Poisson(t) ≤ α− 1).

We already know this result for α = 1. Getting the rest of the α is a good exercise in

applying integration by parts.

6.5.2. Squares of standard normals. If Y ∼ Γ(v/2, 2), v an integer, then Y has a χ2(v)
distribution, read as a chi squared distribution with v degrees of freedom. Reading

off directly, we have

fY (y) =
1

Γ(v
2
)
x
v
2
−1e−x.

Directly checking, you can see that if Z ∼ N(0, 1), i.e. has density (2π)−
1
2 e

x2

2 , the density

of Z2 is fY (y) =
1
Γ( 1
2
)
x
1
2
−1e−x.

Check that the moment generating function of a X ∼ Γ(α, β) is MX(t) = E etX =(
1
1−βt

)α
. The basic result is that mgf’s identify random variables that have them, find

MX1+···+Xv(t) when the Xi are iid χ
2
1’s.

6.6. Cauchy random variables. From calculus we know that d arctan(t)/dt = (1+ t2)−1,
so that

f(x) =
1

π

1

1 + x2
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is a density. It is the standard Cauchy density. By shifting location, we get the family

f(x|θ) = 1
π

1

1 + (x− θ)2 .

The MLE estimator of θ is weird, check it’s behavior. Some of the weirdness comes from the

fact that if X1, . . . , Xn are iid Cauchy(0), then
1
n

∑
i≤nXi is Cauchy(0). We get this easily

after we do that harder calculation that X ∼Cauchy(0) implies that ϕX(t) = E eitX = e−|t|
and doing the calculation for ϕ 1

n

∑
i≤nXi

(t).

6.7. Exponential Families. A class of pdf’s of the form

f(x|θ) = h(x)c(θ) exp
(∑
i≤I

wi(θ)ti(x)

)
is called an exponential family. Implicit in this notation is that c(·) and the wi(·) do
NOT depend on x, and that h(·) and the ti(·) do NOT depend on θ.
Look at the MLE’s.

E.g. binomial(n, p), 0 < p < 1, is

f(x|p) = nCx(1− p)n exp
(
log

(
p

1− p
)
x

)
,

so that h(x) = nCx1{0,1,... ,n}(x), c(p) = (1− p)n, I = 1, w1 = log( p1−p), and t1(x) = x.
E.g. normal(µ, σ) is an exponential family.

Not all families are exponential, a basic problem arises when the support depends on θ.

If the mapping θ 7→ (wi(θ))i≤I is one-to-one and invertible, we can replace the θ’s by ηi’s
in the reparametrization

f(x|η) = h(x)c∗(η) exp
(∑
i≤I

ηiti(x)

)
,

and the set of ηi’s that make this a density is the so-called natural parameter space for

the class of densities. It’s convex, which is nice.

6.8. Some (in)equalities. Tchebyshev and it’s higher moment versions. The 3σ rule.

P (|Z| ≥ t) ≤√2/π · e−t2/2/t, from
P (Z ≥ t) = 1/

√
2π

∫ ∞
t

e−x
2/2dx ≤ 1/√2π

∫ ∞
t

x

t
e−x

2/2dx = 1/
√
2πe−t

2/2/t.

If X ∼ N(θ, σ2), g continuously differentiable and E|g′(X)| <∞, then E[g(X)(X−θ)] =
σ2E g′(X). E.g. g(x) = ax+ b, or g(x) = x2 (which gives EX3 = 3θσ2 + θ3. [Integrate by

parts with u = g, dv = (x− θ)e−(x−θ)2/2σ2 .]

6.9. Problems.
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Problem 6.1. Casella & Berger, 3.1.

Problem 6.2. Casella & Berger, 3.2.

Problem 6.3. Casella & Berger, 3.3.

Problem 6.4. Casella & Berger, 3.4.

Problem 6.5. Casella & Berger, 3.6.

Problem 6.6. Casella & Berger, 3.7.

Problem 6.7. Casella & Berger, 3.9.

Problem 6.8. Casella & Berger, 3.15.

Problem 6.9. Casella & Berger, 3.16.

Problem 6.10. Casella & Berger, 3.20.

Problem 6.11. Casella & Berger, 3.24.

Problem 6.12. Casella & Berger, 3.28.

Problem 6.13. Casella & Berger, 3.29.

Problem 6.14. Casella & Berger, 3.31 and 3.32.

Problem 6.15. Casella & Berger, 3.41.
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7. Random Vectors, Conditional Expectations, Independence

We now turn to modeling the simultaneous randomness of many quantities.

7.1. Dependence, conditional probabilities and expectations. The starting point is

dependence, P (Y ∈ A|X ∈ B), down to P (Y |X = x). In the discrete case, use Bayes’ Law.
E.g. U is the random number of rolls of two fair die until the first sum of 7, V until the

second, give joint pdf, P (V = v|U = u), E(V |U = u), P (U = u|V = v), E(U |V = v), etc.
In the continuous case, fY (y|x)dy = fX,Y (x,y)dxdy

fX(x)dx
, cancelling terms, fY (y|x) = fX,Y (x,y)

fX(x)
.

E.g. the two light bulb story, both exponential parameter 1, fX,Y (x, y) = 1A(x, y)e
−y, A =

{(u, v) ∈ R2 : v > u > 0}. E (Y |X = x) :=
∫
yfY (y|x) dy, Var(Y |X = x) :=

∫
(y −

E (Y |X = x))2fY (y|x) dy, or Var(Y |X = x) = E (Y 2|x)−(E (Y |x))2. The main applications
of conditional variance models are in financial economics, summarize some volatility studies.

A very subtle concept is E (Y |X), since X is a rv . . . . It is a random variable that
depends on X. The law of iterated expectations is E Y = E E(Y |X). It must be true in
the discrete case (show why), and in the continuous case too (show why).

The following is the justification for most of regression analysis, linear and non-linear too.

Amongst the functions g(x) depending only on x, the one that solves the problem

min
g(x)

E (Y − g(X))2

is the function g(x) = E(Y |X = x). The function E(Y |X) is called the regression of
Y on X. Do this first by conditioning on X = x and looking point by point, then more

generally. The mapping from Y to E(Y |X) is a projection.

7.2. Projections. Let M be a linear subspace of Rn. N = M⊥ is the orthogonal com-
plement of M . Every x ∈ Rn has a unique representation as m + n, m ∈ M , n ∈ N .

P : Rn → M is a projection if Px = m where x = m+ n, n ⊥M , is the unique representa-

tion of x. Note that P is linear, that P (Rn) =M , P 2 = P , and P|M = I|M .
Suppose that we observe n values of y, arranged in an n× 1 vector Y , and n values of xi,

i = 1, . . . , k, arranged in an n× k matrix X. We assume that n > k and that the columns

of X are independent. We are after the β that makes

f(β) := (Y −Xβ)′(Y −Xβ) = e′βeβ
as small as possible where eβ = Y − Xβ. Let M be the column span of X. Do the

algebra, get the classic formula, and the projection and residual matrixes. Show that e∗ is
perpendicular to M , and that you could just look for β to make that happen.

There is a connection to the normal distribution. Suppose that Yi ∼ N(µ, σ2), i =

1, . . . , n, find the MLE of µ, σ2. Now suppose that Yi ∼ N(Xiβ, σ
2) are independent

i = 1, . . . n for some β, σ2. Write the likelihood function, solve for β.
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One kind of hypothesis of interest is (say) βk = 0. Solve the minimization restricted

problem for βr and compare ‖eβr‖ to ‖eβ‖. We can tell which of these is going to be
bigger, it’s projection onto M ′ ⊂ M . If these are too far apart, we have evidence that the

hypothesis should be rejected. The actual distributions involved can be complicated, but

not too miserable.

Now letM ⊂ L2 be the set of functions of X such that E g(X)2 <∞. Define P : Y →M

by P (Y ) = E(Y |X). P is a projection.

7.3. Causality and conditional probability. There is a strong distinction between causal-

ity and conditional probability. Noting that P (A|B) > P (A) does NOT mean that B causes

A. It only means that knowing that B is true makes us infer that A is more likely.

The conditional probability of the death of a patient rises with the amount of praying done

in their room, but this does not lead us to conclude that prayer causes death. P (A|B) >
P (A) means that when we observe B, we are more likely to observe A, not that B causes

A.

If B is the event that there was a nightlight in your room as a child and A is the event

that you need corrective lenses when you are an adult, then P (A|B) > P (A). This is NOT

causality at work.

In a similar fashion, ψ(x) := E(Y |x) and ψ′(x) > 0 is not an indication that higher values
of X cause higher values of Y , rather, it is an indication that higher values ofX are observed

with higher average values of Y . It is SO tempting to assert causality from such a result.

You’ve got to use that resource that Twain said was not common . . . .

Historically, if B is the event that interest rates are above average and A is the event that

GNP growth is above average, P (A|B) > P (A). Causality? Probably not. There are many

other examples.2

2The following is from http://my.webmd.com/content/article/1836.50533, a recent article about sleep
and longevity that also appeared in the local newspaper. It also included the figures that the average
amount of sleep/night is 7 hours, that, on average, those who slept 7 hours/night had the lowest death rate
(probability of death in any given year), that sleeping 8 hours is associated with a probability of death that
is 12% higher than the lowest, 9 hours is associated with a probability of death that is 17% higher than the
lowest, 10 hours is associated with a probability of death that is 34% higher than the lowest.

Kripke and co-workers analyzed data from an American Cancer Society study conducted be-
tween 1982 and 1988. The study gathered information on people’s sleep habits and health, and
then followed them for six years. Study participants ranged in age from 30 to 102 years, with
an average starting age of 57 years for women and 58 years for men.
Death risk increased for those who go too little sleep, too, but the numbers are smaller. The
risk of death went up 8% for those who slept six hours, 11% for those who slept five hours, and
17% for those who slept only four hours a night.
While this increased risk is statistically significant, it doesn’t translate into much of a risk for
an individual person. The study’s main finding, Kripke says, is that sleeping less than eight
hours isn’t bad for you. In fact, eight hours’ sleep can no longer be considered normal.
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7.4. Independence, sums of independent rv’s. Review X ⊥Y , for all A,B, P ([X ∈
A] ∩ [Y ∈ B]) = P ([X ∈ A]) · P ([Y ∈ B]). In particular, for all g(x) depending only on x
and all h(y) depending only on y, g(X)⊥h(Y ).
Look at product support sets, product cdf’s, product pdf’s. Note that d

dx
P (Y ∈ A|X =

x) = 0 and therefore d
dx
E(Y A|X = x) = 0 when X ⊥Y .

A basic result is

Claim: If X ⊥Y , then for all g(x) depending only on x and all h(y) depending only on
y, E g(X)h(Y ) = (E g(X)) · (E h(Y )). In particular, EXY = (EX) · (E Y ).
Example where X is not independent of Y and this fails — X ∼ U(−1,+1), Y = −X,

g(x) = x, h(y) = y, E g(X)h(Y ) = E (−X2) = −1
3
, while E g(X) = 0 = E h(Y ). Give

other examples too.

Argument for Claim: E g(X)h(Y ) =
∫ ∫

g(x)h(y)fX(x)fY (y) dxdy = (E g(X))·(E h(Y )).
Note that setting g(x) = 1A(x) and h(y) = 1B(y) gives back our definition of indepen-

dence.

Claim: If X ⊥Y and Z := X + Y , then MZ(t) =MX(t) ·MY (t).
If X ∼ n(µ, σ2), thenMX(t) = e

µt+σ2t2/2, so that both sums and variances add for Normal

distributions.

If X ⊥Y , X ∼ Poisson(θ), Y ∼ Poisson(λ), then X + Y ∼ Poisson(θ + λ). This can
be had by brute calculation (as in the text), or by noting that MX(t) = eθ(e

t−1) when
X ∼ Poisson(θ), and being watchful.
The Normal and the Poisson are infinitely divisible, they are the two major types of

rv’s to come out of the big CLT.

7.5. Covariance and correlation. Given two rv’s X, Y with means µX , µY and variances

σ2X , σ
2
Y , we are interested in a numerical measure of the relatedness of X and Y . It comes

So why does it feel good to sleep in? Oversleeping may be a lot like overeating, suggests Jim
Horne, PhD, director of the sleep research center at Loughborough University, England.
“As we can eat more food than we require and drink more fluids than we require, or drink beer,
or eat foods we don’t need, we may sleep more than we require,” Horne tells WebMD. “There
is an optionality about it. The amount of sleep we require is what we need not to be sleepy in
the daytime.”
The Kripke study also shows that people who say they have insomnia aren’t necessarily in bad
health. But those who often take sleeping pills have an increased risk of death. Frequent use of
sleeping pills increased the risk of death by 25%.
“The risk of taking a sleeping pill every night is equivalent to sleeping three or 10 (sic) hours,”
Kripke says. “It is a substantial risk factor. We cannot say it causes these deaths or that
this risk applies to newer medicines. But lacking evidence for safety, the wisest choice is to be
cautious in their use.”
Bliwise says it’s always a good idea to be cautious about using sleeping pills. However, he sees
no real problem in the proper use of these drugs from time to time. “There is no data that
intermittent use of a short acting [prescription sleeping pill] is necessarily harmful,” he says.
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through the function g(x, y) = (x − µX)(y − µY ), which looks like a Cobb-Douglas utility
function with the origin moved to (µX , µY ). g > 0 to the NE and SW of the shifted origin

and g < 0 to the NW and SE of the shifted origin. When g is, on average, positive (negative),

we have evidence of a positive (negative) relation between X and Y .

Definition: σX,Y = Cov(X, Y ) := E g(X, Y ) = E (X − µX)(Y − µY ).
Definition: ρX,Y = corr(X, Y ) :=

σX,Y
σXσY

.

Note that σX,Y = Cov(X,X) = σ2X ≥ 0, and is strictly positive as long as X is not
degenerate. Note also that σX,Y = σY,X and ρX,Y = ρY,X . Show that Cov(X, Y ) = EXY −
µXµY . We use correlation because it is a unitless measure of the relation between X and

Y , show why. Another note: if P (X = c) = 1, then Cov(X, Y ) = E (c − c)(Y − µY ) = 0
implying that ρX,Y = 0. There are more interesting ways to get 0 correlation, the one we

see most often is independence.

Claim: If X ⊥Y , then Cov(X, Y ) = 0, but [Cov(X, Y ) = 0] 6⇒ [X ⊥ Y ].
Show why, an easy continuous counter-example is (X, Y ) uniformly distributed over the

disk of radius 1 centered at 0, a simple discrete example is the uniform distribution over the

5 points (−1,−1), (−1,+1), (+1,−1), (+1,+1), and (0, 0).

7.6. Bivariate normals. If X1, X2 have the joint density

f(x1, x2) = ke
− 1
2
(x−µ)′Σ(x−µ),

where k = 1

2πσ1σ2
√
1−ρ2 , Σ the variance-covariance matrix, µ the mean vector, then we have

a bivariate normal distribution. Note that the part of denominator of k that is not about

2π is the square root of the determinant of Σ.

If Z1, Z2 are independent N(0, 1)’s, and X and Y are different affine combinations of the

Z’s, then X and Y are bivariate normals with the appropriate parameters.

7.7. A pair of discrete, portfolio management examples. Suppose that X and Y

are the random variables describing the rate of return on two different investments. We’re

going to consider two possible joint distributions of X and Y , one with negative and one

with positive correlation. To keep things simple, the two joint distributions have the same

marginal distributions.

A B

1.10 1
3

1
6

1.04 1
6

1
3

Y ↑/X → 1.00 1.22

1.10 1
6

1
3

1.04 1
3

1
6

Y ↑/X → 1.00 1.22
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The marginal distributions are, in all four cases, (1
2
, 1
2
). Eyeballing the two cases, A has

negative correlation and B positive between X and Y .

1. µX = 1.11, σ
2
X = 1.2442− (1.11)2 = 0.0121 so that σX = 0.11.

2. µY = 1.07, σ
2
Y = 1.1458− (1.07)2 = 0.0009 so that σY = 0.03.

So, investing in Y gives a lower rate of return but also has a lower variance. The essential

portfolio selection problem is what proportion of one’s wealth to hold in which assets.

Intuitively, the answer should depend on one’s attitude toward the risk-return tradeoff,

which we’ll not study in this class, and the covariance of X and Y , which we will study.

1. In case A, EXY = 1.1866 so that Cov(X, Y ) = 1.1866 − (1.11)(1.07) = 1.1866 −
1.1877 = −0.0011 and corr(X, Y ) = −0.0011

0.11·0.03 = −13 .
2. In case B, EXY = 1.1888 so that Cov(X, Y ) = 1.1888 − (1.11)(1.07) = 1.1888 −
1.1877 = 0.0011, and corr(X, Y ) = 0.0011

0.11·0.03 =
1
3
.

Claim: Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X, Y ).

To see why, start with Var(aX+bY ) = E [(aX+bY )−(aµX+bµY )]2 = E [(a(X−muX)+
b(Y − bµY )]2 and do the obvious algebra.
We’re particularly interested in the case where 0 ≤ a ≤ 1 and a + b = 1. Here we think

of a as the share of the portfolio in X and b as the share in Y .

The variance of a portfolio, as a function of a is

f(a) = Var(aX + (1− a)Y ) = a2Var(X) + (1− a)2Var(Y ) + 2a(1− a)Cov(X, Y ).
This can be re-written as

f(a) = a2[σ2X + σ
2
Y − 2σX,Y ] + 2a[σX,Y − σ2Y ] + σ2Y .

The term multiplying a2 is strictly positive (being the variance of X − Y ). Therefore, this
is a parabola opening upwards. f(0) = σ2Y and f(1) = σ

2
X , and the only remaining question

is where the parabola reaches its minimum.

It’s minimum happens when f ′(a) = 0, that is, when

2a[σ2X + σ
2
Y − 2σX,Y ] + 2[σX,Y − σ2Y ] = 0,

that is, when a = a∗,

a∗ =
σ2Y − σX,Y

σ2X + σ
2
Y − 2σX,Y

.

Some special cases:

1. When σX = σY , a
∗ = 1

2
.

2. f ′(0) > 0 gives a∗ = 0, this happens when σX,Y − σ2Y ≥ 0, that is, when
ρX,Y ≥ σY

σX
.
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This NEVER happens if ρX,Y < 0, and there is a good intuition, negative correlation

means that bad shocks to one stock are (somewhat) likely to be offset by good shocks

to the other, and vv. a∗ = 0 can only happen when ρX,Y > 0 and σY is (very) small
relative to σX , that is, Y has much less variance and is positively correlated with the

much riskier X.

3. Doing the algebra for f ′(1) < 0, which gives a∗ = 1, gives the condition

ρX,Y ≥ σX

σY
,

and again, this NEVER happens if ρX,Y < 0, and all that has changed is that X must

be the small variance random variable.

Time to go back to the first special case and examine it in terms of the conditions devel-

oped in the second two cases.

Claim: −1 ≤ ρX,Y ≤ 1, and when both σX and σY are strictly positive, ρX,Y = 1 iff
Y = aX + b for some a > 0, while ρX,Y = −1 iff Y = aX + b for some a < 0.
If σX = σY , then we will never have ρX,Y > σX/σY = σY /σX because this requires

ρX,Y > 1.

The text proves the last claim by using a clever device involving the determinant of the

polynomial h(t) = Var((X−µX)t+(Y −µY )) = E [(X−µX)t+(Y −µY )]2 = t2σ2X+2tσX,Y +
σ2Y . Now, h(t) ≥ 0, but the Fundamental Theorem of Algebra tells us that it has two roots
(counting multiplicity) in the complex plane. The discriminant is (2σX,Y )

2 − 4σ2Xσ2Y , and
this must therefore be less than or equal to 0. Rearrange to get −1 ≤ ρX,Y ≤ 1. We
have |ρX,Y | = 1 iff the discriminant is equal to 0, that is, iff the polynomial h(t) has a
single real root, call it t∗. Then we know that Var((X − µX)t∗ + (Y − µY )) = 0, that is,
P [(X − µX)t∗ + (Y − µY ) = 0] = 1. Using the quadratic formula, t∗ = −σX,Y /σ2X , which
finishes everything up.

Another, even more clever argument runs through the Cauchy-Schwarz inequality: For

any a, b, (a−b)2 ≥ 0 with equality iff a = b. This means that a2−2ab+b2 ≥ 0 with equality
iff a = b. This in turn means that a2 + b2 ≥ 2ab or

1

2
a2 +

1

2
b2 ≥ ab with equality iff a = b.

Now, for each ω ∈ Ω, let

a(ω) =
X(ω)√
EX2

, and b(ω) =
Y (ω)√
E Y 2

.

Applying the inequality we had above at each ω, we get

1

2
(a(ω))2 +

1

2
(b(ω))2 ≥ a(ω)b(ω),
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which is re-written as

1

2

X2(ω)

EX2
+
1

2

Y 2(ω)

E Y 2
≥ XY (ω)√

EX2
√
E Y 2

with equality iff X(ω) = cY (ω),

where the constant c is equal to
√
EX2/

√
E Y 2, something independent of ω. This last

equality holds for all ω, taking expectations, the left hand side is equal to 1, rearranging

gives

EXY ≤
√
EX2

√
E Y 2.

Since X2 = |X|2 and |XY | = |X| · |Y |, the same logic gives
E |XY | ≤

√
EX2

√
E Y 2,

known as the Cauchy-Schwarz inequality. Since −|XY | ≤ XY ≤ |XY |, |EXY | ≤ E|XY |.
Along with the C-S inequality,

|E (X − µX)(Y − µY )| ≤
√
E (X − µX)2

√
E (Y − µY )2.

Squaring both sides gives

(Cov(X, Y ))2 ≤ σ2Xσ
2
Y ,

which tells us that (ρ(X, Y ))2 ≤ 1.
Enough of the purely abstract stuff, some examples will help.

Example: X ∼ U(0, 1) and Y = 3X, explicitly calculate ρX,Y .

Example: X ∼ U(0, 1) and Y = −3X, explicitly calculate ρX,Y .
Example: X ∼ U(0, 1) and Y = X2, explicitly calculate ρX,Y .

Going back to case A, since ρX,Y = −13 < 0, we know that 0 < a∗ < 1, specifically, it is

a∗ =
0.0009− (−0.0011)

0.0121 + 0.0009− 2(−0.0011) ' 0.13,

so, to minimize variance in case A, have 13% of your portfolio in X, the rest in Y . Graph a
vs. g(a) := E (aX + (1− a)Y ) and √f(a) = σaX+(1−a)Y . Also graph g(a) on the horizontal
axis and the corresponding f(a) on the vertical. Note that for mean rates of return less

than 1.07 + (0.13) · (1.11− 1.07) ' 1.075, taking a lower rate of return gives you a higher
variance, not generally considered a sensible way to behave. Go through the gradients of a

utility function that depends positively on mean and negatively on standard deviation.

Going back to case B, since ρX,Y = 1
3
, and 1

3
> σY /σX = 0.2727, we know that a

∗ = 0.
Give the same two graphs.

7.8. The matrix formulation. LetX = (X1, . . . , XN)
T , be rv’s with means µ = (µ1, . . . , µN)

T ,

and cross moments σn,m = Cov(Xn, Xm). Let Σ the the symmetric, N × N matrix with
(n,m)’th entry σn,m. Let a = (a1, . . . , aN)

T ∈ RN . Also let 1̃ = (1, . . . , 1)T ∈ RN . The
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starting point is E aTX = aTµ and Var(aTX) = aTΣa, which you can get by looking at

the matrix formulation (with enough blackboard space). Let ∆ = {a ≥ 0 : aT 1̃ = 1}. The
efficient portfolio problem for the rate of return r is

Problem r: min
a∈∆

aTΣa subject to aTµ ≥ r.

This has a dual problem for variance v,

Problem v: max
a∈∆

aTµ subject to aTΣa ≤ v.

7.9. Problems.

Problem 7.1. Casella & Berger, 4.5.

Problem 7.2. Casella & Berger, 4.7.

Problem 7.3. Casella & Berger, 4.13.

Problem 7.4. Casella & Berger, 4.26 and 4.27.

Problem 7.5. Casella & Berger, 4.41, 4.42, 4.43, and 4.44.

Problem 7.6. Casella & Berger, 4.45, 4.46, and 4.47.

Problem 7.7. Casella & Berger, 4.58.

Problem 7.8. Casella & Berger, 4.62.
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8. Sampling Distributions and Normal Approximations

Problem 8.1. Casella & Berger, 5.1.

Problem 8.2. One of the problems with phone surveys is that they select from people who

answer the phone and are willing to answer questions, often personal questions, asked by a

stranger. In the context of selection, evaluate the statement, overheard in a Scottish pub,

“When a Scotsman moves from Scotland to England, he improves the average IQ in both

places.”

Problem 8.3. The millions of SAT math scores of the population of U.S. collge-bound

seniors in 1978 (sorry for the old data here) were approximately normally distributed with

a mean of 470 and a standard deviation of 120.

1. For a student drawn at random, what is the probability of a score greater than 500?

Than 550? Than 650? Than 810?

2. Averaging a million numbers is easier than it used to be, but I wouldn’t want to do it

on a calculator. If the mean is estimated from a random sample of 250, what is the

probability that X̄ will be no more than 10 points off?

3. If the mean is estimated from a random sample of 500, what is the probability that X̄

will be no more than 5 points off?

4. In the last two problems, I asked you to double the sample size and to simultaneously

halve the range. Why wasn’t the answer the same?

Problem 8.4. “One pound” packages are filled by an older machine with weights that vary

normally around a mean of 16.3 ounces and have a standard deviation of 0.24 ounces. An

inspector randomly samples n packages, weighing them carefully, and fines the company if

the sample mean is below 16 ounces.

1. What is the probability of a fine if n = 10? If n = 20? If n = 100?

2. Find the smallest n such that the probability of a fine is below 0.01.

3. If n = 50, what is the lowest the mean can be and have the probability of a fine at or

below 0.05? At or below 0.01?

Problem 8.5. A commuter plane has a rated capacity of 7, 800 pounds. The mean passen-

ger weight is 150 pounds and the standard deviation is 30 pounds.

1. If the airline puts 50 seats on the plane, what is the probability that the plane’s rated

capacity will be exceeded on a fully booked flight?

2. What is the maximum number of seats the airline can put on the plane to have the

probability of exceeding capacity below 0.001?

3. Suppose that the 14 person travelling squad for the basketball team books seats. Using

reasonable numbers, recalculate the answer to the previous two questions.
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Problem 8.6. The old treatment has a survival rate of 0.56. In a sample of 120 patients,

a new treatment had a survival rate of 0.59.

1. If the new treatment is no better than the old one, how likely is it that the survival rate

would have been 0.59 or higher?

2. Suppose that patients, not knowing the survival rate of the new treatment, were allowed

to choose which treatment to receive. How might that change your calculations in the

previous problem?

Problem 8.7. Casella & Berger, 5.2.

Problem 8.8. Casella & Berger, 5.3.

Problem 8.9. Casella & Berger, 5.4.

Problem 8.10. Any 2 of the following problems: Casella & Berger, 5.11, 5.15, 5.17, 5.29,

5.34, 5.44.
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9. Sufficient Statistics as Data Compression

Remember: a statistic, T (X), is a function of the data only, it cannot depend, functionally,

on the parameter to be estimated, though we expect its distribution to depend on θ. E.g.

T (X) ≡ X is a statistic, as is T (X) ≡ 7.
Useful statistics compress data, tell us the important things in the data and suppress the

irrelevant details. In this section we look at what are called sufficient statistics. We’ll also

look ahead to the Rao-Blackwell theorem, a truly remarkable result about minimal variance

unbiased estimators.

9.1. Sufficient statistics. When faced with several hundred variables collected on several

thousand people over a period of 30 years, one can be excused from thinking thatX is useless

because it’s too informative, or that 7 is useless because it contains too little information.

A good notion of exactly the right amount of information is “everything we need to know

about X in order to make inferences about θ.”

Suppose that X is iid Pθ for some θ ∈ Θ, and that the density of X is f(x|θ).
Definition 9.1.1. A statistic T (X) is sufficient for θ if Pθ(X = x|T (X) = T (x)) does

not depend on θ.

In words, after conditioning on T (X) = T (x), there is no more probabilistic information

about θ in the sample. This is only useful when the dimensionality of the range of T is

smaller, typically much smaller, than the number of data points.

Example 9.1.2. (X1, . . . , Xn) ∼Binomial(n, p), p ∈ (0, 1), T (X) = (
∑
Xi)/n is a 1-

dimensional sufficient statistic, as is T ′(X) = e(
∑
Xi)/n. Here is another sufficient statistic,

2-dimensional this time, T ′′(X) = ((
∑
Xi)/n, (

∑
XiXi+1)/n).

The extra information in (
∑
XiXi+1)/n) is not useful IF the Xi are iid Bernoulli(p).

However, if we are entertaining some doubt about (say) the independence of Xi and Xi+1,

this is a very informative statistic.

Sometimes we can tell that T is a sufficient statistic from a ratio of conditional probabil-

ities.

Theorem 9.1.3. If T (X) is sufficient for θ, then for all possible values x, of X, the ratio

p(x|θ)/q(T (x)|θ) does not depend on θ.
Proof: Expand Pθ(X = x|T (X) = T (x)) using Bayes’ Law.
When X1, . . . , Xn are iid N(µ, 7), µ ∈ R, then the sample mean is sufficient for µ, and

this is true for all values of 7. To see why, rearrange the density of X1, . . . , Xn by adding

and subtracting x and getting a n(x− µ) term, cancel that using the known distribution of
x.
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That last was hard work. Sometimes we gain insight into what statistics are sufficient by

rearranging the likelihood function so that it factors in the right way.

Theorem 9.1.4 (Halmos-Savage Factorization). T (X) is sufficient for θ iff there exists a

function (t, θ) 7→ g(t|θ) and a function x 7→ h(x) such that

f(x|θ) = g(T (x)|θ)h(x)
for all t in the range of T , all θ ∈ Θ, and all x in the range of X.
Proof: If T (X) is sufficient, then

f(x|θ) = Pθ(X = x) = Pθ(X = x|T (X) = T (x))Pθ(T (X) = T (x)) = h(x)g(T (x)|θ).
Now suppose that f(x|θ) = g(T (x)|θ)h(x). Let q(t|θ) be the pmf for T and let Ax = {y :

T (y) = T (x)}.
f(x|θ)

q(T (x)|θ) =
g(T (x)|θ)h(x)∑
y∈Ax g(T (y)|θ)h(y)

=
g(T (x)|θ)h(x)

g(T (x)|θ)∑y∈Ax h(y)
=

h(x)∑
y∈Ax h(y)

,

which does not depend on θ.

Two observations:

1. If T (X) is a sufficient statistic for θ, θ̂MLE is a function of the data only through T .

2. The Halmos-Savage theorem gives us, essentially for free, the following observation:

If f(x|θ) = h(x)c(θ) exp
(∑k

i=1wi(θ)ti(x)
)
, then

T (X) =

(
n∑
j=1

t1(Xj), . . . ,
n∑
j=1

tk(Xj)

)
is a sufficient statistic for θ, θ ∈ Rd, d ≤ k.

9.2. Rao-Blackwell. Some time ago we looked at properties of estimators. In particular,

we used the Cauchy-Schwarz inequality and some fancy side-stepping to show that we had

found a minimum variance unbiased estimator in the class of all estimators. Here’s another

way to get at such wonderfulness. I said it before, but I’ll say it again, an estimator must

be a function of the data, and not a function of θ.

Recall that E[E(X|Y )] = EX and VarX = Var[E(X|Y )] + E[Var(X|Y )].
Theorem 9.2.1 (Rao-Blackwell). Let θ̂ be any unbiased estimator of θ and let T be a suf-

ficient statistic for θ. Define ϕ(T ) = E(θ̂|T ). Then for all θ, Eθϕ(T ) ≡ θ and Varθϕ(T ) ≤
Varθθ̂.
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Since the result holds for any unbiased estimator, what we know is that ϕ(T ) minimizes

variance amongst all unbiased estimators.

Proof: For unbiasedness,

θ ≡ Eθθ̂ = Eθ[E(θ̂|T )] = Eθϕ(T ).
For minimal variance,

Varθθ̂ = Varθ[E(θ̂|T )] + Eθ[Var(θ̂|T )]
= Varθ(ϕ(T )) + Eθ[Var(θ̂|T )]
≥ Varθ(ϕ(T )).

Finally, since T is a sufficient statistic for θ, after conditioning on T , the result cannot
depend on θ, which shows that ϕ(T ) is really an estimator.

Example 9.2.2. X1, . . . , Xn iid U(0, θ), show that T := max(X1, . . . , Xn) is sufficient,

find the unbiased function of T .

At the beginning of the prob/stats part of this course, we used the information inequality

to show that p̂ being the sample proportion achieves the minimal variance amongst all

unbiased estimators. We can do that a bit more easily now . . . .

9.3. Problems.

Problem 9.1. Casella & Berger, 6.1.

Problem 9.2. Casella & Berger, 6.3.

Problem 9.3. Casella & Berger, 6.4.

Problem 9.4. Casella & Berger, 6.9.

Problem 9.5. Any three other problems from Casella & Berger, Ch. 6.1.

Problem 9.6. Casella & Berger, 7.19, 7.20, and 7.21.
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10. Finding and Evaluating Estimators

The basic idea is to guess the true θ, that is, to form an estimator θ̂ = θ̂(X1, . . . , Xn).

Any function, W = W (X1, . . . , Xn) is called a statistic. Statistics that are supposed to

guess at some true θ, that is, estimators, are the ones we study most often.

Why estimate some θ in a set Θ rather than trying to work directly with getting the

true distribution? There are (at least two good reasons, parsimony, and θ may have some

intrinsic meaning that we care about.

1. Parsimony — this becomes much more important in higher dimensions. GivenX1, . . . , Xn ∈
Rk, define the empirical cdf by Fn(x) =

1
n

∑
i≤n 1(−∞,x](Xi). Think about how many

points you need to form an ε-net for [0, 100]k, e.g. ε = 0.01, k = 18, the answer is,

roughly,

1, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,

which is a pretty big number. As data grows, the empirical cdf will get closer and

closer to the true cdf. But it will do so more and more slowly when the number of

dimensions is large.

Compare this to Fθ̂n(x) =
∫ · · · ∫ x−∞ f(y|θ̂n)dy. The first is as close to the data as

possible, the second is derived from getting “as close to” θ as possible.

2. The parameter θ may have some intrinsic meaning, like the wage elasticity of labor

supply or the gravitational constant.

10.1. The basic Gaussian example. X1, . . . , Xn are iid with distribution belonging

{f(x|(µ, σ2)) : (µ, σ2) ∈ R× R++} where

f(x|(µ, σ2)) = 1√
2πσ

e
(x−µ)2
2σ2 .

The basic statistics we form are

1. Xn =
1
n

∑
i≤nXi, an estimator of µ, and

2. S2 = 1
n−1

∑
i≤n(Xi −Xn)2, an estimator of σ2.

Note that X and S2 are unbiased, and that the two statistics are sufficent for the normal

distribution. That makes the look pretty good. They’re also fairly easy to use, thanks to

the following.

Claim: Xn ∼ N(µ, σ2/n), nS2/σ2 ∼ χ2(n− 1), and Xn⊥S2.
Using this claim is one of the basic set of competencies to be learned in an introductory

prob/stat class.

10.1.1. Intervals around our guess of µ, σ known. We’ve used
√
nXn−µ

σ
∼ N(0, 1) a number

of times to get at intervals in which we believe it most likely that µ lies.
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10.1.2. Intervals around our guess of σ. If Z1, . . . , Zr are iid N(0, 1), then the random

variable X =
∑
i≤r Z

2
i has a χ

2(r) distribution. Note that EX = r, and X is the sum of

independent random variables. Therefore, for moderately large r, 1√
r
(X−r) is approximately

normal. The approximation is off for a couple of reasons, the easiest of which is that

X > 0 always (being the sum of squares of independent, non-degenerate rv’s), while the

approximation allows X < 0. This is why one most often uses the explicit tabulations of

the χ2 random variables.

nS2/σ2 = n
n−1

∑
i≤n(Xi−Xn)2/σ2 ∼ χ2(n−1)/σ2. Let X ∼ χ2(n−1), from a table, find

r′ < r′′ so that P (X ≤ r′) = 0.01 and P (X ≤ r′′) = 0.99 so that P (r′ ≤ X ≤ r′′) = 0.98.
Then

P

(
n

n− 1
∑
i≤n
(Xi −Xn)2/σ2 ≤ r′

)
= P

(
S2 ≤ σ2 · r′

n

)
= 0.01,

P

(
n

n− 1
∑
i≤n
(Xi −Xn)2/σ2 ≤ r′′

)
= P

(
S2 ≤ σ2 · r′′

n

)
= 0.99,

P

(
r′ ≤ n

n− 1
∑
i≤n
(Xi −Xn)2/σ2 ≤ r′′

)
= P

(
σ2 · r′
n
≤ S2 ≤ σ2 · r′′

n

)
= 0.98.

This expresses the intervals as proportions of the true σ2. If we take square roots all over

the place, this expresses the intervals as proportions of the true σ.

Do some examples of using the tabulated χ2.

10.1.3. Intervals around our guess of µ, σ not known. If Z ∼ N(0, 1), V ∼ χ2(r) and Z⊥V ,
then the name of the random variable

T =
Z√
V/r

is Student’s t with r degrees of freedom, name after the famous (not!) Guiness brewery

employee, W. S. Gosset. Going back to the claim,

Claim: Xn ∼ N(µ, σ2/n), nS2/σ2 ∼ χ2(n− 1), and Xn⊥S2,
we just need to scale Xn and nS

2/σ2 ∼ χ2(n − 1), and form their ratio to get a t
distribution with n − 1 degrees of freedom. Look at the algebra when we do that, the
unknown σ2 disappears. This is what we use to form intervals when we replace the unknown

σ by a good guess, σ̂ =
√
S2.

10.2. Some examples of finding estimators. We’re going to start with a number of

examples where we want to find a parameter of interest, then we’ll turn to two different

methods of finding estimators, the method of moments and maximum likelihood.
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10.2.1. Examples. Roughly, I divide examples into those in which we observe everything

relevant to us in the sample and those we do not. This latter category is where research

interest in economics often centers.

1. A new medical treatment keeps people alive for two years with probability p and we’d

like to know p. Here X1, . . . , Xn are iid Bernoulli(p).

2. I observe that this year’s first year class seems taller than the previous years. Rather

than measure the heights of all 18, 000 first and second year students, I sample 100 of

each, wanting to know the heights of the people in the two years. Here I might model

Xn,y ∼ N(µy, σ
2), y = 1, 2, and I want to estimate µ1 − µ2.

3. In each of the last n years, k crimes of a given type were committed, and with proba-

bility p, the crime was reported. Given only the reported number, X1, . . . , Xn, I want

to estimate both k and p. Here the Xn are iid Binomial(k, p) and I know neither k nor

p.

4. I want to know the average life of a batch of chips. I test n of them for 6 months,

nf ≤ n of them have failed at time τn ≤ 6, the rest have not, τn > 6. Here it is
reasonable to assume that the τn are iid exponential(λ).

5. We observe the spending of $Xn on person n in a job training program. We observe

whether or not they have a job 1 year later. We’d like to know ∂P (job in 1 year)/∂$.

6. We observe years of schooling Yn for person n and their wage rate at 40 years of age,

Wn. We’d like to know ∂W/∂Y . There are hidden variables at work, just as there are

in the classic fertilizer studies.

7. I am building a shark cage and want to save money by making it only as strong as it

needs to be to survive shark attack by the biggest shark. The measurements of the

sharks that I have killed so far are Xn. I want to estimate the maximum shark size.

8. The monsoons will come at some random time T in the next month, T ∈ [0, 1]. A
farmer must pre-commit to a planting time, a. As a function of a and t, the realized

value of T , the harvest will be

h(a, t) =

{
K − r|a− t| if a ≤ t

K − s|a− t| if a > t

where K > r, s > 0. The random arrival time of the monsoon has cumulative dis-

tribution function F (·), and f(x) = F ′(x) is its strictly positive probability density
function. We’ve observed T1, T2, . . . , Tn monsoon arrival times in the past, and want

to estimate the optimal time.

10.2.2. Method of moments. Assume the basic statistical model with a k-dimensional pa-

rameter set, that is, suppose that θ ∈ Rk. Solve for k equations in k unknowns M(θ) =
M(X1, . . . , Xn), M(·) being “moments implied by the argument,” that is, for the θ giving
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the k first moments of the data. Why stop at k moments? Why use integer moments? No

good reason. However, people become uneasy when you tell them that that are zillions and

zillions of things they could do.

E.g. N(µ, σ2), Binomial(k, p), U(0, θ) i.e. f(x|θ) = 1
θ
, 0 < x < θ (one version of the shark

problem), exponential(β).

10.2.3. Maximum likelihood. E.g. N(µ, σ2), U(0, θ) (one version of the shark problem),

f(x|θ) = θx−2, 0 < θ ≤ x <∞, exponential(β), two-tailed exponential location family.
10.3. Problems.

Problem 10.1. Casella & Berger, 7.1.

Problem 10.2. Casella & Berger, 7.6.

Problem 10.3. Casella & Berger, 7.10.

Problem 10.4. Casella & Berger, 7.13.

Problem 10.5. Casella & Berger, 7.14.
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11. Evaluating different estimators

Readings: Casella & Berger, Chapter 7.3, and these notes.

One of the many things we’ve learned in the previous sections is that, even for a given

statistical model X1, . . . , Xn iid Pθ, θ ∈ Θ, there are lots of estimators of θ. We need a way
to distinguish between them. The main one is mean squared error.

11.1. Mean Squared Error (MSE). I’d like to give three really stupid estimators, θ̂rs,

θ̂′rs, and θ̂
′′
rs, and one pretty good one, θ̂MLE , to indicate the kinds of things we’d like to be

able to rule out. We’ll then look at how MSE works for these estimators.

Three really stupid estimators, and one pretty good one:

1. X1, . . . , Xn iid Pθ, Pθ = N(θ, 1), θ ∈ R, θ̂rs = X1.
2. X1, . . . , Xn iid Pθ, Pθ = N(θ, 1), θ ∈ R, θ̂′rs = 7.
3. X1, . . . , Xn iid Pθ, Pθ = N(θ, 1), θ ∈ R, θ̂′′rs = 2 · 1n

∑n
i=1Xi.

4. X1, . . . , Xn iid Pθ, Pθ = N(θ, 1), θ ∈ R, θ̂MLE = 1
n

∑n
i=1Xi.

A general criterion for picking between estimators so as to make some, hopefully sensible,

kind of tradeoff between bias and variance is called Mean Squared Error (MSE). It is

MSEθ(θ̂) := Eθ(θ̂ − θ)2.
The basic result about MSE’s is

MSEθ(θ̂) = Bias
2
θ(θ̂) + Varθ(θ̂).

Do this calculation.

1. MSEθ(θ̂rs) = Varθ(θ̂rs) = 1 because EθX1 = θ so the estimator is unbiased. However,

since the estimator throws away the data points X2, . . . , Xn, it is not sensible, MSEθ ≡
1 does not go to 0 as n ↑ ∞. This means that as we get more and more data, the
variance of this estimator will not converge to 0 and the estimator will not converge to

the true θ.

2. MSEθ(θ̂
′
rs) = (7 − θ)2 + 0 since the variance of θ̂′rs is equal to 0. This converges to 0

very very quickly (instantly) if the true θ is 7, but not at all if the true θ is someplace

else. Since the variance is always equal to 0, we learn that comparing estimators by

comparing only their variance is too narrow.

3. MSEθ(θ̂
′′
rs) = θ

2+ 4
n
. Here the variance of the estimator goes to 0, but the estimator is

biased unless the true θ is equal to 0. Even if the true θ is equal to 0, the MSE is four

times as large as it need be, as can be seen in the next estimator.

4. MSEθ(θ̂MLE) = 0
2 + 1

n
. Here the MSE does not depend on θ and goes to 0 as n ↑ ∞.

Draw a graph of the MSE’s of the four estimators as a function of θ, see what you see, in

formal terms, ≤ is only a partial order on the set of functions.
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11.2. Desirable properties for estimators. Some of the properties we might like, but

will not insist on, for estimators include:

1. Unbiased estimators. If for all θ ∈ Θ,
Eθ θ̂(X1, . . . , Xn) = θ,

then you have an unbiased estimator. This means that, on average, your estimator is

right. θ̂rs is an example that shows that this is not enough.

2. Best unbiased estimators (BUE’s). If you have many unbiased estimators of θ, maybe

it makes sense to pick the one with the lowest variance, which, in this case is the

same as picking the one with the lowest MSE. Such an estimator is called a BUE. The

relative efficiency of two unbiased estimators θ̂1 and θ̂2 is given by

Var(θ̂1)

Var(θ̂2)
.

Because we’ve asked for unbiased, the problem of division by 0 (as in θ̂′rs) does not
arise.

3. Best linear unbiased estimators (BLUE’s) Another thing you might impose on the

estimators is that they be linear functions of the data. This makes the most sense when

you’re after things like the mean of the data rather than some non-linear function of

the data like the variance.

Example: Find the BLUE for the mean of iid mean µ rv’s {Xi}ni=1.
Example: We’re given non-zero numbers x1, . . . , xn and the rv’s Y1, . . . Yn are indepen-

dent, having the distribution described by

Yi = βxi + εi, εi ∼ N(0, σ2),

β and σ2 unknown. Notice that the εi are iid but the Yi are not (unless the xi are all equal

to each other). Another way to write this is that the independent Yi satisfy Yi ∼ N(βxi, σ
2).

The essential intuition is when |xi| is large, the i’th observation tells one more about the
value of β. Here are three unbiased estimators of β, compare their variances: β̂MLE (find

it, it’s the obvious one); β̂ ′ = (
∑
i Yi)/(

∑
iXi); and β̂

′′ = 1
n

∑
i(Yi/Xi).

11.3. The Cramér-Rao lower bound. Re-examine this. It is a lower bound on the

possible variance of any unbiased estimator, linear, non-linear. This means that if you’ve

found an unbiased estimator with this variance, you’ve done the best you possibly can. The

only drawback is that, quite often, you cannot do this well, quite often, no estimator can

achieve the bound.

11.4. Problems.
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Problem 11.1. Casella & Berger, 7.37.

Problem 11.2. Casella & Berger, 7.38.

Problem 11.3. Casella & Berger, 7.41.

Problem 11.4. Casella & Berger, 7.49.

Problem 11.5. Suppose that X1, . . . , Xn are iid f(x|θ), θ ∈ Θ ⊂ R++ and that θ̂(X1, . . . , Xn)
is an unbiased estimator of θ, and suppose that neither the Xi not θ̂ are degenerate random

variables. By considering the estimators s · θ̂, 0 < s < 1, show that θ̂ does not minimize

MSE. One way to proceed is to define

f(s) = E(sθ̂ − θ)2 = s2var(θ̂) + θ2(s− 1)2.
This is a quadratic in s that opens upwards. Find its minimum and show that it happens

for s < 1. [The “s” is a “shrinkage factor,” this problem tells us that unbiased estimators

do not minimize MSE.]
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12. Hypothesis Testing

Say not “I have found the truth,” but rather, “I have found a truth.” (Kahlil

Gibran, The Prophet)

Readings: Casella & Berger, Chapter 8, and these notes.

12.1. Overview. We’re still working with the basic statistical model, the dataX = (X1, . . . , Xn)

are iid f(x|θ), and whenever it’s convenient, I’ll use f(x|θ) or L(x|θ) for the likelihood func-
tion evaluated at X = x.

The useful estimators θ̂(X) are, typically, non-degenerate random variables. This means

that they have a real spread, e.g. strictly positive variance. This in turn depends on the

true θ. The essential intuitive idea behind hypothesis testing is that we can use this spread

to tell how likely or unlikely it is that we would have seen the data that we did see if the

true θ belonged to some pre-specified set of interest, call it Θ0. In particular, we could form

a rule “we’ll say that the true θ does not belong to Θ0, that is, we’ll reject Θ0, if the data

belong to the set Xr which is unlikely to show up unless the true θ is outside of Θ0.

The essential ingredients are then

1. The basic statistical model, X ∼ f(x|θ), θ ∈ Θ,
2. a null hypothesis, H0 : θ ∈ Θ0, Θ0 ⊂ Θ,
3. the alternative, H1 : θ 6∈ Θ0,
4. a decision rule, reject H0 if x ∈ Xr and accept H0 if x 6∈ Xr.
We can then examine the probabilistic properties of the decision rule using the power

function, β(θ) = P (Xr|θ).

12.2. The perfect power function and types of errors. The perfect power function is

β(θ) = 1Θc0(θ), that is, reject if and only if the null hypothesis is false. (Sing a bar of “To

dream the impossible dream.”) However, the idea behind the basic statistical model is that

we do not observe θ directly, rather we observe the data X, and the data contains proba-

bilistic information about θ. In statistics, we don’t expect to see perfect power functions,

they correspond to having positive proof or disproof of a null hypothesis.3

Here’s a (contrived) example where the data does entirely distinguish between the null

and the alternative.

Example: Θ = {θ1, θ2}, f(x|θ1) = 1(0,1)(x), f(x|θ2) = 1(2,3)(x). The rejection region
Xr is the set of x where each xi satisfies 2 < xi < 3. This is, or should be, obvious and

straightforward.

3This is why people are often so dissatisfied with statisticians, remember Mark Twain’s saying about them,
“There are liars, there are damned liars, and there are statisticians.”
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Most of the time, things are more difficult, and our data will leave open the possibility

that we are making some kind of mistake. There are two types of errors that you can make,

unimaginatively called Type I and Type II errors:

1. you can reject a null hypothesis even though it is true, this kind of false rejection of a

true null hypothesis is called a Type I error.

2. you can accept the null hypothesis even though it is false, this kind of false acceptance

of a null hypothesis is called a Type II error.

The following table may help:

Decision\“Truth” H0 : θ ∈ Θ0 H1 : θ 6∈ Θ0
Accept H0 Bingo! Type II

Reject H0 Type I Bingo!

We’re going to look at errors we make in the context of the following two examples.

Example: Θ = [0, 1], X1, . . . , Xn are iid Bernoulli(θ), H0 : θ ≤ 1
2
, H1 : θ >

1
2
. Intuitively,

the rejection region Xr should be the set of x such that the sample average, x =
1
n

∑n
i=1 xi

belongs to the interval (1
2
+ c, 1] for some number 0 < c < 1

2
.

This corresponds to the story about comparing a new medical procedure with an old one

that had a 50% success rate. The null hypothesis is that the new treatment has no better

than the old one, we reject this null hypothesis if the evidence strongly favors the new one.

In particular, we reject the null if the sample average success rate is above 1
2
+c. The higher

is c, the lower is the probability of a false rejection but the higher is the probability of a

false acceptance.

Example: Θ = [0, 1], X1, . . . , Xn are iid Bernoulli(θ), H0 : θ ∈ {12}, H1 : θ 6= 1
2
.

Intuitively, the rejection region Xr should be the set of x such that the sample average,

x = 1
n

∑n
i=1 xi belongs to the pair of intervals [0,

1
2
− a)∪ (1

2
+ b, 1] for some pair of numbers

0 < a, b < 1
2
. Perhaps we even expect that a = b.

Before we do any calculations, we should think through

12.3. Some generalities about the probabilities of the different types of errors.

The power function will help us look at the probabilities of the different kinds of errors. It

should be intuitively clear that, if we’re using sensible procedures, lowering the probability of

false rejection entails raising the overall probability of acceptance, including the probability

of making a false acceptance.

The number α = supθ∈Θ0 β(θ) gives the highest probability of a Type I error. This is
called the size of the test Xr. 1− α is the confidence level of the test. Confidence is good,
we’d like our confidence to be close to 1. We’d also like a powerful test. Follow through the

logic of the next two:
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1. If we increase Xr, we lower α, raising both our confidence and decreasing the power of

our test.

2. If we decrease Xr, we raise α, lowering our confidence but increasing the power of our

test.

Now, instead of increasing or decreasing Xr, we could add some points and take away

other points. If we can do that so as to simultaneously increase both confidence and power

(that is, simultaneously reduce both α and β), then our original test was stupid. In the

perfect power function example above, α = β = 0, we were completely confident with our

most powerful possible test. In general there is a tradeoff between confidence and power.

In tabular form

Decision\“Truth” H0 : θ ∈ Θ0 H1 : θ 6∈ Θ0
Accept H0 (1− α) = Type II (β)

confidence

Reject H0 Type I (α) (1− β) =
power of test

Go through the Wonnacott andWonnacott Gaussian one-sided hypothesis testing pictures

identifying confidence and power as areas under curves.

12.4. The Likelihood Ratio Tests. The number

λ(x) =
supθ∈Θ0 L(x|θ)
supθ∈Θ L(x|θ)

must be in the interval [0, 1]. The class of likelihood ratio tests (LRTs) are

Xr(c) = {x : λ(x) ≤ c}.
In the perfect power function example, for any 0 < c < 1, the LRT is the same, and is

the one we gave above.

In general, the smaller is c, the smaller is Xr(c), the larger is α and the smaller is β.

Example: Θ = [0, 1], X1, . . . , Xn are iid Bernoulli(θ), H0 : θ ∈ {12}, H1 : θ 6= 1
2
. Find

the LRTs as a function of c and n.

Detour through properties of the function f(x) = x log x: If x > 0, then f(x) = x log x is

well defined. By calculation, f (1)(x) = log x+ 1 which has a critical point at x∗ = exp(−1).
Further, f (2)(x) = x−1 > 0. So, on (0,∞), f(x) is strictly convex achieving its global
minimum at exp(−1). To calculate behavior around x = 0, consider the following two
substitutions:

lim
x→0

x log x = lim
y→−∞

exp(y) log(exp(y)) = lim
z→+∞

−z
exp(z)

= 0− .

Hence, f(0) can be defined equal to 0 by continuity.
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Alright, let’s calculate the LRTs for the example. L(x|θ) = Πni=1θxi(1−θ)(1−xi). Therefore,

λ(x) =
supθ∈Θ0 L(x|θ)
supθ∈Θ L(x|θ)

= etc.

After doing some algebra, the rejection region is the set of x such that the sample average,

x = 1
n

∑n
i=1 xi satisfies

x log(x) + (1− x) log(1− x) ≥ log 1
2
− log c

n
.

Note that the lhs of the inequality is symmetric about 1
2
, that x = 1

2
never satisfies the

inequality for 0 < c < 1, and that the rejection region is of the form pair of intervals

[0, 1
2
− a) ∪ (1

2
+ a, 1] for some 0 < a < 1

2
. Find β(θ), α and β.

Example: Θ = [0, 1], X1, . . . , Xn are iid Bernoulli(θ), H0 : θ ≤ 1
2
, H1 : θ >

1
2
. Find the

LRTs as a function of c and n.

Example: X1, . . . , Xn are iid N(θ, 1), H0 : θ = θ0, H1 : θ 6= θ0. Find the LRTs as a

function of c and n.

Example: We see iid X1, . . . , Xn and iid Y1, . . . , Ym, both from Gaussian populations

with the same variance. The null hypothesis is that the means of the two populations are

the same. What do the tests look like?

Example: We see iid X1, . . . , Xn and iid Y1, . . . , Ym, both from populations with the

same variance. The null hypothesis is that the means of the two populations are the same.

Now, provided n and m are large enough for the CLT, what do the tests look like?

12.5. Confidence intervals, p-values, and hypothesis testing. Let X1, . . . , Xn be iid

with unknown mean µ and unknown variance σ2. The (1 − α) confidence interval around
µ was calculated as [X − tα/2,nS,X − tα/2,nS] where X is our estimator of µ and S is our
estimator of σ.

The null hypothesis is µ = µ0, that is, Θ0 = {µ0} ⊂ R. We accept H0 at the confidence
level (1− α) if

[X − tα/2,nS,X − tα/2,nS] ∩Θ0 6= ∅,
that is, if

µ0 ∈ [X − tα/2,nS,X − tα/2,nS],
otherwise we reject H0 at the α level.

Typically, α is one of the following list of numbers: 0.1, 0.05, 0.01, or 0.001. Suppose

that we’ve rejected at one of these α levels, say 0.05. What about the other levels? Well,

we know . . . .
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The p-value gets around the problem of how to report rejection/acceptance. Specifically,

we find the smallest number r such that

µ0 ∈ [X − tr/2,nS,X − tr/2,nS],
and this is the p-value.

12.6. Problems.

Problem 12.1. Casella & Berger, 8.1.

Problem 12.2. Casella & Berger, 8.2.

Problem 12.3. Casella & Berger, 8.3.

Problem 12.4. A poll asked a number of Americans whether or not atomic power plants

are safe enough. Of the 420 aged between 18 and 30, 24% answered “Yes,” of the 510 aged

between 30 and 50, 34% answered “Yes.” H0 is the hypothesis that age makes no difference.

1. Calculate the p-value for H0.

2. At level α = 0.05, can H0 be rejected?

Problem 12.5. Yields of plants of a new high-yield variety of wheat are approximately

normally distributed with a standard deviation of 15 grams. A researcher plans to grow a

sample of n plants.

1. What is the minimum sample size required for the probability to be 0.99 that the sample

mean will fall within 1 gram of the population mean.

2. Why might a researcher want to base calculations on n different acres, planted at some

distance from each other, rather than n different plants?

Problem 12.6. Casella & Berger, 8.12.

Problem 12.7. Casella & Berger, 8.13.

Problem 12.8. Casella & Berger, 8.14.

Problem 12.9. Casella & Berger, 8.15.

Problem 12.10. Suppose that X1, . . . , Xn are i.i.d. with the uniform distribution on (0, θ)

for some unknown θ ∈ Θ = (0,+∞).
1. Give the likelihood function L(X1, . . . , Xn : θ).

2. Give the maximum likelihood estimator (MLE) of θ.

3. Find the 95% confidence interval for the MLE.

4. Calculate the bias of the MLE.

5. Describe the α = 0.01 one-sided test for the null hypothesis θ ≥ 19.
6. Calculate the power of the test as a function of θ < 19.


