
TOPICS IN MICROECONOMICS:
DYNAMICS AND LEARNING

MAX STINCHCOMBE

1. Introduction

There is a small number of limit theorems at the heart of theoretical studies of

learning and dynamics. I want you to read and understand the major results in

the theory of learning in games that are based on these limit theorems. We will

therefore cover quite a bit of analysis, probability theory, and stochastic process

theory. There will be a common set of required homeworks for the course, and a

number of possible Detours you can take according to your interests. You should

choose to take two of the Detours, and if you are interested in a different detour

more closely aligned with your interests, suggest it to me and we’ll arrange it.

Here is a rough outline of the course, including some (but not all of the detours):

1. Introduction.

2. Sequence Spaces: These are the crucial mathematical constructs for the limit

theorems that are behind learning theory. Deterministic dynamic systems give

rise to points in sequence spaces, statistical learning and stochastic process

theory can be studied as probabilities on sequence spaces.

3. Metric Spaces:

(a) Completeness, the metric completion theorem.

(b) Constructing R and Rk.

Detour: the contraction mapping theorem; stability conditions for

deterministic dynamic systems; exponential convergence to the unique

ergodic distribution of a finite, communicating Markov chain; the
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existence and uniqueness of a value function for discounted dynamic

programming.

(c) Compactness.

Detour: Berge’s theorem of the maximum; continuity of value func-

tions; upper-hemicontinuity of solution sets and equilibrium sets.

(d) Fictitious play and Cesaro (non-)convergence in Rk.

4. Probabilities of fields and σ-fields:

(a) Finitely additive probabilities are not enough.

Detour: money pumps and finitely additive probabilities; countably

additive extensions on compactifications, [25].

(b) Extensions of probabilities through the metric completion theorem.

Detour: weak and norm convergence of probabilities on metric

spaces; equilibrium existence and equilibrium refinement for com-

pact metric space games.

Detour: convergence to Brownian motion; a.e. continuous func-

tions of weakly convergent sequences; limit distributions based on

Brownian motion functionals, [6].

(c) The Borel-Cantelli lemmas.

(d) The tail σ-field and the 0-1 law.

(e) Conditional probabilities, the tail σ-field, and learnability.

(f) The martingale convergence theorem.

5. Learning in games.

(a) Kalai and Lehrer [14] through Blackwell and Dubins’ merging of opinions

theorem, Nachbar’s [18] response.

(b) Hart and Mas-Colell’s [10] convergence to correlated equilibria through

Blackwell’s [4] approachability theorem.

(c) Self-confirming equilibria [9] of extensive form games.

(d) The evolution of conventions, Young [28] and KMR [16] approaches, Bergin’s

[2] response.

(e) Evolutionary dynamics and strategic stability [20].
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2. Sequence Spaces in Selected Examples

In order for there to be something to learn about, situations, modeled here as

games, must be repeated many times. Rather than try to figure out exactly what

we mean by “many times,” we send the number of times to infinity and look at what

this process leads to. The crucial mathematical construct is a sequence space. We

will also have use of the more general notion of a product space.

2.1. Sequence spaces. Let S be a set of points, e.g. S = {H, T} when we are
flipping a coin, S = R2+ or S = [0,M ]

2 when we are considering quantity setting

games with two players, or S = ×i∈IAi when we are consider repeating a game with
player set I and each i ∈ I has action set Ai.

Definition 2.1. An infinite sequence, or simply sequence, in S is a mapping

from N to S.

A sequence is denoted many ways, (sn)n∈N and (sn)∞n=1 being the two most fre-

quently used, sometimes (sn) or even sn are used too, this last one is particularly

bad, sn is the n’th element of the sequence (sn)n∈N. Let S∞ be the space of all

sequences in S, a point s ∈ S∞ is of the form
s = (z1(s), z2(s), . . . ).(1)

For each k ∈ N and s ∈ S, zk(s) ∈ S is the k’th component of s. The zk : S∞ → S

are called many things, including the coordinate functions, natural projections,

projections.1

Sn = S × · · · × S is the n-fold Cartesian product of S; it consists of n-length

sequences2 (u1, . . . , un) of elements of S. From this point of view, S
∞ is an infinite

dimensional Cartesian product.

1Some of the basics of sequence spaces are covered in [3, Ch. 1,§2].
2Finite sequences will be explicitly noted, otherwise you can assume sequences are infinite.
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We will often have occasion to look at spaces of the form Θ×S∞. A point θ ∈ Θ
will be an initial value for a dynamic system or a parameter of some process that is

to be “learned.”

2.2. Cournot dynamics. Two firms selling a homogeneous product to a market

described by a known demand function and using a known technology decide on their

quantities, si ∈ [0,M ], i = 1, 2. There is an initial state θ0 = (θi,0)i∈I = (θ1,0, θ2,0) ∈
S2. When t is an odd period, player 1 changes θ1,t−1 to θ1,t = Br1(θ2,t−1), when t

is an even period, player 2 changes θ2,t−1 to θ2,t = Br2(θ1,t−1). Or, if you want to

combine the periods,

(θ1,t−1, θ2,t−1) 7→ (Br1(θ2,t−1), Br2(Br1(θ2,t−1))).
In either case, note that if we set S0 = {h0} (some singleton set), we have specified
a dynamic system, that is, a class of functions ft : Θ× St−1 → S, t ∈ N. When
we combine periods, the ft has a form that is independent of the period, ft ≡ f , and

we have a stationary dynamic system. Whatever dynamic system we study, for

each θ0, the result is the outcome point

O(θ0) = (θ0, f1(θ0), f2(θ0, f2(θ0)), . . . ),

a point in Θ × S∞. When ft ≡ f is independent of t and depends only on the

previous period’s outcome,

O(θ0) = (θ0, f(θ0), f(f(θ0)), f(f(f(θ0))), . . . ).

Definition 2.2. A point ŝ is stable for the dynamic system (ft)t∈N if ∃θ0 such that
O(θ0) = (θ0, ŝ, ŝ, . . . ).

With the best response dynamics specified above, the stable points are exactly

the Nash equilibria.

2.2.1. Convergence, stability, and local stability. Suppose we have a way to measure

the distance between points in S, e.g. d(u, v) =
√
(u1 − v1)2 + (u2 − v2)2 when S =

[0,M ]2. The d-ball around u with radius ε is the set B(u, ε) = {v ∈ S : d(u, v) < ε}.
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Homework 2.1. A metric on a set X is a function d : X × X → R+ with the
following three properties:

1. (∀x, y ∈ X)[d(x, y) = d(y, x)],
2. (∀x, y ∈ X)[d(x, y) = 0 iff x = y], and
3. (∀x, y, z ∈ X)[d(x, y) + d(y, z) ≥ d(x, z)].

Show that d(u, v) =
√
(u1 − v1)2 + (u2 − v2)2 is a metric on the set S = [0,M ]2.

Also show that ρ(u, v) = |u1 − v1|+ |u2 − v2| and r(u, v) = max{|u1− v1|, |u2− v2|}
are metrics on S = [0,M ]2. In each case, draw B(u, ε).

There are at least two useful visual images for convergence: points s1, s2, s3, etc.

appearing clustered more and more tightly around u; or, looking at the graph of the

sequence (remember, a sequence is a function) with N on the horizontal axis and S

on the vertical, as you go further and further to the right, the graph gets closer and

closer to u. Convergence is a crucial tool for what we’re doing this semester.

Definition 2.3. A sequence (sn) ∈ S∞ converges to u ∈ S for the metric d(·, ·)
if for all ε > 0, ∃N such that ∀n ≥ N , d(sn, u) < ε. A sequence converges if it

converges to some u.

In other notations, s ∈ S∞ converges to u ∈ S if
(∀ε > 0)(∃K)(∀k ≥ K)[d(zk(s), u) < ε],

(∀ε > 0)(∃K)(∀k ≥ K)[zk(s) ∈ B(u, ε)].
These can be written limk zk(s) = u, or limn sn = u, or zk(s) → u, or sn → u, or

even s→ u.

Example 2.1. Some convergent sequences, some divergent sequences, and some

cyclical sequences that neither diverge nor converge.

There is yet another way to look at convergence, based on cofinal sets. Given

a sequence s and an N ∈ N, define the cofinal set CN = {sn : n ≥ N}, that is,
the values of the sequence from the N ’th onwards. sn → u iff (∀ε > 0)(∃M)(∀N ≥
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M)[CN ⊂ B(u, ε)]. This can be said “CN ⊂ B(u, ε) for all largeN” or “CN ⊂ B(u, ε)

for large N .” In other words, the English phrases “for all large N” and “for large

N” have the specific meaning just given.

Another verbal definition is that a sequence converges to u if and only if it gets

and stays arbitrarily close to u.

Homework 2.2. Show that s ∈ S∞ converges to u in the metric d(·, ·) of Homework
2.1 iff it converges to u in the metric ρ(·, ·) iff it converges to u in the metric r(·, ·).

Convergence is what we hope for in dynamic systems, if we have it, we can con-

centrate on the limits rather than on the complicated dynamics. Convergence comes

in two flavors, local and global.

Definition 2.4. A point ŝ ∈ S is asymptotically stable or locally stable for

a dynamic system (ft)t∈N if it is stable and ∃ε > 0 such that for all θ0 ∈ B(θ̂, ε),

O(θ0)→ ŝ.

Example 2.2. Draw graphs of non-linear best response functions for which there

are stable points that are not locally stable.

When the ft’s are fixed, differentiable functions, there are derivative conditions

that guarantee asymptotic stability. These results are some of the basic limit theo-

rems referred to above.

Definition 2.5. A point ŝ ∈ S is globally stable if it is stable and ∀θ0, O(θ0)→ ŝ.

NB: If there are many stable points, then there cannot be a globally stable point.

2.2.2. Subsequences, cluster points, and ω-limit points. Suppose that N′ is an infinite

subset of N. N′ can be written as

N′ = {n1, n2, . . . }
where nk < nk+1 for all k. Using N

′ and sequence (sn)n∈N, we can generate another

sequence, (snk)k∈N. This new sequence is called a subsequence of (sn)n∈N. The
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trivial subsequence has nk = k, the even subsequence has nk = 2k, the odd has

nk = 2k − 1, the prime subsequence has nk equal to the k’th prime integer, etc.

Definition 2.6. A subsequence of s = (sn)n∈N is the restriction of s to an infinite

N′ ⊂ N.

By the one-to-one, onto mapping k ↔ nk between N and N
′, every subsequence

is a sequence in its own right. Therefore we can take subsequences of subsequences,

subsequences of subsequences of subsequences, and so on.

Sometimes a subsequence of (sn) will be denoted (sn′), think of n
′ ∈ N′ to see

why the notation makes sense.

Definition 2.7. u is a cluster point or accumulation point of the sequence

(sn)n∈N if there is a subsequence (snk)k∈N converging to u.

sn converges to u iff for all ε > 0, the cofinal sets CN ⊂ B(u, ε) for all large N .

sn clusters or accumulates at u iff for all ε > 0, the cofinal sets CN ∩B(u, ε) 6= ∅ for
all large N . Intuitively, u is a cluster point if the sequence visits arbitrarily close to

u infinitely many times, and u is a limit point if the sequence does nothing else.

Example 2.3. Some convergent sequences, some cyclical sequences that do not con-

verge but cluster at some discrete points, a sequence that clusters “everywhere.”

Let accum(s) be the set of accumulation points of an s ∈ S∞.

Definition 2.8. The set of ω-limit points of the dynamic system (ft)t∈N is set⋃
θ∈Θ
accum(O(θ)).

If a dynamic system cycles, it will have ω-limit points. Note that this is true even

if the cycles take different amounts of time to complete.

Example 2.4. A straight-line cobweb example of cycles, curve the lines outside of

some region to get an attractor.
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The distance between a set S ′ and a point x is defined by d(x, S ′) = inf{d(x, s′) :
s′ ∈ S ′} (we will talk in detail about inf later, for now, if you haven’t seen it, treat
it as a min). For S ′ ⊂ S, B(S ′, ε) = {x : d(x, S ′) < ε}. If you had graduate micro
from me, you’ve seen this kind of set.

When Θ = S and S is compact, a technical condition that we will spend a great

deal of time with (later), we have

Definition 2.9. A set S ′ ⊂ S is invariant under the dynamical system (ft)t∈N if

θ ∈ S ′ implies ∀k, zk(O(θ)) ∈ S ′. An invariant S ′ is an attractor if ∃ε > 0 such
that for all θ ∈ B(S ′, ε), accum(O(θ)) ⊂ S ′.

Strange attractors are really cool, but haven’t had much impact in the theory of

learning in games, probably because they are so strange.

2.3. Statistical learning. Estimators, which are themselves random variables, are

consistent if they converge to the true value of the unknown parameter. If we think

of the sampling distribution around our estimates, or, if you’re a Bayesian, the

posterior distribution, the change from what you knew before (either nothing or

a prior) to what you now know represents learning. The convergence to the true

value of the parameter is probabilistic, and typically, at any point in time, we have

a probability distribution with strictly positive variance. So we haven’t “learned”

something we’re sure of, but still, it ain’t bad. This is a form of learning that has

been studied for a long time. We’ll look at a simple example, and then make it look

more complicated.

2.3.1. A basic statistical learning example. Suppose that θ is uniformly distributed

on Θ = [0, 1], and that X1, X2, . . . are i.i.d. with P (Xn = 1) = θ, P (Xn = 0) = 1−θ.
First we pick some coin, parametrized by θ, its probability of giving 1, then we start

flipping that coin repeatedly. You should have learned that

Xn = n
−1

n∑
t=1

Xt → θ, and that n−
1
2

N∑
t=1

(Xt − θ) w→ N(0, θ(1− θ))
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where “
w→” is weak convergence or weak∗ convergence. Weak convergence was, most

likely, defined as convergence of the cdf’s. This is a special case of weak convergence,

which is, more generally convergence in a special metric on the set of distributions.

We will investigate it in some detail below. All those caveats aside, this is the sense

in which we can learn θ.

Consider the mapping θ 7→ Pθ where Pθ is the distribution Pθ(Xn = 1) = θ,

Pθ(Xn = 0) = 1− θ. Repeating what we can learn in a different way:
If we know that some random θ ∈ [0, 1] is drawn and then we see a
sequence of i.i.d. Pθ random variables, we can learn θ, equivalently, we

can learn Pθ.

This learnability starts from a position of a great deal of knowledge of the structure

generating the sequence of random variables. This leads to the question of what

structures are learnable [13]. To get at this question, we need a detour through

probabilities on S∞ and different ways of expressing them.

2.3.2. Probabilities on {0, 1}∞. For any θ ∈ [0, 1], there is a probability µθ on {0, 1}∞
corresponding to the distribution over sequences given by i.i.d. Pθ draws. The pro-

cess we described, pick θ ∈ [0, 1] at random then pick a sequence according to µθ
gives rise to a particular, compound probability distribution, call it µ, on {0, 1}∞.
This is an important shift in point of view, we are now looking at distributions

on the whole sequence space. This is very different than looking at simple Pθ’s. We

need to take a look at defining distributions on sequence spaces.

Here S = {0, 1} is a two point space, and S∞ is the space of all sequences of 0’s
and 1’s. This will simplify aspects of the problem, though the approach generalizes

to larger S’s. A first observation is that any non-trivial space of sequences is quite

large.

Definition 2.10. A set X is countable if there is an onto function f : N →
X. Thus, finite sets are countable, as are infinite subsets of N. Sets that are not

countable are uncountable.
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Lemma 2.11. {0, 1}∞ is uncountable.

Proof: Take an arbitrary f : N → {0, 1}∞. It is sufficient to show that f is not
onto. We will do this by producing a point s ∈ {0, 1}∞ that is not an f(n) for any
n. Arrange the f(n) ∈ {0, 1}∞ as follows:

n z1(f(n)) z2(f(n)) z3(f(n)) z4(f(n)) z5(f(n)) z6(f(n)) · · ·
1 z1(f(1)) z2(f(1)) z3(f(1)) z4(f(1)) z5(f(1)) z6(f(1)) · · ·
2 z1(f(2)) z2(f(2)) z3(f(2)) z4(f(2)) z5(f(2)) z6(f(2)) · · ·
3 z1(f(3)) z2(f(3)) z3(f(3)) z4(f(3)) z5(f(3)) z6(f(3)) · · ·
4 z1(f(4)) z2(f(4)) z3(f(4)) z4(f(4)) z5(f(4)) z6(f(4)) · · ·
5 z1(f(5)) z2(f(5)) z3(f(5)) z4(f(5)) z5(f(5)) z6(f(5)) · · ·
...

...
...

...
...

...
...

. . .

Now we will add 1 modulo 2, remember the rules, 0+ 0 = 0, 0+ 1 = 1, 1+ 0 = 1,
and 1 + 1 = 0. Define the point sf by zn(sf ) = zn(f(n)) + 1 modulo 2. The point
sf differs from each f(n), at the very least in the n’th coordinate.

Probabilities on any set X assign numbers in [0, 1] to subsets of X. Subsets of X

are called events. The trick is to get probabilities on the right, or at least, on useful

collections of events. We’ll take a first step in that direction here.

2.3.3. Probabilities on the field of cylinder sets. Suppose we are thinking about

drawing a sequence s ∈ S∞ at random. For any n-sequence (u1, . . . , un), the set
{s ∈ S∞ : (z1(s), . . . , zn(s)) = (u1, . . . , un)}

represents the event that first n outcomes take the values u1, . . . , un. For n ∈ N and
H ⊂ Sn, a cylinder set is a set of the form

AH = {s ∈ S∞ : (z1(s), . . . , zn(s)) ∈ H}.
Let C◦ denote the set of cylinders. It has the important property of being a field.

Homework 2.3. Show that C◦ is a field, that is,
1. S∞, ∅ ∈ C◦,
2. if A ∈ C◦, then Ac = S∞ \ A ∈ C◦,
3. if A1, . . . , AM ∈ C◦, then ∩Mm=1Am ∈ C◦.
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The field C◦ is countable (you should see how to prove this). Further, every
s ∈ S∞ belongs to a countable intersection of elements of C◦: for each n ∈ N and
s ∈ S∞, let An(s) be the cylinder set

{s′ ∈ S∞ : (z1(s′), . . . , zn(s′)) = (s1, . . . , sn)}.
Now check that {s} = ∩nAn(s). Look at questions of the form “Does s belong to
A?” when A ∈ C◦. S∞ is uncountable, but every point in S∞ can be specified by
answering only countably many such questions.

Homework 2.4. If F◦ is a field of subsets of a set X and A1, . . . , AM ∈ F◦, then
∪Mm=1Am ∈ F◦. Further, A1 \ A2 ∈ F◦, and A1∆A2 := (A1 \ A2) ∪ (A2 \ A1) ∈ F◦.

Probabilities assign numbers to elements of fields, that is, to collections of events

that are a field.

Definition 2.12. A finitely additive probability on the field F◦ of subsets of a
set X is a mapping P : F◦ → [0, 1] satisfying the first two conditions given here, it
is countably additive on the field F◦ if it also satisfies the third condition:

1. P (X) = 1, and

2. if A1, . . . , AM is a disjoint collection of elements of F◦, then P (∪mAm) =∑
m P (Am).

3. if A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ An+1 ⊃ · · · and ∩nAn = ∅, then limn P (An) = 0.

The third condition is sometimes called “continuity from above at ∅” and can be
written as “[An ↓ ∅]⇒ [P (An) ↓ 0].” Seems mild, but it is very powerful and has a
bit of a contentious past.

Back to our example, for each θ ∈ [0, 1] and each u = (u1, . . . , un) ∈ Sn, let

Au = {s ∈ S∞ : (z1(s), . . . , zn(s)) = (u1, . . . , un)}, and
µθ(Au) = Pθ(u1) · Pθ(u2) · · · · · Pθ(un).
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In the example, every Sn is finite, so that any H ⊂ Sn is finite, and we can define

µθ(AH) =
∑
u∈H

µθ(Au).

Since finite sums can be broken up in any order, each µθ is a finitely additive

probability on C◦.
Once we have some facts about compactness in place, we will show that each µθ

is in fact countably additive, indeed, the field C◦ of subsets of S∞ is a sufficiently
specialized structure that any finitely additive probability on C◦ is automatically
countably additive. Lest you think that this is generally true, the following finitely

additive probability is not countably additive, rather, it is trying to be as close to 1
2

as possible while staying strictly above 1
2
,

Homework 2.5. Let B◦ denote the field of subsets of (0, 1] consisting of the empty
set and finite unions of sets of the form (a, b], 0 ≤ a < b ≤ 1. Define a {0, 1}-valued
function P on B◦ by P (A) = 1 if (∃ε > 0)[(1

2
, 1
2
+ ε) ⊂ A] and P (A) = 0 otherwise.

Show that P is a finitely additive probability that is not countably additive.

2.3.4. Information and nested sequences of fields. Sometimes, you only have partial

information when you make a choice. From a decision theory point of view, there is

a very important result: making your choice after you get your partial information

is equivalent to making up your mind ahead of time what you will do after each

and every possible piece of partial information you may receive, the Bridge-Crossing

Lemma. We’re after something different here, the representations of information

that are available through finite fields.

Suppose that F is a finite field of subsets of a (for now) finite set Ω with probability
P defined on 2Ω. Let P(F) be the partition of Ω generated by F . For any set A,
function f : Ω → A is F-measurable if for all B ∈ P(F), there exist an aB ∈ A
such that ω, ω′ ∈ B implies f(ω) = f(ω′) = aB. Let M(F , A) be the set of F -
measurable functions. For a bounded u : Ω× A→ R and a probability P , consider
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an interesting utility maximization problem to look at is

V(u,P )(F) := max
f∈M(F ,A)

∑
ω

u(ω, f(ω))P (ω).

If the field G is finer than the field F , the setM(G, A) is larger than the setM(F , A).
This means that V(u,P )(G) ≥ V(u,P )(F).
It is important to understand that larger fields are more valuable because they

allow more measurable functions as strategies.

Homework 2.6 (Blackwell). An expected utility maximizer is characterized by their

u an their P . Their information is characterized by a field F . Show that F ′ is a
weakly finer partition that F if and only if for all (u, P ), V(u,P )(F ′) ≥ V(u,P )(F).
Let C◦t be the field of sets of the form

{s ∈ S∞ : (z1(s), . . . , zt(s)) ∈ H, H ⊂ St}.

Homework 2.7. Verify that

1. for all t, C◦t is a field,
2. for all t, then C◦t ⊂ C◦t+1,

A sequence of fields, (Ft)t∈N, is nested if Ft ⊂ Ft+1 for all t ∈ N. A nested
sequence of fields is called a filtration.

Homework 2.8. If (Ft)t∈N is a filtration, then F∞ := ∪t∈NFt is a field.
We will see later that F∞, while large, is not large enough for our purposes.

2.3.5. Expressing µ as a convex combination of other probabilities. Bravely assuming

the integrals means something, we can define the probability µ on C◦ that the process
of picking θ then getting i.i.d. Pθ random variables gives rise to by

µ(A) =

∫
Θ

µθ(A) dθ for any A ∈ C◦, Θ = [0, 1].

This expresses µ as a convex combination of the µθ. Each µθ is learnable in the

sense that, if we know that some µθ governs the i.i.d. sequence we’re seeing, then
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we can consistently estimate which µθ is at work. Having learned µθ means that we

have information that we can use to probabilistically forecast future behavior of the

system.

There are other ways to express µ, a probability on S∞, as a convex combination

of other probabilites on S∞. For example, for any s ∈ S∞, define the Dirac (or point
mass) probability δs by

δs(A) =

{
1 if s ∈ A
0 if s 6∈ A

The following is almost a repeat of something above. It helps understand why δs is

best understood as the special kind of probability that picks s for sure.

Homework 2.9. Show that for any s ∈ S∞, {s} = ⋂{A : s ∈ A, A ∈ C◦}.
One view of probability is that there is no randomness in the world, that the true

s has already been picked, it’s just that we don’t know everything that there is to

be known. We can express µ that way, suppose that Θ = S∞, and some s ∈ Θ is
picked according to µ, and then we see draws at different times according to δs. It

is very clear, at least intuitively, that

µ(A) =

∫
Θ

δs(A) dµ(s), Θ = S
∞.

If we knew which δs had been picked, then we could forecast exactly what would

happen in each period in the future, there would be no uncertainty. However, no

finite amount of data will ever let us get close to learning δs. In the limit, once we’ve

seen all of the zk(s), we’ll know δs, but after seeing zk(s), k = 1, . . . , K for any finite

K, we’ll be in essentially the same ignorant position about s as we started in. Here,

the limit amount of information is discontinuous.

The difference in attitude behind the two representations of µ is huge. The first

one looks at something we can at least approximately learn and defines it as useful

because it contains information about what is going to happen in the future. The
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second one looks at a perfectly functioning crystal ball that we will never have, it

would be useful, but we’ll never get it.

The last representation of µ was too fine, it used δs’s. Here’s a third, very coarse

representation. Let µhigh be the probability on S
∞ that arises when we pick a θ

at random and uniformly in (1
2
, 1], then see a µθ distribution on S

∞. In a similar

fashion, let µlow be the probability on S
∞ that arises when we pick a θ at random

and uniformly in (0, 1
2
], then see a µθ distribution on S

∞. It should be clear that for

all cylinder sets A,

µ(A) = 1
2
µhigh(A) +

1
2
µlow(A).

It should be at least intuitively clear that both µhigh and µlow are learnable, but

that they are much coarser than the µθ’s, which are also learnable.
3

2.4. The naiveté of statistical learning. Let us not forget our game theoretic

training. Suppose that player j treats player i’s choice of ai ∈ Ai as being i.i.d.

and governed by a distribution µi. If this is so, it seems reasonable (after all of this

time studying expected utility theory) to suppose that j tries to learn µi and best

responds to their estimates.

Now suppose that i knows that this is how j behaves. What should i do? They

should consistently play that ai that solves

max ui(ai, Brj(ai)).

This gives them the Stackelberg payoffs to the game. In other words, i should not

learn something, they should teach something.

It is this need to incorporate strategic thinking that makes the theory of learning

in games so very different from statistical (and other engineering oriented) theories

of learning. The tension is between mechanistic models of peoples’ behavior which

are, relatively speaking, easy to analyze, and models of how people think, which are,

relatively speaking, very difficult to analyze. However, the tools from statistics are

3Think of Goldilocks and the Three Bears.
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well-developed and sophisticated, we would be foolish to turn away from them just

because they have not already done what we wish to do.

2.5. Self-confirming equilibria. Let us not forget our training in extensive form

games. To analyze the equilibrium sets of an extensive form game, it is often very

important to know what people will do if something they judge to be impossible, or at

least very unlikely, happens. Statistical learning proceeds through the accumulation

of evidence, and for reasonable people, we hope that evidence trumps theories. It is

difficult to gather evidence about events that do not happen, so theories about what

will happen at unreached parts of the game tree may not be so thoroughly tested

by evidence. With this in mind, what can be learned? Consider the following horse

game, taken from [7]:

f
1

-

?

A1

D1

��
��

��
��

��1

?

2

D2

A2

3
A
A
A
A
A
AAU

L3

�
�
�
�
�
���

R3

A
A
A
A
A
AAU

L3

�
�
�
�
�
���

R3

3
0
0

0
3
0

3
0
0

0
3
0

1
1
1

Suppose that 1 (resp. 2) starts with the belief that 3 plays R3 (resp. L3) with

probability greater than 2/3, and believes that 2 plays A2 with probability close to

1. Then we expect 1 to play A1, 2 to play A2, and no evidence about 3’s behavior will

be gathered. Provided it is only evidence from observing 3’s actions that goes into
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updating of beliefs, this means that we’ll see A1 and A2 again in the next period, and

the next, and so on. This is called a “self-confirming” equilibrium, though perhaps

the non-negative “not self-denying” equilibrium would be a better term.

One way to get to the conclusion that it is only evidence from observing 3’s actions

that goes into updating beliefs is to assume that each player believes that the others

are playing independently. If 1 thought that 2’s play was correlated in some fashion

with 3’s play, then continuining to learn that 2’s play is concentrated on A2 could,

in principle, affect 1’s beliefs about 3. One story that game theorists often find

plausible for this correlation involves noting that if 1 thinks that 2 is maximizing

their expected utility and 1 knows 2’s payoffs, then they learn that 2’s beliefs

are not in line with 1’s, that someone’s wrong.

So, once again, sophistication in thinking about strategic situations makes simple

models of learning look too simple. But this example does a good bit more, it makes

our search for Nash equilibria look a bit strange, we just gave a sensible dynamic

story that has, as a stable point, even a locally stable point, strategies that are not

a Nash equilibrium. The dynamic story is based on 1 and 2 having different beliefs

about 3’s strategy, and Nash equilibrium requires mutual best response to the same

beliefs about others’ strategies.

3. Metric Spaces, Completeness, and Compactness

We’ll start with the most famous metric spaces, R and Rk. They are complete,

which is crucial. We’ll also start looking at compactness in the context of these two

spaces. A partial list of other metric spaces we’ll look at include discrete spaces, S∞

when S is a metric space, the set of strategies for an infinitely repeated finite game,

the set of cdf’s on R,

3.1. The completeness of R and Rk. Intuitions about integers, denoted N, are

very strong, they have to do with counting things. Including 0 and the negative

integers gives us Z. The rationals, Q, are the ratios m/n, m,n ∈ Z, n 6= 0.

Homework 3.1. Z and Q are countable.
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We can do all physical measurements using Q because they have a denseness

property — if q, q′ ∈ Q, q 6= q′, then there exists a q′′ half-way between q and q′, i.e.
q′′ = 1

2
q + 1

2
q′ is a rational. One visual image: if we were to imagine stretching the

rational numbers out one after the other, nothing of any width whatever could get

through, it’s an infinitely fine sieve. However, it is a sieve that, arguably, has holes

in it.

One of the theoretical problems with Q as a model of quantities is that there are

easy geometric constructions that yield lengths that do not belong to Q — consider

the length of the diagonal of a unit square, by Pythagoras’ Theorem, this length is√
2.

Lemma 3.1.
√
2 6∈ Q.

Proof: If
√
2 = m/n for some m,n ∈ N, n 6= 0. We will derive a contradiction

from this, proving the result. By cancellation, we know that at most one of the
integers m and n are even. However, cross multiplying and then squaring both sides
of the equality gives 2n2 = m2, so it must have been m that is even. If m is even,
it is of the form 2m′ and m2 = 4(m′)2 giving 2n2 = 4(m′)2 which is equivalent to
n2 = 2(m′)2, which implies that n is even, (⇒⇐).
If you believe that all geometric lengths must exist, i.e. you believe in some kind

of deep connection between numbers that we can imagine and idealized physical

measurements, this observation could upset you, and it might make you want to

add some new “numbers” to Q, at the very least to make geometry easier. The

easiest way to add these new numbers is an example of a process called completing

a metric space. It requires some preparation.

Definition 3.2. A sequence qn in Q is Cauchy if

(∀q > 0, q ∈ Q)(∃M ∈ N)(∀n, n′ ≥M)[|xn − xn′ | < q].

Intuitively, a Cauchy sequence is one that “settles down.”

The set of all Cauchy sequences in Q is C(Q).
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Definition 3.3. Two Cauchy sequences, xn, yn, are equivalent, written xn ∼C yn, if
(∀q > 0, q ∈ Q)(∃N ∈ N)(∀n ≥ N)[|xn − yn| < q].

Homework 3.2. Check that xn ∼C yn and yn ∼C zn implies that xn ∼C zn.

Definition 3.4. The set of real numbers, R, is C(Q)/∼C, the set of equivalence
classes of Cauchy sequences.

For any Cauchy sequence xn, [xn] denotes the Cauchy equivalence class. For

example,

√
2 = [1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, . . . ].

The constant sequences are important, for any q ∈ Q,
q = [q, q, q, . . . ].

Looking at the constant sequences shows that we have imbedded Q in R.

We understood addition, subtraction, multiplication, and division for Q, we just

extend our understanding in a fashion very close to the limit construction. Specifi-

cally,

[xn] + [yn] = [xn + yn], [xn] · [yn] = [xn · yn], [xn]− [yn] = [xn − yn],
and, provided [yn] 6= [0, 0, 0, . . . ], [xn]/[yn] = [xn/yn].
While these definitions seem correct, to be thorough we must check that if xn

and yn are Cauchy, then the sequences xn + yn, xn · yn, xn/yn, and xn − yn are also
Cauchy. So long as we avoid division by 0, they are.

Homework 3.3. Show that if xn and yn are Cauchy sequences in Q, then the se-

quences xn + yn and xn · yn are also Cauchy.

If a function f : Q → Q has the property that f(xn) is a Cauchy sequence

whenever xn is a Cauchy sequence, then f(·) can be extended to a function f : R→ R
by f([xn]) = [f(xn)]. For example, Homework 3.3 implies that f(q) = P (q) satisfies
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this propert for any polynomial P (·). For another example, f(q) = |q| satisfies this
property.

We can also extend the concepts of “greater than” and “less than” from Q to R.

We say that a number r = [xn] ∈ R is greater than 0 (or strictly positive) if there
exists a q ∈ Q, q > 0, such that (∃N ∈ N)(∀n ≥ N)[q ≤ xn]. We say that [xn] > [yn]

if [xn]− [yn] is strictly positive. The set of strictly real numbers is denoted R++.
We define the distance between two points in Q by d(q, q′) = |q−q′|. This distance

can be extended to R by what we just did, so that d(r, r′) = |r − r′|.
Definition 3.5. A metric space (X, d) is complete if every Cauchy sequence con-

verges to a limit.

Theorem 3.6. With d(r, r′) = |r − r′|, the metric space (R, d) is complete.
This is a special case of the metric completion theorem, and we will prove it in

the more abstract setting of general metric spaces.

Corollary 3.6.1. The metric space (Rk, ρ) is complete with ρ being any of the fol-

lowing metrics:

1. ρ(x, y) =
√
(x− y)T (x− y),

2. ρ(x, y) =
∑k
n=1 |xn − yn|, or

3. ρ(x, y) = maxn |xn − yn|.
Homework 3.4. Using Theorem 3.6, prove Corollary 3.6.1.

3.2. The metric completion theorem. Let (X, d) be a metric space. (Recall

that this requires that d : X ×X → R+ where d(·, ·) satisfies three conditions:
1. (symmetry) (∀x, y ∈ X)[d(x, y) = d(y, x)],
2. (distinguishes points) d(x, y) = 0 if and only if x = y,

3. (triangle law) (∀x, y, z ∈ X)[d(x, y) + d(y, z) ≥ d(x, z)]. )

Let C(X) denote the set of Cauchy sequences in X, define two Cauchy sequences,

xn and yn, to be equivalent, xn ∼C yn, if (∀ε > 0)(∃N ∈ N)(∀n ≥M)[d(xn, yn) < ε],

and let X̂ = C(X)/ ∼C. For any Cauchy sequence, xn, [xn] denotes the Cauchy
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equivalence class. Each x ∈ X is identified with [x, x, x, . . . ], the equivalence class
of the constant sequence.

With x = [xn] and y = [yn] being two points in X̂, define d̂ on X̂ × X̂ by

d̂(x, y) = [d(xn, yn)]. What needs to be checked is that d(xn, yn) really is a Cauchy

sequence when xn and yn are Cauchy. This is true, and comes directly from the

triangle inequality.

Definition 3.7. A set S ⊂ X is dense in the metric space (X, d) if

(∀x ∈ X)(∀ε > 0)(∃s ∈ S)[d(s, x) < ε].

Intuitively, dense sets are “everywhere.”

Theorem 3.8 (Metric completion). (X̂, d̂) is a complete metric space and X is a

dense subset of X̂.

Proof: Fill it in.

Homework 3.5. If (X, d) is complete, then X̂ = X, and a sequence xn in X

converges iff it is a Cauchy sequence.

The property that Cauchy sequences converge is very important. There are a huge

number of inductive constructions of an xn that we can show is Cauchy. Knowing

there is a limit in this context gives a good short-hand name for the result of the

inductive construction. Some examples: the irrational numbers that help us do ge-

ometry; Brownian motion that helps us understand finance markets; value functions

that help us do dynamic programming both in micro and in macro.

Going back to R, we see that Q is a dense subset of the complete metric space

(R, d) when d is defined by d(x, y) = |x− y|.
Definition 3.9. A metric space (X, d) is separable if there is a countable X ′ ⊂ X

that is dense.

The picture of Q as an infinitely fine sieve comes out as their denseness, and R

is a separable metric space because Q is a countably dense subset. The holes in Q

come out as the non-emptiness of R \Q. The holes are everywhere too.
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Homework 3.6. R \Q is dense in R.

3.3. Completeness and the infimum property. Some subsets of R do not have

minima, even if they are bounded, e.g. S = (0, 1] ⊂ R. The concept of a greatest
lower bound, also known as an infimum, fills this gap.

A set S ⊂ R is bounded below if there exists an r ∈ R such that for all s ∈ S,
r ≤ S. This is written as r ≤ S. A number s is a greatest lower bound (glb)

for or infimum of S if s is a lower bound and s′ > s implies that s′ is not a lower

bound for S. Equivalently, that s is a glb for S if s ≤ S and for all ε > 0, there

exists an s ∈ S such that s < s+ ε. If it exists, the glb of S is often written inf S.

The supremum is the least upper bound, or lub. It is defined in the parallel

fashion.

Homework 3.7. If s and s′ are glb’s for S ⊂ R, then s = s′. In other words, the

glb, if it exists, is unique.

Theorem 3.10. If S ⊂ R is bounded below, there there exists an s ∈ R such that s
is the glb for S.

Proof: Not easy, but not that hard once you see how to do it.
Let r be a lower bound for S, set r1 = r, given that rn has been defined, define

rn+1 to be rn+2m(n) with m(n) = max{m ∈ Z : rn+2m ≤ S} using the conventions
that max ∅ = −∞ and 2−∞ = 0. It is very easy to show that rn is a Cauchy
sequence, and that its limit is inf S.

An alternative development of R starts with Q and adds enough points to Q

so that the resulting set satisfies the property that all sets bounded below have

a greatest lower bound. Though more popular as an axiomatic treatment, I find

the present development through the metric completion theorem to be both more

intuitive and more broadly useful. It also provides an instructive parallel when it

comes time to develop other models of quantities. I wouldn’t overstate the advantage

too much though, there are good axiomatic developments of the other models of

quantities.
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3.4. Detour #1: The contraction mapping theorem. The contraction mapping
theorem will yield stability conditions for deterministic dynamic systems, conditions that
reappear when you add noise, exponential convergence to the unique ergodic distributions
of a finite-state, communicating Markov chain, and existence and uniqueness of value
functions.

3.4.1. The contraction mapping Theorem. Let (X, d) be a metric space. A mapping f
from X to X is a contraction mapping if

(∃β ∈ (0, 1) )(∀x, y ∈ X)[d(f(x), f(y)) < βd(x, y)].
Lemma 3.11. If f : X → X is a contraction mapping, then for all x ∈ X, the sequence

x, f (1)(x) = f(x), f (2)(x) = f(f (1)(x)), . . . , f (n)(x) = f(f (n−1)(x)), . . .
is a Cauchy sequence.

Homework 3.8. Prove the lemma.

A fixed point of a mapping f : X → X is a point x∗ such that f(x∗) = x∗. Note
that when X = Rn, f(x∗) = x∗ if and only if g(x∗) = 0 where g(x) = f(x) − x. Thus,
fixed point existence theorems may tell about the solutions to systems of equations.

Theorem 3.12 (Contraction mapping). If f : X → X is a contraction mapping and
(X, d) is a complete metric space, then f has a unique fixed point.

Homework 3.9. Prove the Theorem. [From the previous Lemma, you know that starting
at any x gives a Cauchy sequence, Cauchy sequences converge because (X, d) is complete,
if x̂ is a limit point, then show it is a fixed point, then show that there cannot be more
than one fixed point.]

3.4.2. Stability analysis of deterministic dynamic systems. We’ll start with stationary lin-
ear dynamic systems in Rk. Let Θ = S = Rk, and let M : Rk → Rk be a linear mapping.
We’re after conditions on M equivalent to M(·) being a contraction mapping. This gives
us information about the behavior of the dynamic system starting at x0 and satisfying
xt+1 = Mxt. Throughout this topic, feel free to use anything and everything you know
about linear algebra, i.e. do not try to go back to first principles if knowing something
about determinants will save you hours of frustration.
Some preliminaries:

1. Note that x = 0 is a stable point for the dynamic system just specified.
2. Fix a basis for Rk and let M also denote the k × k matrix representation of the
mapping M(·).

3. M is also a linear mapping from Ck to Ck where C is the set of complex numbers.
4. The Fundamental Theorem of Algebra says that every n-degree polynomial has n
roots in C if we count multiplicities.

5. An upper triangular matrix T is one with the property that Ti,j = 0 if i > j, i.e.
every entry below the diagonal is equal to 0.
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Lemma 3.13 (Upper Triangular). Show that there exist an invertible matrix B such that
M = B−1TB where T is an upper triangular matrix.

Homework 3.10. Prove the Upper Triangular Lemma.

The entries in T may be complex. In particular,

Homework 3.11. The diagonal entries, Ti,i, in T are the eigenvalues of M .

Viewing M as a mapping from Rk to Rk, and defining the norm of a vector x by

‖x‖ =
√
xTx, define the norm of M as

‖M‖ = sup{‖Mx‖ : ‖x‖ = 1}.
Homework 3.12. M is a contraction mapping iff ‖M‖ < 1 iff form some n ∈ N, ‖Mn‖ <
1.

If M is a contraction mapping, then the dynamic system with xt+1 = Mxt is globally
asymptotically stable.

Homework 3.13 (Probably difficult). M is a contraction mapping iff maxi |Ti,i| < 1.
[It might be easier to prove this if you use the Jordan canonical form rather than the upper
triangular form, if you go that route, carefully state and give a citation to the theorem
giving you the canonical form.]

Homework 3.14. Using the previous problem, find conditions on α and β such that M =[
0 α
β 0

]
, is a contraction mapping. Give the intuition. [By the way, if α > 0 and β < 0

or the reverse, the eigenvalues are imaginary.] Draw representative dynamic paths in a
neighborhood of the origin for the cases of contraction mappings having

1. α, β > 0,
2. α, β < 0,
3. α > 0, β < 0, and
4. α < 0, β > 0.

Stable points can fail to be locally stable in a number of ways. We’ve seen an example
where nothing no starting point near the stable point converged to it. Here’s another
possibility.

Homework 3.15. Draw representative dynamic paths in a neighborhood of the origin
when M is the matrix M =

[
α 0
0 β

]
, α > 1, 0 < β < 1.

Now let’s suppose that instead of being linear, the transformation is affine, i.e. A(x) =
a+Mx for some a ∈ Rk and some k × k invertible matrix M .
Homework 3.16. Show that the dynamic system with xt+1 = A(xt) has a unique stable
point, x∗.

Shifting the origin to x∗ means treating any vector x as being the vector x− x∗. The
next result shows that if we shift the origin to x∗ and analyze the stability properties of
M in the new, shifted world, we are actually analyzing the stability properties of A(·).
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Homework 3.17 (Easy). Show that for any xt, A(xt)− x∗ =Mvt where vt = xt − x∗.
Homework 3.18. Suppose in a Cournot game, the best responses are

Br1(q2) = max{0, a− bq2}, and Br2(q1) = max{0, c − dq1}, a, b, c, d > 0.
Analyze the stability of the dynamic system on R2+[ q1,t+1

q2,t+1

]
=
[
Br1(q2,t)
Br2(q1,t)

]
.

Now consider dynamic systems with L lags:

xt = a+

L∑
`=1

β`xt−`.

Homework 3.19. For any t, let Xt be the transpose of the vector [xt, xt−1, . . . , xt−L+1].
Express the dynamic system just given in L × L matrix form using Xt and Xt−1. Give
conditions on the β`’s guaranteeing global asymptotic stability.

If (εt)t∈N is a sequence of i.i.d. mean 0, finite variance random variables, the stochastic
dynamic system

xt = a+
L∑
`=1

β`xt−` + εt

provides a model with a great deal of interesting dynamic behavior. Having the eigenvalues
inside the unit circle (in the complex plane) gives (one of the many things that is called)
stationary behavior. Basically, noise from the distant past keeps being contracted out of
existence, but noise from the more recent past is always there. A special well-studied has
an eigenvalue directly on the unit circle,

xt = xt−1 + εt.
This is called a random walk, you get the classical random walk by starting with x0 = 0
and having εt = ±1 with probability half apiece.
All of this linear analysis can be transplanted to non-linear systems by taking deriva-

tives. Suppose that f : Rk → Rk is a twice continuously differentiable function and that
f(x∗) = x∗ so that x∗ is a stable point of the dynamic system xt+1 = f(xt). Giving a
careful proof of the following takes a bit of doing, and may even require all the differentia-
bility assumed. However, the idea is really primitive, we just pretend that x∗ is the origin,
then replace the function f by its Taylor expansion, ignore all but the first, linear terms,
and show that the approximation errors don’t mess anything up, even when accumulated
over time.

Lemma 3.14. If Dxf(x
∗) is invertible and a contraction mapping, then x∗ is locally

stable.

3.4.3. Stationary, ergodic Markov chains with finite state spaces. We’ve already defined
probabilities on the cylinder sets of {0, 1}∞, replacing {0, 1} by any finite S doesn’t change
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that construction in any significant way. We are now going to look at probabilities on S∞,
S finite, that are not independent.
Let P0 be an arbitrary probability on S. For i, j ∈ S, let Pi,j ≥ 0 satisfy (∀i ∈

S)[
∑
j Pi,j = 1]. From these ingredients, we are going to define a probability on S × S∞.

For any n+ 1-sequence (u0, u1, . . . , un) in S × Sn, the set
{(u0, s) : s ∈ S∞, (z1(s), . . . , zn(s)) = (u1, . . . , un)}

has probability

P0(u0) · Pu0,u1 · Pu1,u2 · · · · · Pun−1,un .
Since S × Sn is finite, this gives a probability on the cylinder sets, C◦. Such a probability
is called a stationary Markov process.
Suppose that we draw (s0, s) ∈ S×S∞ according to such a probability. Let Xt(s) be the

measurable function (a.k.a. random variable) zt(s), t = 0, 1, . . . . TheMarkov property
is that

(∀t)[P (Xt+1 = j|X0 = i0, . . . ,Xt−1 = it−1,Xt = i) = P (Xt+1 = j|Xt = i) = Pi,j .
In words, in the history of the random variables, X0 = i0, . . . ,Xt−1 = it−1,Xt = i, only
the last period, Xt = i, contains any probabilistic information about Xt+1.
It seems that Markov chains must have small memories, after all, the distribution of

Xt+1 depends only on the state at time t. This can be “fixed” by expanding the state
space, e.g. replace S with S×S and the last two realizations of the original Xt can influence
what happens next.
The matrix P is called the one-step transition matrix. This name comes from the

following observation: if πT is the (row) vector of probabilities describing the distribution
of Xt, then π

TP is the (row) vector describing the distribution of Xt+1.

For i, j ∈ S, let P (n)i,j = P (Xt+n = j|Xt = i). The matrix P (n) is called the n-step
transition matrix. One of the basic rules for stationary Markov chains is called the
Chapman-Kolmogorov equation,

(∀1 < m < n)[P (n)i,j =
∑
k∈S
P
(m)
ik · P (n−m)kj ].

Homework 3.20. Verify the Chapman-Kolmogorov equation.

This means that if πT is the (row) vector of probabilities describing the distribution of

Xt, then π
TP (n) is the (row) vector describing the distribution of Xt+n.

Homework 3.21. The matrix P (n) is really the matrix P multiplied by itself n times.

Let ∆(S) denote the set of probabilities on S. π ∈ ∆(S) is an ergodic distribution
if πTP = πT .
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Homework 3.22. Solve for the set of ergodic distributions for each of the following P
where α, β ∈ (0, 1):[

1 0
0 1

] [
0 1
1 0

] [
α (1− α)

(1− α) α

] [
α (1− α)

(1− β) β

] [
1 0

(1− β) β
]

Theorem 3.15. If S is finite and there exists an N such that for all n ≥ N , P (n) � 0,
then the mapping πT 7→ πTP from ∆(S) to ∆(S) is a contraction mapping.
Proof: For each j ∈ S, let mj = mini PNi,j. Because PN � 0, we know that for all
j, mj > 0. Define m =

∑
jmj . We will show that for p, q ∈ ∆(S), ‖pPN − qPN‖1 ≤

(1−m)‖p − q‖1.

‖pPN − qPN‖1 =
∑
j∈S

∣∣∣∣∣∑
i∈S
(pi − qi)PNi,j

∣∣∣∣∣
=
∑
j∈S

∣∣∣∣∣∑
i∈S
(pi − qi)(PNi,j −mj) +

∑
i∈S
(pi − qi)mj

∣∣∣∣∣
≤
∑
j∈S

∑
i∈S
|pi − qi|(PNi,j −mj) +

∑
j∈S
mj

∣∣∣∣∣∑
i∈S
(pi − qi)

∣∣∣∣∣
=
∑
i∈S
|pi − qi|

∑
j∈S
(PNi,j −mj) + 0

= (1−m)‖p − q‖1,
where the next-to-last equality follows from the observation that p, q ∈ ∆(S), and the last
equality follows from the observation that for all i ∈ S,∑j∈S PNi,j = 1, and∑j∈Smj = m.
This shows that PN is a contraction mapping. Since P is a linear mapping, we’re done
(that’s a separate step, taken above for linear maps from Rk to Rk, check that it works
from ∆ to ∆).

Homework 3.23. Verify that this proof works so long as
∑
jmj > 0, a looser condition

than the one given. This condition applies, for example, to the matrix[
1 0

(1− β) β
]
,

where m1 = 1− β, m2 = 0, m = 1− β, and the contraction factor is 1−m = β.
Assuming that ∆(S) is complete (it is, we just haven’t proven it yet), we now have

sufficient conditions for the existence of a unique ergodic distribution.

Homework 3.24. Under the conditions of Theorem 3.15, show that the matrix Pn con-
verges and characterize the limit.
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3.4.4. The existence and uniqueness of value functions. A maximizer faces a sequence of
interlinked decision at times t ∈ N. At each t, they learn the state, s, in a state space
S. Since we don’t yet have the mathematics to handle integrating over larger S’s, we’re
going to assume that S is countable. For each s ∈ S, the maximizing person has available
actions A(s). The choice of a ∈ A(s) when the state is s gives utility u(a, s). When
the choice is made at t ∈ N, it leads to a random state, Xt+1, at time t + 1, according
to a transition probability Pi,j(a), at which point the whole process starts again. If the
sequence (at, st)t∈N is the outcome, the utility is

∑
t β
tu(at, st) for some 0 < β < 1.

Assume that there exists a B ∈ R++ such that sup(at,st)t∈N, at∈A(st) |
∑
t β
tu(at, st)| < B.

This last happens if u(a, s) is bounded, or if its maximal rate of growth is smaller than β.
One of the methods for solving infinite horizon, discounted dynamic programming prob-

lems just described is called the method of succesive approximation: one pretends that
the problem has only one decision period left, and that if one ends up in state s after this
last decision, one will receive βV0(s), often V0(s) ≡ 0. Define

V1(s) = max
a∈A(s)

u(a, s) + β
∑
j∈S
V0(j)Ps,j(a).

For this to make sense, we must assume that the maximization problem has a solution,
which we do. (There are sensible looking conditions guaranteeing this, the simplest is the
finiteness of A(s).) More generally, once Vt has been defined, define

Vt+1(s) = max
a∈A(s)

u(a, s) + β
∑
j∈S
Vt(j)Ps,j(a).

Again, we are assuming that for any Vt(·), the maximization problem just specified has a
solution.
We’ve just given a mapping from possible value functions to other possible value func-

tions. The point is that it’s a contraction mapping.
The spaceXB = [−B,+B]S is the space of all functions from S to the interval [−B,+B].

For v, v′ ∈ X, define
ρ(v, v′) = sup

s∈S
|vs − v′s|.

Homework 3.25. ρ is a metric on XB and the metric space (XB , ρ) is complete.

Define the mapping f : XB → XB by defining the s’th component of f(v), that is,
f(v)s, by

f(v)s = max
a∈A(s)

u(a, s) + β
∑
j∈S
vjPs,j(a).

Homework 3.26. The function f just described is a contraction mapping.
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Let v∗ denote the unique fixed point of f . Let a∗(s) belong to the solution set to the
problem

max
a∈A(s)

u(a, s) + β
∑
j∈S
v∗jPs,j(a).

Homework 3.27. Using the policy a∗(·) at all points in time gives the expected payoff
v∗(s) if started from state s at time 1.

Define v̂(s) to be the supremum of the expected payoffs achievable starting at s, the
supremum being taken over all possible feasible policies, α = (at(·, ·))t∈N,

v̂(s) = sup
(at(·,·))t∈N

E

(∑
t

βtu(at, st)|s1 = s
)
.

Homework 3.28. For all s, v∗(s) = v̂(s).

Combining the last two problems, once you’ve found the value function, you are one
step away from finding an optimal policy, further, that optimal policy is stationary.

3.5. Closed sets, compact sets, and accumulation points. We’ve already seen

that accumulation points are a way to talk about the long term behavior of dynamic

systems and learning problems. Fix a metric space (X, d), for now, you’ll not go

wrong in thinking of R or Rk as the metric space, but most of the proofs given here

will not use any of the special structure available in R and Rk.

Definition 3.16. A set F ⊂ X is closed if, for all sequences (sn) in F , accum(sn) ⊂
F .

Thus, the closed sets are the ones that contain any accumulation points of a

sequence in that set. Now, it is possible that there are sequences sn in F with the

property that accum(sn) = ∅, and for any such (sn), the conclusion that accum(sn) ⊂
F is trivial.

Example 3.1. F = [0,∞) ⊂ R is closed, as is F ′ = R2+ ⊂ R2. The sequence
sn = n is a sequence in F with no accumulation points, the sequence sn = (n, n) is

a sequence in F ′ with no accumulation points.

Definition 3.17. A setK ⊂ X is compact if, for all sequences (sn) in K, accum(sn) 6=
∅ and accum(sn) ⊂ K.
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Thus, compact sets are the closed one with the property that every sequence in the

set must accumulate somewhere in the set. There is a relation between compactness

and properties we’ve seen before.

Lemma 3.18. If X is compact, then (X, d) is a complete, separable metric space.

Proof: Since X is compact, any Cauchy sequence (sn) in X must have an accumu-
lation point, call it x. Therefore some subsequence sn′ → x. Since sn is Cauchy, it
must also converge to x (yes, there is a step missing there, a step you complete by
using the triangle property of metrics). The separability comes from the following
result:

For any ε > 0, there is a finite Xε ⊂ X such that (∀x ∈ X)(∃x′ ∈
Xε)[d(x, x′) < ε].

To see why separability flows from this result, observe that the countable set X ′ =
∪nX1/n is dense. To prove this result, pick your ε > 0. Start an inductive procedure
by picking an arbitrary x1 ∈ X. If x1 through xn have been picked, then pick an
arbitrary xn+1 fromX\∪ni=1B(xi, ε). If this set is empty, then setXε = {x1, . . . , xn},
otherwise continue. If we can show that this procedure must terminate, then we’ve
produced the requisite finite Xε. Suppose it does not terminate. Then it gives a
sequence (xn) with the property that d(xn, xm) ≥ ε for all n 6= m. Since X is
compact, (xn) must have an accumulation point, call it x. For some subsequence,
d(xn′ , x)→ 0, but this violates the observation that d(xn′ , xm′) ≥ ε for any n′ 6= m′.

The sets Xε in the result above are called ε-nets.

To repeat, compact sets are closed and have the additional property that any

sequence in them has accumulation points. You have seen many compact sets in

micro and game theory.

Definition 3.19. A subset B of Rk is bounded if (∃R ∈ R)(∀x ∈ B)[xTx ≤ R].

Theorem 3.20. K ⊂ Rk is compact iff it is closed and bounded.

This is a famous theorem, the proof only looks easy in retrospect.

Proof: Fill it in.

30



Definition 3.21. Let (X, d) and (Y, ρ) be two metric spaces. A function f : X → Y

is continuous at x if xn → x implies f(xn) → f(x). A function f : X → Y is

continuous if it is continuous at every x ∈ X.

Theorem 3.22. If f : K → R is continuous and K is compact (and non-empty),
then (∃x ∈ K)[f(x) = sup{f(y) : y ∈ K}].

It should be clear to you, at least by the end of the proof, that we could substitute

“inf” for “sup” in the above. Note that one implication is that the function f must

be bounded.

Proof: Fill it in.

This theorem is the reason that demand correspondences are non-empty when

preferences are continuous and (p, w)� (0, 0).
Okay, enough of the real analysis, time to go back to probability, we’ll come back

to real analysis as we need it. For those of you who are interested, the next detour

uses real analysis to get at the properties of some of the basic theoretical constructs

in economics.

3.6. Detour #2: Berge’s Theorem of the Maximum and Upper Hemicontinuity.
For each x in a set X, there is a set Φ(x) of choices available to a maximizer, Φ(x) ⊂ Y .
The utility function of the maximizer, f(x, y), depends on both arguments. One object of
interest is the value function,

v(x) = supy∈Φ(x)f(x, y).

Provided each f(x, ·) is continuous and each Φ(x) is compact, this can be replaced by
v(x) = maxy∈Φ(x)f(x, y),

and the set of maximizers is non-empty,

Ψ(x) := {y∗ ∈ Φ(x) : (∀y′ ∈ Φ(x))[f(x, y∗) ≥ f(x, y′)]}.
There is no hope that v(·) or Ψ(·) are well-behaved if f(·, ·) or Φ(·) is arbitrary. A quite
general set of sufficient conditions for “well-behavedness” is that f(·, ·) is jointly continuous
and that Φ(·) is continuous. We need to define these two terms.
Let (X, d) and (Y, ρ) be two metric spaces.

31



Definition 3.23. f : X × Y → R is jointly continuous at (x, y) if ∀ε > 0 there is a
δ > 0 such that for all (x′, y′) with d(x′, x) < δ and ρ(y′, y) < δ, |f(x′, y′) − f(x, y)| < ε.
f is jointly continuous it is jointly continuous at all (x, y).

Homework 3.29. Give a function f : R×R→ R such that for all x, f(x, ·) is continuous
and for all y, f(·, y) is continuous, but f is not jointly continuous.
A mapping from points to sets is called a correspondence. To guarantee that the set

of maximizers is non-empty, we are going to assume that the correspondence Φ always
takes on compact values, that is, for all x, Φ(x) is a non-empty, compact subset of Y . Let
KY denote the set of non-empty compact subsets of Y . Correspondences can be seen
as functions, in this case, Φ : X → KY . To talk about the continuity of Φ(·) we’ll use a
metric on KY .
For A,B ∈ KY , define c(A,B) = inf{ε > 0 : A ⊂ Bε} where Bε = {y ∈ Y :

infb∈B d(y, b) < ε}. The Hausdorff distance between compact sets is defined by
dH(A,B) = max{c(A,B), c(B,A)}.

Homework 3.30. dH is a metric on KY .

The continuity of Φ comes in three flavors, upper, lower, and full.

Definition 3.24. A correspondence Φ : X → KY is
1. upper hemicontinuous (uhc) at x if for all ε > 0 there exists a δ > 0 such that
forall x′ with d(x, x′) < δ, c(Φ(x′),Φ(x)) < ε, is

2. lower hemicontinuous (lhc) at x if for all ε > 0 there exists a δ > 0 such that
forall x′ with d(x, x′) < δ, c(Φ(x),Φ(x′)) < ε, and is

3. continuous at x if it is both uhc and lhc at x, i.e. if Φ : X → KY is a continuous
function.

Φ is uhc (resp. lhc, resp. continuous) if it is uhc (resp. lhc, resp. continuous) at every
x.

Intuitively, uhc correspondences can explode at a point, Φ(x) can be much larger than
the Φ(x′) for d(x′, x) very small. In a similar way, lhc correspondences can implode at a
point, but continuous correspondences can do neither.

Homework 3.31. The Walrasian budget correspondence is continuous on RL+1++ but not

on RL+1+ .

Just like functions, correspondences can be identified with their graphs.

Definition 3.25. The graph of a correspondence Φ is the set grΦ = {(x, y) : y ∈
Φ(x)}.
By definition, a sequence (xn, yn) in X × Y converges to (x, y) iff d(xn, x) → 0 and

ρ(yn, y)→ 0.
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Theorem 3.26 (Closed graph). If (Y, d) is compact, then the correspondence Φ is uhc iff
grΦ is a closed subset of X × Y .
Homework 3.32. Prove the closed graph theorem.

Homework 3.33. Let X = R+ and let Y be the non-compact metric space R. Let Φ(x) =
{1/x} if x > 0 and Φ(0) = {0}. Show that grΦ is closed but that Φ is not uhc.
The following result can be generalized in a number of ways, see [12] if you’re interested.

Theorem 3.27 (Berge). If f : X × Y → R is jointly continuous and Φ : X → KY is
continuous, then the function

v(x) = maxy∈Φ(x)f(x, y)

is continuous, for all x ∈ X, the set Ψ(x) defined by
Ψ(x) = {y∗ ∈ Φ(x) : (∀y′ ∈ Φ(x))[f(x, y∗) ≥ f(x, y′)]}

is non-empty and compact, and the correspondence Ψ is upper hemicontinuous.

Homework 3.34. Prove Berge’s theorem.

Homework 3.35. Set X = RL+1++ with tyically element (p,w), and Y = R
L
+.

1. For a continuous utility function u : RL+ → R, the indirect utility function v(p,w) is
continuous and the demand correspondence, x(p,w), is upper hemicontinuous,

2. If the demand correspondence is single-valued, then its graph is the graph of a con-
tinuous function.

3. There are conditions under which these last results remain true even when u depends
non-trivially on prices and wealth.

Homework 3.36. The profit function of a neo-classical firm may not be continuous. Ex-
plain which parts of the assumptions of Berge’s theorem are violated and which are not in
such cases.

Homework 3.37 (Upper hemicontinuity of the Nash correspondence). Let Γ(u) be the
normal form game with finite strategy sets Si for each i in the finite set I, and utili-
ties u ∈ RS, S = ×iSi. Let Eq(u) ⊂ ×i∆i, ∆i := ∆(Si), be the set of Nash equilibria
for Γ(u). Verify that for all u, the best response correspondence satisfies the conditions of
Kakutani’s fixed point Theorem so that Eq(u) is non-empty. Show that Eq(u) is compact,
and that the correspondence Eq(·) is uhc. [Remember, closed subsets of compact sets are
necessarily compact.]

Remember the game theory notation, a game is given by (Ti, ui)i∈I where Ti is player
i’s set of pure strategies and ui is i’s utility.

Homework 3.38 (Existence and upper hemicontinuity of Perfect equilibria). As in the
problem just given, let Γ(u) be a normal form game. For each i ∈ I, let Ri = {ηi ∈
R
Si
++ :

∑
si∈Si ηi(si) < 1. For each i ∈ I and ηi ∈ Ri, let

∆i(ηi) = {σi ∈ ∆i : σi ≥ ηi}.
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1. For each η = (ηi)i∈I ∈ ×iRi, the game (∆i(ηi), ui)i∈I has an equilibrium. Let
Eq(u, η) denote the set of equilibria. Show that Eq(u, η) is a closed, non-empty set.
[Proving this involves checking that the best response correspondences are non-empty
valued, compact valued, convex valued, and upper hemicontinuous, then applying
Kakutani’s theorem, which I do not expect you to prove.]

2. Show that the intersection of an arbitrary collection of closed sets in a metric space
(X, d) is closed. The closure of a set E, cl E, in a metric space (X, d) is defined as
the intersection of all closed sets containing E. This means that cl E is the smallest
closed set containing E. Show that x ∈ cl E iff there is a sequence xn in E such that
d(xn, x)→ 0.

3. A set K in a metric space (X, d) is compact iff every collection of closed subsets of
K has the finite intersection property: if {Fα : α ∈ A} is a collection of closed
subsets of K and ∩αFα = ∅, then ∩Nn=1Fαn = ∅ for some finite set {α1, . . . , αN} ⊂ A.

4. For ε > 0, let Eε = cl {Eq(u, η) : (∀i ∈ I)[∑si ηi(si) < ε] }. The set of perfect
equilibria for Γ(u) can be defined as

Per(u) =
⋂
{Eε : ε > 0}.

Verify that σ ∈ Per(u) iff there is a sequence ηn ∈ ×iRi, ηn → 0, and a sequence
σn ∈ Eq(u, ηn) such that σn → σ.

5. Using the compactness of ∆ and the previous parts of this problem, show that Per(u)
is a non-empty, closed (hence compact) subset of ∆.

6. Show that the correspondence Per(·) is upper hemicontinuous.
The finite intersection property of the previous problem is a very useful way to talk about

compactness. Let S be a finite set, and C◦ the field of cylinder subsets of S∞. Arguments
using the finite intersection property show that every finitely additive probability on C◦ is
countably additive. This means, inter alia, that the spaces ({0, 1}∞, C◦) and ((0, 1],B◦) are
quite different (in a problem above, you showed that there are finitely additive probabilities
on B◦ that fail to be countably additive).
Homework 3.39 (Billingsley’s Theorem 2.3). Give the finite set S the metric d(x, y) =
1 if x 6= y and d(x, y) = 0 if x = y. Give the sequence space the metric ρ(s, t) =∑
n 2
−nd(zn(s), zn(t)).

1. Verify that ρ is indeed a metric.
2. Let sn be a sequence in S

∞, that is, sn is a sequence of sequences. Show that
ρ(sn, s)→ 0 iff for all T , there exists an N such that for all n ≥ N ,

(z1(sn), . . . , zT (sn)) = (z1(s), . . . , zT (s)).

3. Let sn be a sequence in S
∞, that is, a sequence of sequences. Show that accum(sn)

is a non-empty subset of S∞ so that (S∞, ρ) is compact.
4. Show that every cylinder set is closed. [Since closed subsets of compact sets are
compact, every cylinder set is in fact compact.]
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5. Let µ be a finitely additive probability on C◦ and let An be a sequence of cylinder
sets with An ↓ ∅. Using the finite intersection property, show that µ(An) ↓ 0, indeed,
show the stronger result that there exists an N such that for all n ≥ N , µ(An) = 0.

4. Probabilities on Fields and σ-Fields

We’ve already seen that {0, 1}∞ is uncountable, it also looks a lot like the unit
interval, (0, 1]. For each s ∈ {0, 1}∞, define rs =

∑
k zk(s)/2

k ∈ [0, 1]. This maps
{0, 1}∞ onto [0, 1]. For each r ∈ (0, 1], let sr be the non-terminating binary expan-
sion of r. This maps (0, 1] onto {0, 1}∞.
This is meant to make it look reasonable to hope that we can simultaneously

construct a model for drawing a point in the unit interval and drawing an infi-

nite sequence of random variables. Discrete probabilities are just not enough to

help us with the limit constructions we want, so we’re going to develop a theory

that allows us talk about probabilities on these uncountable spaces. We’ll also see

that finitely additive probabilities are also not enough and we’ll develop countably

additive probabilities.

4.1. Finitely additive probabilities on fields are a lot, but not quite enough.

This part is closely based on [3, Section 1, Ch. 1], which you should read. Let B◦ be
the empty set plus the collection of subsets of (0, 1] of the form ∪Kk=1(ak, bk] where
each (ak, bk] ⊂ (0, 1].

Homework 4.1. B◦ is a field, and every non-empty B ∈ B◦ can be expressed as a
finite union of disjoint sets (ak, bk].

Define λ((a, b]) = b−a. We’ll go crazy trying to keep enough brackets around, the
“correct” way to write the last really is “λ((a, b]) = b− a,” but we’ll give ourselves
permission to write “λ(a, b] = b− a,” and we won’t even be embarassed.
For every B = ∪Kk=1(ak, bk] with disjoint (ak, bk], define λ(B) =

∑
k λ(ak, bk].

Homework 4.2. λ is a finitely additive probability on B◦.

This λ can give rise to all of the µθ on {0, 1}∞ that we saw above.
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Given a 0 < θ < 1, the θ-split of an interval (a, b] is the partition of (a, b],

{Iθ1,(a,b] = (a, a+ θ(b− a)], Iθ2,(a,b] = (a+ θ(b− a), b]}.
The idea is to inductively θ-split (0, 1] into a sequence of finer and finer little disjoint

subintervals.

Let I1 = {Iθ1,1, Iθ2,1} be the θ-split of (0, 1]. Given Iθn containing 2n disjoint inter-
vals, Iθk,n, 1 ≤ k ≤ 2n, let Iθn+1 = {Iθk,n+1 : 1 ≤ k ≤ 2n+1} be the collection of 2n+1
disjoint intervals, numbered from left to right, of θ-splits of the Iθk,n.

Notation switch: Since we’re starting to do probability theory here, we’ll start

referring to the probability space, here (0, 1], as Ω, and to points in Ω as ω’s.

Now, for each n ∈ N, define the B◦ measurable function

Xθn(ω) =

{
1 if s ∈ Iθk,n, k odd
0 if s ∈ Iθk,n, k even

Homework 4.3. The (Xθn)n∈N are independent.

Homework 4.4. For each ε > 0 and any θ ∈ (0, 1), limn pθn(ε) = 0 where

pθn(ε) = P

{
ω :

∣∣∣∣∣ 1n
n∑
t=1

Xθt (ω)− θ
∣∣∣∣∣ ≥ ε

}
.

The previous result says that if n is large, it is unlikely that the average of theXθt ’s,

t ≤ n, is very far from θ. It is a version of the weak law of large numbers. The strong

law of large numbers is the statement that, outside of a set of ω having probability 0,

limn
1
n

∑n
t=1X

θ
t (ω) = θ. This is a very different kind of statement, it rules out every

ω having some infinite sequence of times, Tn(ω) with
∣∣∣ 1
Tn(ω)

∑Tn(ω)
t=1 Xθt (ω)− θ

∣∣∣ > ε.

If the Tn were arranged to become sparser and sparser as n grows larger, this could

still be consistent with the limn p
θ
n(ε) = 0 condition just given.

Before going any further, let’s look carefully at the set of ω we are talking about.

For any ω and any T ,

lim
n

1

n

n∑
t=1

Xθt (ω) = lim
n

1

n

n∑
t=T+1

Xθt (ω).
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In {0, 1}∞, this means that information about ω contained in any C◦T is of no use in
figuring out whether or not ω belongs to the set for which limn

1
n

∑n
t=1X

θ
t (ω) = θ.

In Ω, this means that finite subdivisions of (0, 1] contained in B◦ are insufficient to
answer the kind of limit questions we’d like to answer.

What we need to do then, is to extend λ from B◦ to a class of sets significantly
larger than B◦ that it contains the limit events we care about, and then, with that
extension, still denoted by λ, show that

λ

{
ω : lim

n

1

n

n∑
t=1

Xθt (ω) = θ

}
= 1.

The class of sets “significantly larger” than B◦ is called a σ-field. It is a field that
has been closed, or completed, under countable limit operations. There is a useful

intuitive analogy to the metric completion theorem, which adds new points for each

of the non-convergent Cauchy sequences. The σ-field adds new sets for each of the

non-convergent Cauchy sequences of sets.

Homework 4.5. Do one of the following two:

1. Show that the complement of the set of ω such that limn
1
n

∑n
t=1X

θ
t (ω) = θ is

negligible.

2. Do any 4 problems from the end of [3, Ch. 1, §1].

4.2. The basics of σ-fields. Recall that F◦ is a field if
1. S∞, ∅ ∈ F◦,
2. if A ∈ F◦, then Ac ∈ F◦,
3. if (Am)

M
m=1 ⊂ F◦, then ∩Mm=1Am ∈ F◦.

Since (∩mAm)c = ∪mAcm (and you should check this) and fields contains the
complements of all of their elements, we can replace “∩Mm=1Am ∈ F◦” by “∪Mm=1Am ∈
F◦” in the third line above.

Definition 4.1. A class F of subsets of a set Ω is a σ-field if
1. S∞, ∅ ∈ F ,
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2. if A ∈ F , then Ac =∈ F ,
3. if (Am)m∈N ⊂ F , then ∩m∈NAm ∈ F .

(∩mAm)c = ∪mAcm implies that we can replace “∩m∈NAm ∈ F” by “∪m∈NAm ∈ F”
in the third line.

Verbally, a σ-field is a field that is closed under countable unions and intersections.

If An ⊂ An+1 for all n ∈ N, then we write An ↑ A where A = ∪nAn. In much the
same way, if An ⊃ An+1 for all n ∈ N, then we write An ↓ A where A = ∩nAn. If
F is a field, then being closed under these two monotonic operations is the same as
being a σ-field.

Lemma 4.2. If F is a field, then F is a σ-field iff it is closed under monotone
unions iff it is closed under monotone intersections.

Proof: If F is a σ-field, then it is closed under all countable unions and intersections,
whether or not they are monotonic. Suppose that F is a field that is closed under
monotonic unions and let (An) be an arbitrary sequence of sets in F , nested or not.
Define Bn = ∪nm=1Am. Since F is a field, each Bn ∈ F , and Bn ⊂ Bn+1, so that
∪nBn ∈ F . But ∪nBn = ∪nAn. The proof for intersections replaces each “∪” by
“∩,” and replaces “Bn ⊂ Bn+1” with “Bn ⊃ Bn+1.”

Factoids:

1. 2Ω is a σ-field, it is the largest possible.

2. {∅,Ω} is a σ-field, it is the smallest possible.
3. If each Fα ⊂ 2Ω is a σ-field, then ∩αFα is a σ-field.
4. If A ⊂ 2Ω, then σ(A) := ∩{F : F is a σ-field, A ⊂ F} is the smallest σ-field
containing A. It is called the σ-field generated by A. It is denoted σ(A).

Of particular interest for us is the σ-field B := σ(B◦). B is called the Borel
σ-field in honor of Emile Borel who created a great deal of the mathematics we are

studying.

There are two kinds of limit operations for sequences of sets that we will use fairly

regularly. Let (An)n∈N ⊂ F , F a σ-field. The set of points that are in all but at
most finitely many of the An is called “[An a.a.],” where “a.a.” stands for “almost
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always.” The set of points that are in infinitely many of the An is called “[An i.o.],”

where “i.o.” stands for “infinitely often.”

There is a close connection to the ideas of lim infn rn and lim supn rn when rn is a

sequence in R. We will use these notions often. We start with

Lemma 4.3. If rn is a bounded, monotonically increasing sequence (i.e. rn ≤ rn+1),

then limn rn exists and is equal to sup{rn : n ∈ N}.

Proof: Since {rn : n ∈ N} is a bounded set, it has a supremum, call it r. By the
definition of the supremum, for all ε > 0, there exists an rNε ∈ {rn : n ∈ N} such
that rNε > r − ε. Since the sequence is monotonically increasing, for all n ≥ Nε,
rn > r − ε. Since all of the rn are less than or equal to r (by the definition of a
supremum), for all n ≥ Nε, |rn − r| < ε, so that rn → r.

If rn is a bounded, monotonically decreasising sequence, we can replace “sup” by

“inf” in Lemma 4.3. This leaves us ready for

Definition 4.4. For a bounded sequence rn,

lim sup
n

rn := lim
m
sup{rn : n ≥ m}, and lim inf

n
rn := lim

m
inf{rn : n ≥ m}.

Let sm = sup{rn : n ≥ m}, and note that sm is monotonically decreasing. There-
fore, by Lemma 4.3, it has a limit, specifically inf{sm : m ∈ N}. Turning things
around, let tm = sup{rn : n ≥ m}, and note that tm is monotonically increasing.
Therefore, by Lemma 4.3, it has a limit, specifically sup{tm : m ∈ N}.
By the way, the last paragraph shows that we could just as well have used

“inf supn” for “lim supn” and “sup infn” for and “lim infn.”

To get to the connection to sets and the ideas of a.a. and i.o., let rn be a bounded

sequence, and define An = (−∞, rn| (which means that I am identifying, i.e. declar-
ing equivalent, the interval (−∞, rn] and the interval (−∞, rn), though this identi-
fication is just an emphemeral thing).

Homework 4.6. Let rn be a bounded sequence, and define An = (−∞, rn| ⊂ R.
1. (−∞, lim infn rn| = ∪m ∩n≥m An,
2. (−∞, lim supn rn| = ∩m ∪n≥m An, and
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3. (−∞, lim infn rn| ⊂ (−∞, lim supn rn|.

More generally,

Homework 4.7. For any sequence An of subsets of a non-empty Ω,

1. [An a.a.] = ∪m ∩n≥m An.
2. [An i.o.] = ∩m ∪n≥m An.
3. [An a.a.] ⊂ [An i.o.].

Sometimes [An a.a.] is called lim infnAn and [An i.o.] is called lim supnAn. This

should now make sense.

Homework 4.8. Do problems [3, Ch. 1, §2, 1, 4, 11]. These are about the relation
between the maxima and minima of indicator functions and unions and intersections,

filtrations, and separable σ-fields respectively.

Homework 4.9. Do problems [3, Ch. 1, §4, 1, 2, 5]. These are about the relation
between the lim inf’s and lim sup’s of sequences of indicator functions and [An a.a.]

and [An i.o.], about properties of [An a.a.] and [An i.o.], and about convergence of

sets in the sense that P (An∆A)→ 0 respectively.

If the An belong to a σ-field F , then each Bm = ∩n≥mAn ∈ F , implying that
∪mBm ∈ F , so that [An a.a.] ∈ F .

Homework 4.10. If (An)n∈N ⊂ F and F is a σ-field, then [An i.o.] ∈ F .

Of particular interest to us right now is the case where the An ∈ B◦ and B is
σ(B◦). The σ-field B is called the Borel σ-field in honor of Emile Borel. More
factoids:

1. Aθ = {ω : limn 1n
∑n
t=1X

θ
t (ω) = θ} ∈ B.

2. AC = {ω : ( 1
n

∑n
t=1X

θ
t (ω))n∈N is a Cauchy sequence } ∈ B.

3. Alim inf = {ω : lim infn( 1n
∑n
t=1X

θ
t (ω))n∈N exists in R } ∈ B.

4. Alim sup = {ω : lim supn( 1n
∑n
t=1X

θ
t (ω))n∈N exists in R } ∈ B.

5. AC ⊂ Alim inf ∩Alim sup.
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6. All of the above continue to be true if we replace 1
n

∑n
t=1X

θ
t (ω) by an arbitrary

sequence of functions fn(ω) where fn(ω) depends only on ω through the values

of the first n Xt’s. [This uses the special structure of {0, 1}∞ a bit more than
the previous factoids.]

So, we’ve got the probability λ defined on B◦ and we would like to know λ(E) for
all of these E ∈ B = σ(B◦). This requires extending λ from its domain, B◦, to the
larger domain B. Ad astra.

4.3. Extension of probabilities. An essential result for limit theorems in proba-

bility theory is that every countably additive probability on a field F◦ has a unique
extension to F = σ(F◦). Making this look reasonable by using the metric comple-
tion theorem is the aim of the present subsection.

Recall that a probability P on F◦ is countably additive if P (Ω) = 1, for any
disjoint collection {A1, . . . , AM} ⊂ F◦, P (∪mAm) =

∑
m P (Am), and if An is a

sequence in F◦ with An ↓ ∅, then limn P (An) = 0.

Definition 4.5. A pseudo-metric on a set X is a function d : X×X → R+ such
that

1. d(x, y) = d(y, x), and

2. d(x, y) + d(y, z) ≥ d(x, z).

Define x ∼d y if d(x, y) = 0. This is an equivalence relation, d defines a metric on
the set of ∼d equivalence classes.
The function dP (A,B) = P (A∆B) is a pseudo-metric on F◦. By way of a parallel,

think of a utility function u : RL+ → R. We can define du(x, y) = |u(x) − u(y)| to
be the utility distance between x and y. The indifference surfaces are exactly the

du-equivalence classes, and du measures the (utility) distance between indifference

curves. Just as the consumer is indifferent between some very different points x

and y, we will be indifferent between sets of points that differ only by a set of

probability 0, even if that set having probability 0 is contains “many” points. To be
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quite explicit, we will not distinguish between sets A and B such that dP (A,B) =

P (A∆B) = 0.

The essential idea is to complete the pseudo-metric space (F◦, dP ), to discover
that this is the pseudo-metric space (F , dP ), and to note that P (E) = dP (E, ∅)
extends P from F◦ to F .
The proof of the following Theorem uses a number of principles and Lemmas that

are important in their own right. Of these, the “good sets” principle and the first

Borel-Cantelli Lemma will be seen most often in the future. Remember that Lemma

4.2 told us that fields that are also closed under monotonic unions or intersections

are σ-fields.

Theorem 4.6. If P is countably additive on F , then the pseudo-metric space (F , dP )
is complete. If F◦ is a field generating F , then F◦ is dP -dense in F .
Proof: There are two parts to the proof, denseness and completeness.
Denseness: Let us first show that F◦ is dP -dense in F . This part of the proof uses
the “good sets” principle. One names a class of sets having the property you want,
show that it contains a generating class of sets, and that it’s a field closed under
monotonic unions or intersections. This means that the class of good sets is a σ-field
containing a generating class, i.e. it’s contains the σ-field we’re interested in.
Let G denote the class of “good sets” for this proof, that is,

G = {E ∈ F : (∀ε > 0)(∃Eε ∈ F◦)[d(E,Eε) < ε]}.
The three steps are to show that G contains a generating class, is a field, and is
closed under monotonic unions.

G contains F◦:
There’s not much to prove here, if E ∈ F◦, take Eε = E.

G is a field:
1. ∅,Ω ∈ G because ∅,Ω ∈ F◦.
2. Suppose that E ∈ G. Pick ε > 0 and Eε such that dP (E,Eε) < ε. For any
A,B ∈ F , dP (A,B) = dP (Ac, Bc) so that the complement of Eε ε-approximates
Ec, so that Ec ∈ G.

3. Suppose (Am)
M
m=1 ⊂ G. Pick arbitrary ε > 0 and Em ∈ F◦ such that dP (Am, Em) <

ε/M . Because (∪Mm=1Am)∆(∪Mm=1Em) ⊂ ∪Mm=1(Am∆Em) and P (∪Mm=1(Am∆Em)) ≤∑M
m=1 ε/M = ε, dP (∪Mm=1Am,∪Mm=1Em) < ε.
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G is closed under monotonic unions:
Let An ↑ A, An ∈ G, we need to show that A ∈ G. For this purpose, pick an

arbitrary ε > 0. We must show that there exists a set in G at dP -distance less
than ε from A. The sequence A \ An ↓ 0 so that P (An) ↑ P (A). Therefore we
can pick N such that for all n ≥ N , |P (A) − P (An)| < ε/2. Because An ⊂ A,

dP (A,An) = |P (A)− P (An)| < ε/2. Since AN ∈ G, we can pick an Aε/2N ∈ F◦ such
that dP (A

ε/2
N , AN) < ε/2. By the triangle inequality, dP (A,A

ε/2
N ) ≤ dP (A,AN) +

dP (AN , A
ε/2
N ) < ε/2 + ε/2 = ε. Since A

ε/2
N ∈ F◦, A ∈ G.

That completes the denseness part of the proof.

Completeness: Let An be a Cauchy sequence in F . We will take a subsequence
Ank such that limk dp(A,Ank) = 0 for some A ∈ F . By the triangle inequality,
dP (An, A)→ 0 because An is Cauchy.
First, the inductive construction of the subsequence: Pick n1 such that for all

n,m ≥ n1, dP (An, Am) < 2
−1. Given that nk−1 has been picked, pick nk > nk−1

such that for all n,m ≥ nk, dP (An, Am) < 2
−k. Note that

∑
k dP (Ank , Ank+1) =∑

k P (Ank∆Ank+1) <
∑
k 2
−k <∞. We will use the following result, which is quite

important in its own right (despite the fact that it is so easy to prove).

Lemma 4.7 (Borel-Cantelli). If P is countably additive and An is a sequence in F
such that

∑
n P (An) <∞, then P ([An i.o.]) = 0.

Proof: For every m, [An i.o.] ⊂ ∪n≥mAn so that P ([An i.o.]) ≤ P (∪n≥mAn) ≤∑
n≥m P (An). Since

∑
n P (An) <∞,

∑
n≥m P (An) ↓ 0 as m ↑ ∞.

Let us relabel each Ank as Ak so that we don’t have to keep track of two levels
of subscripts. From the Borel-Cantelli Lemma and the construction, we know that
P [Ak∆Ak+1 i.o.] = 0.
Second, we are going to show that P ([Ak i.o.] \ [Ak a.a.]) = 0. Since [Ak a.a.] ⊂

[Ak i.o.], this means that dP ([Ak a.a.], [Ak i.o.]) = 0, i.e. that the two sets are in the
same dP -equivalence class. The proof that P ([Ak i.o.] \ [Ak a.a.]) = 0 consists of
showing that

([Ak i.o.] \ [Ak a.a.]) ⊂ [Ak∆Ak+1 i.o.].
Pick an arbitrary ω ∈ ([Ak i.o.] \ [Ak a.a.]). Since ω 6∈ [Ak a.a.], we know that
ω ∈ [Ack i.o.]. Therefore, ω ∈ [Ak i.o.] and ω ∈ [Ack i.o.]. This means that for
infinitely many k, either ω ∈ Ak \ Ak+1 or ω ∈ Ak+1 \ Ak. This is exactly the same
as saying that ω ∈ [Ak∆Ak+1 i.o.].
Finally, we need to show that dP (AK , A) → 0. (By the way, in doing this, we’ll

be doing most of the homework problem [3, Ch. 1, §4, 5].) For each K, let
BK = ∩k≥KAk, and CK = ∪k≥KAk.
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By the definitions of [Ak a.a.] and [Ak i.o.], we have, for all K,

BK ⊂ [Ak a.a.] ⊂ [Ak i.o.] ⊂ CK ,

and

BK ↑ [Ak a.a.] while CK ↓ [Ak i.o.].
By countable addtivity, this means that

P (Bk) ↑ P [Ak a.a.] and P (CK) ↓ P [Ak i.o.].
Since we have established that P [Ak a.a.] = P [Ak i.o.], this means that |P (CK) −
P (BK)| ↓ 0. Now, dP (AK , A) = P (AK \ A) + P (A \ AK). The proof is complete
once we notice that

(AK \ A) ∪ (A \ AK) ⊂ (CK \BK).
To be completely explicit, we therefore have dP (AK , A) ≤ P (CK \BK) ↓ 0.
This Theorem means that, if we have already extended P to F , then any field F◦

with F = σ(F◦) is dP -dense in F , and F is the metric completion of F◦. Ideally, the
next set of arguments start with the metric space (F◦, dP ), P countably additive,
sets (F̂◦, d̂P ) as its metric completion, and then identifies the “points” in F̂◦ \ F◦
as dP -equivalence classes of elements of F = σ(F◦) that are not already contained
in F◦. It certainly seems plausible that this is doable, and it is. Unfortunately, the
only way that I have found to do it is tricky beyond its worth.4 So, I will (a bit

shamefacedly) simply state the Theorem, a very good proof is in [3, Ch. 1, §3].
Theorem 4.8. Every countably additive P on a field F◦ has a unique, countably
additive extension to F = σ(F◦).
4.4. The Tail σ-field and Kolmogorov’s 0-1 Law. Fix a probability space

(Ω,F , P ), F a σ-field and P a countably additive probability on F . If Fα and
F are σ-fields and Fα ⊂ F , then we say that Fα is a sub-σ-field of F .
Definition 4.9. A collection {Cα : α ∈ A} of subsets of F is independent if for
any finite A′ ⊂ A and any choices Eα ∈ Cα, P (∩α∈A′Eα) = Πα∈A′P (Eα).

4If I ever knew an easy version of the argument, I have forgotten it. The only one I can presently
find passes through a transfinite induction argument. The π−λ Theorem and the Monotone Class
Theorem used in most proofs are clever ways to avoid doing transfinite induction.
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You should learn (or have learned) examples showing that pairwise independence

is weaker than independence.

Theorem 4.10. If the collection {Cα : α ∈ A} of subsets of F is independent and
each Cα is closed under finite intersection, then the collection {σ(Cα) : α ∈ A} is
independent.

Before proving Theorem 4.10, we’ll prove the (very useful) π − λ theorem.
Definition 4.11. A class L of subsets of Ω is called a λ system (or “une classe
σ-additive d’ensembles” if you follow the French tradition) if

1. Ω ∈ L,
2. L is closed under disjoint unions,
3. L is closed under proper differences, i.e. if E1, E2 ∈ L and E1 ⊂ E2, then

E2 \ E1 ∈ L, and
4. if En is a sequence in L and En ↑ E, then E ∈ L.
Notice that any σ-field is a λ system. There is another parallel: The intersection

of an arbitrary collection of λ systems is again a λ system, and 2Ω is a λ system.

This shows that any class C of subsets of Ω is contained in a smallest λ system,
called the λ system generated by C and written L(C).
A class P of subsets of Ω is called a π system if it is closed under finite intersection.

Theorem 4.12 (π-λ). If P is a π system, then L = L(P) = σ(P).
Proof: Since L ⊂ σ(P), it is enough to show that L is a σ-field. We know that
Ω ∈ L. Since Ω ∈ L and L is closed under proper differences, E ∈ L implies
(Ω \ E) = Ec ∈ L. Since L is a monotone class, all that is left is to show that L is
closed under intersection. This involves a clever bit of dodging around.
Let

G1 = {E ∈ L : E ∩ F ∈ L for all F ∈ P},
and let

G2 = {E ∈ L : E ∩ F ∈ L for all F ∈ L}.
Note that if G2 = L, then L is closed under finite intersection.
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First we will verify that G1 is a λ system containing P, which tells us that G1 = L.
Then, we note that G1 = L implies that P ⊂ G2. Finally, we verify that G2 is also a
λ system, so that G2 = L.
G1 is a λ system containing P: G1 contains P because P is closed under finite
intersection. It contains Ω by inspection. If E1 and E2 are disjoint elements of G1,
then E1 ∩ F ∈ L and E2 ∩ F ∈ L for all F ∈ P. Since L is closed under disjoint
unions and E1 ∩ F and E2 ∩ F are disjoint and belong to L, (E1 ∩ F ) ∪ (E2 ∩ F ) =
(E1 ∪ E2) ∩ F ∈ L for all F ∈ P. Proper differences and monotonic increasing
sequences are checked by the same logic.
G2 is a λ system containing P: From the previous step, P ⊂ G2. Verifying that
G2 is a λ system is direct.
If the collection {Cα : α ∈ A} of subsets of F is independent and each Cα is closed

under finite intersection, then the collection {σ(Cα) : α ∈ A} is independent.
Proof of Theorem 4.10: For any α, let Dα be the set of E ∈ σ(Cα) with the
property that for any finite collection Eα′ ∈ Cα′ indexed by distinct α′,

P (E ∩
⋂
α′
Eα′) = P (E)× Πα′P (Eα′).

Each Cα′ is a π system, and it is pretty easy to show that Dα is a λ system be-
cause the Cα′ are closed under finite intersection. From this (and the π-λ The-
orem) we conclude that Dα = σ(Cα) for any α. This means that the collection
{σ(Cα), {Cα′ : α′ 6= α}} is independent. Reapplying this theorem as often as needed
(remembering that each σ(Cα) is closed under finite intersection), for any finite
B ⊂ A, the collection {{σ(Cα) : α ∈ B}, {Cα′ : α′ 6∈ B}} is independent. Going
back to look at the definition of independence, we see that we’re done.

Definition 4.13. Let {Bn : n ∈ N} be a collection of sub-σ-fields of F := σ(Bn :
n ∈ N), let Fn = σ{Bm : n ≤ m}, and let Fn+ = σ{Bm : n ≥ m}. The σ-
field Fτ := ∩nFn+ is called the tail σ-field or the tail σ-field generated by
{Bn : n ∈ N}.

Theorem 4.14 (Kolmogorov’s 0-1 Law). If the Bn are independent and A ∈ Fτ ,
then P (A) = 0 or P (A) = 1.

Proof: Applying Theorem 4.10, for each n ∈ N, Fn is independent of Fn+. Since
Fτ ⊂ Fn+, for each n ∈ N, Fn is independent of Fτ . Applying Theorem 4.10 again,
F = σ(Fn : n ∈ N) is independent of Fτ . Now, pick an arbitrary A ∈ Fτ . Since

46



Fτ ⊂ F , we know that A is independent of itself so that P (A) ·P (A) = P (A∩A) =
P (A). The only numbers satisfying a2 = a are 0 and 1.

4.5. Measurability and the importance of the tail σ-field. Fix a probability

space (Ω,F , P ) and a complete separable metric space (csm) (M, d). LetM denote
the Borel σ-field on M , that is, the σ-field generated by the open balls B(x, ε).

[Warning: if you ever end up interested in a non-separable metric space, this is

not the definition of the Borel σ-field, [21] shows that the distinction between this

definition and the other one is useful for stochastic process theory.] The following is

important WAY beyond what you might guess from the simplicity of the definition.

Definition 4.15. A function X : Ω → M is simple if X takes on only finitely

many values. A simple function X is measurable if, for each point x ∈ M ,

X−1(m) ∈ F . More generally, a function X is measurable if there exists a se-
quence Xn of simple measurable functions such that P{ω : Xn(ω) → X} = 1. A
measurable function is also called a random variable.

So, a measurable function is almost a simple measurable function.

If Xn is any sequence of simple measurable functions, then

C = {ω : Xn(ω) converges } ∈ F
by arguments we gave above (remember, (M, d) is complete so that convergent

sequences are Cauchy sequences . . . ). Therefore, asking that P{ω : Xn(ω) →
X} = 1 is asking that P (C) = 1 and naming the function X(ω) as the limit of the
Xn(ω) for each ω ∈ C.
Definition 4.16. For any sequence of measurable functions X,Xn, we say that Xn

converges to X P -almost everywhere (a.e.) if P{Xn → X} = 1.
Homework 4.11. If X,Xn is any sequence of random variables, then {Xn → X} ∈
F .
Homework 4.12. If Xn converges to X a.e., then for all ε > 0,

P{ω : d(Xn(ω), X(ω)) > ε} → 0.
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One reason that this definition is important is that a measurable X gives rise to

a countably additive probability on (M,M).
Lemma 4.17. X is measurable if and only if X−1(A) ∈ F for each A ∈M.
If X−1(A) ∈ F for each A ∈ M, then we can define the µ = X(P ) by µX(A) =

P (X−1(A)). The measurable functions are exactly the functions that give rise to

countably additive probabilities on their csm range spaces, exactly the ones for which

we can assign a probability to the event that X ∈ A.
Homework 4.13. Check that µX is countably additive.

Proof of Lemma 4.17: Suppose that X is measurable and simple. Then it is easy.
Now suppose that X is not simple. Let G be the class of sets A ∈ M such that
X−1(A) ∈ F . Then show that G is a σ-field. Finally, show that X−1(B(x, ε)) ∈ F
by showing that for all ω ∈ C, X−1(B(x, ε)) = [X−1n (B(x, ε)) a.a.].
Suppose that X−1(A) ∈ F for each A ∈M. Follow your nose.
This result motivates the general definition (useful for contexts when we don’t

have a complete separable metric space structure around).

Definition 4.18. A function f from a measure space (X,X ) to another measure
space (Y,Y) is measurable if f−1(Y) ⊂ X .
Measurable functions of measurable functions are measurable.

Lemma 4.19. If f is a measurable function from (X,X ) to space (Y,Y) and g is
a measurable function from (Y,Y) to space (Z,Z), then f(g(x)) is a measurable
function from (X,X ) to (Z,Z).
We started with a σ-field and defined the set of measurable functions with respect

to that σ-field. We can start with a measurable function, X, and define σ(X) ⊂ F
to be X−1(M).
Definition 4.20. If G is a sub-σ-field of F , then X is G-measurable if σ(X) ⊂ G.
We may later need one of the many results due to Doob: Y is σ(X)-measurable

iff Y = f(X) for some measurable f . If we need it, we’ll prove it. Meanwhile,
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Definition 4.21. A collection of random variables (Xα)α∈A is independent if the

collection of σ-fields (σ(Xα))α∈A is independent.

Homework 4.14. If Xn is a sequence of independent R-valued random variables

and cn is a sequence of constants, then the following sets have probability either 0

or 1 :

1. {cnXn is convergent},
2. {∑n |cnXn| <∞},
3. {lim supN

∑N
n=1 cnXn =∞}, and

4. {lim supN cN · (
∑N
n=1Xn) = 1}.

Homework 4.15. Show that
∑
n
1
n
= ∞. If Xn is a sequence of independent ran-

dom variables with P (Xn = 1) = P (Xn = −1) = 1
2
, find in [3] the result that

P (Rn converges ) = 1 where the sequence of random variables RN :=
∑N
n=1

1
n
Xn.

The sequence Yn =
1
n
Xn is an example of what is called a martingale. We’ll have

occasion to talk about martingales later.

4.6. Detour #3: Failures of Countable Additivity and the Theory of Choice
Under Uncertainty.

4.6.1. Background. Here is a sketch of a canonical probability on the integers that fails
countable additivity, it is the “uniform” distribution. Any finitely additive probability on
N is a function P : 2N → [0, 1]. As such it can be represented as an infinitely long vector
(P (E))E∈2N , this is a point in the infinite product space ×E∈2N [0, 1]. This is a really long
vector.

Homework 4.16. 2N is uncountable.

Let Pn be a sequence of finitely additive probabilities. There is a very deep mathe-
matical result (Alaoglu’s Theorem) that says that any infinite set in ×E∈2N [0, 1] has an
accumulation point, P . Further, it says that

1. if Pn(E) is convergent for some E ∈ 2N, then at any accumulation point, P (E) =
limn Pn(E), and more generally,

2. if f : [0, 1]M → R is continuous, and f(Pn(E1), Pn(E2), . . . , Pn(EM )) is convergent,
then at any accumulation point P ,

f(P (E1), . . . , P (EM )) = lim
n
f(Pn(E1), Pn(E2), . . . , Pn(EM )).
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Homework 4.17. Any accumulation point of a sequence of finitely additive probabilities
must be finitely additive. [Hint: pick the right f above.]

Let Λ be an accumulation point of the sequence Λn where Λn is the uniform distribution
on {1, 2, . . . , n}.
Homework 4.18. Show that

1. If E is finite, then Λ(E) = 0.
2. Λ({evens}) = 1

2 .
3. Λ fails to be countably additive.
4. Λ is non-atomic – for any ε > 0, it is possible to partition N into finitely many sets
Ei with Λ(Ei) < ε.

For any bounded R-valued function g on N is Λ-integrable, and the integral can be
defined by ∫

N

g(n) dΛ(n) = lim
m↑∞

+m2m∑
i=−m2m

i

2m
Λ{g ∈

[
i

2m
,
i+ 1

2m

)
}.(2)

Homework 4.19. Suppose that two R-valued functions f and g on N satisfy satisfy
f(m) > g(m) ≥ 0 for all m ∈ N and limm→∞ f(m) = 0. Then f and g are bounded
and ∫

N

f(m) dΛ(m) =

∫
N

g(m) dΛ(m) = 0(3)

One generally avoids defining conditions by their failure, but . . .

Definition 4.22. A probability P fails conglomerability if there exists a countable par-
tition π = {E1, E2, . . . } of N some event E ∈ 2N, and constants k1 ≤ k2 such that
k1 ≤ P (E|Ei) ≤ k2 for each Ei ∈ π, yet P (E) < k1 or P (E) > k2.
Failing conglomerability means that there is an event E, and a partition π with the

property that, conditional on each and every event in π, the posterior probability of E is
above (or below) the prior probability of E.

Theorem 4.23. P is countably additive iff it is conglomerable.

Homework 4.20. Prove at least one direction of this Theorem.

A simple version of Lebesgue’s Dominated Convergence Theorem will be useful:

Homework 4.21. Suppose that Xn is a sequence of random variables on a probability
space (Ω,F , P ) with countably additive P and that the Xn are dominated in absolute value
a.e., i.e. there exists some M > 0 such that for all n, P{|Xn| ≤M} = 1.
1. If Xn → X a.e., then

∫
Xn dP →

∫
X dP .

This can also be written as

lim
n

∫
Xn dP =

∫
lim
n
Xn dP,

50



that is, limit signs and integral signs can be interchanged when P is countably additive
and the Xn are uniformly bounded. [The uniform boundedness condition can be
relaxed in important ways.] The countable additivity cannot be relaxed at all.

2. If P fails to be countably additive, then there exists a sequence of uniformly bounded
random variables converging a.e. to some X with

∫
Xn dP 6→

∫
X dP .

To summarize, Dominated Convergence is equivalent to countable additivity.

4.6.2. Savage preferences over acts and gambles. For our present purposes, acts are func-
tions from the measure space (N, 2N) to a set of consequences C, always taken to be a
csm, most often C taken to be a bounded interval in R. The subjective probability P on
2N may vary, but will often be Λ.

Homework 4.22. All acts are measurable.

Under study are preferences (complete, transitive orderings) on the set of acts. Savage
preferences, �, over acts can be represented by a bounded utility function u : C → R such
that

[a1 � a2]⇔
[∫
u(a1(n)) dΛ(n) ≥

∫
u(a2(n)) dΛ(n)

]
.

The function u is call the expected utility function. Preferences over constant acts are
particularly simple, if a1(n) ≡ c1 and a2(n) ≡ c2, then a1 � a2 iff u(c1) ≥ u(c2).
We are going to assume, unless explicitly noted, that the preferences are non-trivial, i.e.

there exists c1 and c2 such that c1 � c2, and that any Savage preferences are continuous,
that is, u is a continuous function.

Definition 4.24. Preferences over acts respect strict dominance if

[(∀n ∈ N)[a1(n) � a2(n)]]⇒ [a1 � a2].
Savage preferences with finitely additive probabilities do not generally respect strict

dominance.

Homework 4.23. Let �Λ be the Savage preferences over acts into the space of conse-
quences [−1,+1] be given by the subjective probability Λ and a continuous, strictly in-
creasing utility function u : [−1,+1] → R. Let �P be the Savage preferences with the
same u and a countably additive subjective probability P . Suppose that a1(n) ↓ 0 and
a1(n) > a2(n) ≥ 0 so that a1 strictly dominates a2.
1. a1 ∼Λ a2.
2. a1 �P a2.
A money pump is a sequence of acts that an agent would pay you to acquire with the

unfortunate property that at the end of the process of taking them all, the agent would
pay you to take them back. You get them coming and going, pumping money out of them.
Money pumps exist when the subjective probabilities are not countably additive.
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Some more terminology: Gambles are simple acts, that is, acts that take on only finitely
many values, usually 2. Recall that for A ∈ 2N, 1A(m), the indicator function of the set
A, is the function taking on the value 1 if m ∈ A and 0 if m 6∈ A.

Homework 4.24 (Adams). With the state space N, let Q be the countably additive prob-
ability satisfying Q{n} = 2−n. The subjective probability is P = (Q + Λ)/2 so that
P{n} = 2−(n+1) and ∑∞n=1 P{n} = 1

2 < P (N) = 1. The set of consequences is [−1,+1],
and the expected utility function is U(x) = x so the agent is risk neutral. Fix some
r ∈ (12 , 1). For each n ∈ N, consider the gamble gn that loses r if Bn = {n} occurs, and
that pays 2−(n+1) no matter what occurs, that is,

gn(m) = 2
−(n+1) − r · 1Bn(m).

1. Each gn has a strictly positive expected value.
2. For all N ,

∑N+1
n=1 gn �P

∑N
n=1 gn �P 0.

3. 0 �P
∑∞
n=1 gn.

4. For each N and m in the state space, let XN (m) = u(
∑N
n=1 gn(m)) and let X(m) =

u(
∑∞
n=1 gn(m)). The sequence X,XN of random variables is uniformly bounded.

Show that for all m, XN (m)→ X(m), but that limN
∫
Xn dP 6=

∫
X dP .

The following money pump involves a countably infinite construction, but doesn’t re-
quire countably many separate decisions. Part of the following problem involves figuring
out what it means to prefer one act over another conditional on some event. It should be
obvious to you if you think about the Bridge-Crossing Lemma.

Homework 4.25 (Dubins, then Seidenfeld and Schervish). Let S = ∪{(i, j) : i ∈ N, j =
0, 1}, so that S is the union of two copies of the integers, indexed by j = 0 or j = 1.
The σ-field is 2S. Let E = ∪i{(i, 1)} be the event that j = 1, and for i ∈ N. Let
Ei = {(i, 0), (i, 1)} so that π = {E1, E2, . . . } is a partition of S. Conditional on E,
suppose that P (i, 1) = 1/2(Q + Λ)(i) where Q and Λ are as in the previous problem.
Conditional on Ec, suppose that P = Q.

1. For any i ∈ N, P ({(i, 0)}) = 12 · 2−i and P ({(i, 1)}) = 1
4 · 2−i.

2. For each Ei, P (E|Ei) = 1
3 even though P (E) =

1
2 , so P is not conglomerable in π.

3.
∑
Ei∈π P (Ei) =

3
4 < 1 even though π is a partition.

4. Suppose that a1 deliver a consequence worth 35 utils in all states while a2 delivers a
consequence worth 0 utils if E occurs and 60 utils if E does not occur. a2 ≺ a1, but
a1 ≺ a2 given any Ei.

5. Let Dn be the complement of ∪Ni=1Ei, and let D = ∩nDn. If P were countably ad-
ditive, then limn

∫
1Dn(m) dP (m) = 1/4 > 0 would imply that P (D) = 1/4 (this of

Lebesgue’s Dominated Convergence Theorem). However, the event D is the empty
set, giving the appearance of a money pump. [If the state space had some represen-
tation of the set D, this paradox would also disappear.]
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In words, a person with the preferences in the previous problem would pay to move
from a2 to a1, and then, conditional on each and every event in a partition of the state
space, pay again to move back.

4.6.3. Resolving the paradoxes. In each of the problems above, the failure of countable
additivity was to blame. One way to get around this failure is to put some flesh on the
observation that “every finitely additive probability is the trace of a countably additive
probability on a larger space.” That is vague, but turns out to cover the essential idea
behind one resolution of the paradoxes.
A bit of a warning here: This part touches on deep mathematics, the guidance that is

given is close to a minimal logically necessary amount to do the one homework problem
here. This can be uncomfortable, but try to see the structures of the arguments.
Fix a measure space (X,X ) (so that X is a non-empty set and X is a σ-field of subsets

of X). There are deep Theorems (due to Stone) showing that there exists a compact

Hausdorff5 space X̂ and a mapping ϕ : X → X̂ such that ϕ(X) is dense in X̂, and, for
each E ∈ X , Ê, defined as the closure of ϕ(E), is both a closed and an open subset of X̂.
The space X̂ is called the Stone space for (X,X ).
Some useful facts about topological spaces (and the compact Hausdorff spaces are very

useful topological spaces) for the next problem:

1. a set is open iff its complement is closed,
2. the finite union of closed sets is closed, equivalently, the finite intersection of open
sets is open,

3. the empty set is both open and closed,
4. every closed subset of a compact space is compact, and finally,
5. if (Fα)α∈A is a collection of closed subsets of a compact space with ∩αFα = ∅, then
∩α′∈A′Fα′ = ∅ for some finite A′ ⊂ A.

Homework 4.26. Let X̂ ◦ = {Ê : E ∈ X}, and let X̂ = σ(X̂ ◦). If P is a finitely additive
probability on X , define P̂ on X̂ ◦ by P̂ (Ê) = P (E).
1. X̂ ◦ is a field of subsets of X̂.
2. If P is a finitely additive probability on X , then P̂ is a countably additive probability
on X̂ ◦, so has a unique countably additive extension to X̂ .

3. Suppose that En ↓ ∅ in X , but that limn P (En) > 0. Show that ∩nÊn 6= ∅ and that
limn P̂ (Ên) = P̂ (∩nÊn). Compare this result with Homework 3.39 (if you took that
detour).

4. An additional property of the Stone spaces is that for any csm (M,d), any measurable

function f : X →M , there exists a continuous function f̂ : X̂ →M with the property
that for any bounded, continuous u : M → R, ∫ u(f(x)) dP (x) = ∫ u(f̂(x̂) dP̂ (x̂).

5A regularity condition that I am not going to explain here.
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Let N̂ be the Stone space for (N, 2N) (which is isomorphic to the Stone-Čech compact-

ification of the integers). For both of the money pumps given above, identify in N̂ the
location of the missing mass that makes the finitely additive money pumps possible.

5. Probabilities on Complete Separable Metric Spaces

Let (X, d) be a complete, separable metric (csm) space and Cb(X) the set of

bounded, continuous R-valued functions on X. The supnorm metric on Cb(X) is

defined by

ρ(f, g) = sup{|f(x)− g(x)| : x ∈ X}.

Lemma 5.1. (Cb(X), ρ) is a complete metric space. [(X, d) need not be complete

or separable for this result.]

Definition 5.2. The space (X, d) has the finite intersection property if for ev-

ery collection {Fα : α ∈ A} of closed subsets of X with ∩α∈AFα = ∅, there is a finite
A′ ⊂ A such that ∩α′∈A′Fα′ = ∅.

Theorem 5.3 (FIP). (X, d) is compact iff it has the finite intersection property.

Proof: Suppose that (X, d) has the fip and let xn be a sequence in X. To show
compactness, we must show that accum(xn) 6= ∅. For each n ∈ N, let Fn = cl {xm :
m ≥ n}. For all finite A′ ⊂ N, ∩n′∈A′Fn 6= ∅. Therefore, ∩nFn 6= ∅. But
accum(xn) = ∩nFn.
Suppose now that for any sequence xn, accum(xn) 6= ∅. Let {Fα : α ∈ A} be a

collection of closed subsets of X with ∩α∈AFα = ∅. For the purposes of establishing
a contradiction, let us suppose that for all finite B ⊂ A, ∩β∈BFβ 6= ∅.
Since ∩α∈AFα = ∅, we know that ∪α∈AGα = X where Gα = F cα is open. We need

an intermediate step.

Lemma 5.4. If (X, d) is separable, there is a countable collection, G = {Gn :
n ∈ N}, of open sets such that every open G is a countable union of the form G =
∪n′∈N′Gn′.
Proof: Let X ′ be a countable dense subset of X and take G to be the set B(x′, q),
x′ ∈ X ′, q ∈ Q++.
Back to the proof, from the Lemma, we know there exists a countable A′′ ⊂ A

such that ∪α′′∈A′′Gα′′ = X. Therefore, ∩α′′∈A′′Fα′′ = ∅. Enumerate A′′ as (αk)k∈N.
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For each k, we know there exists an xk ∈ ∩km=1Fαm . Since each Fαm is closed,
accum(xk) ⊂ Fαm . Therefore accum(xk) ⊂ ∩mFαm . But accum(xk) 6= ∅ contradicts
∩α′′∈A′′Fα′′ = ∅.
5.1. Some examples.

5.1.1. X = N. Let X = N and have the metric e(x, y) = 0 if x = y, d(x, y) = 1 if

x 6= y.

Lemma 5.5. 2N is uncountable.

Proof: Any E ∈ 2N can be identified with a point sE ∈ {0, 1}∞ by defining
zn(sE) = 1E(n), and any s ∈ {0, 1}∞ identifies an element Es ∈ 2N by Es =
{n ∈ N : zn(s) = 1}. We know that {0, 1}∞ is uncountable.

Homework 5.1. (N, e) is a csm, Cb(N) consists of the set of all bounded functions

on N, and (Cb(N), ρ) is not separable. [For any E ∈ 2N, 1E(·) ∈ Cb(N), and if

E 6= F , then ρ(1E, 1F ) = 1.]

5.1.2. X = [0, 1]. Let X = [0, 1] and have the metric d(x, y) = |x − y|. Since X is
compact, every continuous function on X is bounded so we omit the “b” on C(X).

Lemma 5.6. If f ∈ C([0, 1]), then for every ε > 0 there exists a δ such that for all
x, y ∈ [0, 1], if |x− y| < δ, then |f(x)− f(y)| < ε.

Proof: Use the FIP Theorem.

Homework 5.2. (C([0, 1]), ρ) is a csm.

5.1.3. X = ×tΩt, each Ωt finite. Let Ω = ×t∈NΩt where each Ωt is finite. For each
t, define ρt(ωt, ω

′
t) to be 1 if ωt 6= ω′t and equal to 0 otherwise. Define a metric on Ω

by

d(ω, ω′) =
∑
t

2−tρt(zt(ω), zt(ω′)).

Homework 5.3. If ωn is a sequence in Ω, then d(ωn, ω) → 0 iff for all t, there
exists an N such that for all n ≥ N , zt(ωn) = zt(ω). Further, (Ω, d) is compact.
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Let C◦ be the field of cylinder sets in S∞, S finite.

Homework 5.4. Show that every cylinder set is closed. Using the finite intersection

property, show that every finitely additive probability on C◦ has a unique countably
additive extension to C = σ(C◦).

Suppose now that each Ωt = S for some finite S. Let u : S → R. For each
s ∈ ×tS and β ∈ (0, 1), define Uβ(s) =

∑
t β
tu(zt(s)).

Homework 5.5. Uβ ∈ C(×tS).

If (Xi, di)i∈I is a finite collection of metric spaces, we define the product metric d

on X = ×iXi by d(x, y) = maxi di(xi, yi).

Homework 5.6. If each (Xi, di)i∈I in a finite collection of metric spaces is compact,

then so is (X, d).

Consider a finite normal form game Γ = (Si, ui)i∈I . Define H0 = {h0} for some
point h0, and for t ≥ 1, inductively define H t = ×τ≤t−1S. Let Σi,t be the finite set
SH

t

i . Strategies for i in the infinitely repeated version of Γ are Σi = ×∞t=0Σi,t. From
Homework 5.3, we know that there is a nice metric di on Σi making (Σi, di) compact.

From Homework 5.6, there is a metric d on Σ = ×iΣi making (Σ, d) compact. Let
O(σ) be the outcome associated with play of the strategy vector σ ∈ Σ. Suppose
that each i ∈ I has a discount factor 0 < βi < 1. Define Ui(σ) =

∑
t β
t
iui(zt(O(σ))).

Homework 5.7. Ui(·) ∈ C(Σ).

This means that infinitely repeated, finite games are a special case of compact

metric space games.

Definition 5.7. A game Γ = (Ai, ui)i∈I is a compact metric space game if there

exists metrics di such that

1. each (Ai, di) is a compact metric space, and

2. each ui ∈ C(A, d), A = ×iAi, d(s, t) = maxi di(si, ti).
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5.2. Borel probabilities. With (X, d) a csm, let X be the σ-field generated by
the open sets. A Borel probability is a countably additive probability on X . The
set of Borel probabilities on (X,X ) will be denoted ∆(X).
Recall that for E ⊂ X, Eε = ∪x∈EB(x, ε) is the ε-ball around the set E. There

are two, very different metrics on ∆(X). The variation norm (or strong) distance is

dV (P,Q) = sup
E∈X
|PE −QE|,

and the Prohorov (or weak) distance is

dw(P,Q) = inf{ε > 0 : (∀E ∈ X )[PE < QEε + ε, & QE < PEε + ε ]}.
Homework 5.8. If dV (P

n, P )→ 0, then dw(P n, P )→ 0. Let P n be point mass on
the point 1/n ∈ [0, 1] and let P be point mass on 0. Show that dw(P n, P ) → 0 but
dV (P

n, P ) ≡ 1.
It is a true fact (as opposed to that other kind of fact), that dw(P

n, P ) → 0 iff∫
f dP n → ∫

f dP for all f ∈ Cb(X).
Theorem 5.8. If (X, d) is compact, then (∆(X), dw) is compact.

Proof: Fill it in.

5.3. Consistency and learnability. Suppose that (Θ, d) is a csm, and for each

θ ∈ Θ there is a distribution µθ ∈ ∆(X), X ⊂ N. Let Pθ be the distribution on
XN given by i.i.d. draws from the distribution µθ. Let Q ∈ ∆(Θ) be the prior
distribution. Let Qt be the Bayesian updating of Q after observing t draws from Pθ.

An interesting question is for what pairs (Q, µθ) does dw(Qt, δθ)→ 0 Pθ a.e. This
is the question of the consistency of Bayes updating.

Another, closely related use of the word “consistency” shows up in statistics. Let

θ̂t ∈ Θ be a sequence of estimators of θ, θ̂t based on the first t observations from Pθ.

The sequence of estimators is consistent if for all values of θ, θ̂t → θ Pθ a.e.

In any case, consistency of Bayes updating in the JKR framework does not imply

the learnability of µθ, and the learnability of µθ does not imply the consistency of

Bayes updating.
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5.4. Compact metric space game. Fix a compact metric space game Γ = (Ai, ui)i∈I .

Let ∆i be i’s set of (Borel) mixed strategies, and let ∆ = ×i∆i. For each µ ∈ ∆, let
Bri(µ) denote i’s set of mixed strategy best responses to µ, Br

p
i (µ) denote i’s set of

pure strategy best responses to µ.

Lemma 5.9. For each i ∈ I, let Xi be a dense subset of Ai. µ ∈ ∆ = ×i∆i is an
equilibrium iff for all ai ∈ Xi, ui(µ) ≥ ui(µ\ai).

Proof: Fill it in.

Lemma 5.10. Further, for each µ ∈ ∆, Brpi (µ) is a non-empty closed subset of Ai,
and Bri(µ) is the closed, convex set of probabilities putting mass 1 on Br

p
i (µ).

Theorem 5.11. Every compact metric space game has a non-empty, closed set of

equilibria.

Proof: First, non-emptiness.
Let εn ↓ 0. Let X ′i,n be a finite εn-net for Ai. Let Xi,n = ∪m≤nX ′i,m so that Xi,n is

also a finite εn-net for Ai. Let Xi = ∪nXi,n so that for each i, Xi is dense in Ai.
Let Eq(Γn) be the equilibrium set for the finite game (Xi,n, ui)i∈I . For each

n ∈ N, pick a µn ∈ Eq(Γn) ⊂ ∆ = ×i∆i(§i). Since ∆ is compact, we know that
accum(µn) 6= ∅. Pick µ ∈ accum(µn), and relabeling the sequence if necessary,
assume that dw(µn, µ)→ 0. We will show that µ is an equilibrium.
Suppose, for the purposes of establishing a contradiction, that µ is not an equi-

librium. Then ∃i ∈ I, ∃ai ∈ Xi, ∃ε > 0 such that
ui(µ\ai) > ui(µ) + ε.

We will show that for sufficiently large n, this implies that µn is not an equilibrium
for Γn, establishing the contradiction.
We know that ui(µn\ai) → ui(µ\ai) and ui(µn) → ui(µ). Pick N1 such that for

all n ≥ N1, |ui(µn\ai)− ui(µ\ai)| < ε/3 and |ui(µn)→ ui(µ)| < ε/3. Note that this
means that

ui(µn\ai) > ui(µn) + ε/3.

Pick N2 such that for all n ≥ N2, ai ∈ Xi,n. For all n ≥ max{N1, N2}, µn is not an
equilibrium by the last displayed inequality.
Second, closedness. Let µn be a sequence of equilibria converging to µ, if µ is not

an equilibrium, repeat the previous logic with a couple of tiny changes.
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5.5. Detour #4: Equilibrium Refinement for compact metric space games.

5.5.1. Perfect equilibria for finite games. To begin with, let A be a finite set with the
metric d(a, b) = 1 if a 6= b. Let A be the corresponding Borel σ-field. Note that (A, d) is
compact, and that A = 2A.
Homework 5.9. In this finite case, show that for µ, µn ∈ ∆(A), dV (µn, µ) → 0 iff
dw(µn, µ)→ 0 iff

∑
a∈A |µn(a)− µn(a)| → 0.

Let Γ = (Ai, ui)i∈I be a finite game. For each ∆i = ∆(Ai), define di(µi, νi) =∑
ai∈Ai |µi(ai) − νi(ai)|. For each µ ∈ ∆ = ×i∆i, let Bri(µ) ⊂ ∆i be the set of i’s

mixed best response to µ. Recall that Bri(µ) is the convex hull of the pure strategy best

responses to µ. Let ∆fsi ⊂ ∆i denote the set of full support µi, that is, the set of µi
such that µi(ai) > 0 for each ai ∈ Ai.
Definition 5.12 (Selten, Myerson). For ε > 0, an ε-perfect equilibrium for a Γ is a

vector µε = (µεi)i∈I in ∆fs = ×i∈I∆fsi such that for each i ∈ I,
di(µ

ε
i , Bri(µ

ε)) < ε.(4)

A vector µ ∈ ∆ is a perfect equilibrium if it is the limit as εn → 0 of εn-perfect
equilibria.

The requirement that each µεi be a full support distribution captures the notion that
anything is possible, that any player may “tremble” and play any one of her actions. The
requirement that each µεi be within di-distance ε of Bri(µ

ε) is, for finite games, equivalent
to each agent i putting mass at least 1 − ε on Bri(µε). From Homework 5.9, as we send
ε to 0, this is equivalent to both strong and weak closeness of the µεi to Bri(µ

ε). The
situation is different for infinite games where the strong and the weak distances are very
different, as you saw in Homework 5.8.

5.5.2. Perfect equilibria for continuous payoff, compact metric space games. Turning to
infinite games, each Ai is assumed to be compact and each ui is assumed to be jointly
continuous on ×iAi. The set of mixed strategies for i, ∆i, is the set of (Borel) probability
measures on Ai, while ∆

fs
i is the set of probability measures assigning strictly positive

mass to every non-empty open subset of Ai. Weak and strong distance from best response
sets can be very different.

Homework 5.10. Consider a single agent game played on [0, 1] with continuous payoffs
satisfying u(0) = 0, u′(x) = −1 for 0 < x < ε and u′(x) = 1

2ε/(1 − ε) for ε < x < 1.
1. Graph u (moderately carefully).
2. Show that point mass on 0 is the unique equilibrium strategy.
3. If νεi is the uniform distribution on the interval [0, ε], then dw(ν

ε
i , Bri) = ε but

ds(ν
ε
i , Bri) = 1.

4. Show that δε, point mass on ε is the worst choice, but satisfies dw(δε, Bri) = ε.

5. Characterize the set of µεi ∈ ∆fsi satisfying ds(µεi , Bri) < ε.
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Definition 5.13. A strong ε-perfect equilibrium is a vector µε = (µεi)i∈I in ∆fs such
that for each i ∈ I,

ρsi (µ
ε
i , Bri(µ

ε)) < ε,(5)

whereas a weak ε-perfect equilibrium satisfies

ρwi (µ
ε
i , Bri(µ

ε)) < ε.(6)

A vector µ ∈ ∆ is a strong (respectively weak) perfect equilibrium if it is the weak
limit as εn → 0 of strong (respectively weak) εn-perfect equilibria.
From Homework 5.9, strong and weak perfect equilibria are the same when the Ai are

finite.
Let KY denote the class of non-empty, compact subsets of a metric space (Y, d). For

A,B ∈ KY , define c(A,B) = inf{ε > 0 : A ⊂ Bε} where Bε = {y ∈ Y : infb∈B d(y, b) < ε}.
The Hausdorff distance between compact sets is defined by

dH(A,B) = max{c(A,B), c(B,A)}.
Homework 5.11. Suppose that (Y, d) is compact.

1. Every closed F ⊂ Y belongs to KY .
2. Every finite subset of Y belongs to KY .
3. Show that every finite ε-net Xε (see above) satisfies dH(X

ε, Y ) < ε.
4. The finite subsets of Y are dH -dense in KY .
5. Show that (KY , dH) is a csm.

Another way to define perfect equilibria for compact metric space games uses the limit-
of-finite (lof) approximations approach. For Bi ⊂ Ai, Bri(Bi, µ) denotes i’s best responses
to µ when i is constrained to play something in the set Bi.

Definition 5.14. For each i ∈ I and δ > 0, Bδi denotes a finite subset of Ai within
(Hausdorff distance) δ of Ai. For ε, a vector µ

(ε,δ) ∈ ×i∈I∆fsi (Bδi ) is an (ε, δ)-perfect
equilibrium with respect to Bδ = ×i∈IBδi if for all i ∈ I,

dδi (µ
(ε,δ)
i , Bri(B

δ
i , µ

(ε,δ))) < ε,(7)

where dδi (µi, νi) =
∑
ai∈Bδi |µi(ai) − νi(ai)|. We say that µ is a limit-of-finite (lof)

perfect equilibrium if it is the weak limit as (εn, δn)→ (0, 0) of (εn, δn)-perfect equilibria
with respect to some sequence Bδ

n
.

Homework 5.12. Consider the 1 person game Γ with Ai = {0}× [0, 1]∪{1}× [0, 1] ⊂ R2,
and suppose that ui(x, r) = x for x ∈ {0, 1}, r ∈ [0, 1]. For each n, let Dn = {k/n : 0 ≤
k ≤ n} and set Bi,n = {0} × D2n ∪ {1} × Dn. For p ∈ [1,∞) and all finitely supported
µi, νi ∈ ∆i, define the metrics mp(µi, νi) = (

∑
ai
|µi(ai)− νi(ai)|p)1/p. Suppose that mp is

substituted for dδi in Definition 5.14. For which values of p will every (εn, 1/n)-equilibria
converge to the equilibrium set of Γ?
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Definition 5.15. A pure strategy, ai ∈ Ai is weakly dominated for i if there exists a
mixed strategy, µi ∈ ∆i such that for all a ∈ A, ui(a\ai) ≤ ui(a\µi) and for some a′ ∈ A,
ui(a

′\ai) < ui(a′\µi). A vector µ ∈ ∆ is limit admissible if for all i ∈ I, µi(Oi) = 0,
where Oi denotes the interior of the set of strategies weakly dominated for i.
The following problems are stylized versions of a differentiated commodity Bertrand

pricing game in which agent i’s best response is always to undercut agent j by a finite
amount. Players’ payoffs in these examples are based on the following continuous function
on [0, 12 ]× [0, 12 ].

v(x, y) =

{
x if x ≤ 1

2y
y(1−x)
2−y if 12y < x

(8)

You should graph a couple of sections of this function to see what is going on. We
will think of x as agent i’s strategy and y as agent j’s strategy. Note that for all x and
y, v(x, y) ≥ 0, and if either x = 0 or y = 0, then v(x, y) = 0. Thus, i is indifferent
between all actions when y = 0. If y > 0, then v(·, y) increases from 0 with slope 1 to
its unique maximum at x = 1

2y, and decreases linearly on (
1
2y,

1
2 ]. (The negative slope

is chosen so that v(1, y) = 0.) Thus, for y > 0, the unique solution to the problem
max{v(x, y) : x ∈ [0, 12 ]} is x = 1

2y.

Homework 5.13. A1 = A2 = [0,
1
2 ], and the utility functions are given by ui(ai, aj) =

v(ai, aj) where v is given above.
6Show that the unique equilibrium for this game is (a1, a2) =

(0, 0), but for each agent, the strategy ai = 0 is weakly dominated.

This shows that putting mass 0 on weakly dominated strategies and equilibrium exis-
tence are not compatible.

Homework 5.14. Let A1 = A2 = [−12 , 12 ]. Set u1(a1, a2) = u2(a1, a2) = 0 if either a1 or
a2 is in [−12 , 0), otherwise let the payoffs be as in Homework 5.13. Show that
1. The strategy µ = (µ1, µ2) is a Nash equilibrium if µi([−12 , 0]) = 1, i = 1, 2.
2. The interior of i’s weakly dominated strategies is [−12 , 0), so any refinement of Nash
equilibrium that satisfies existence and is limit admissible puts mass 1 on the point
(0, 0).

3. All of the weakly dominated strategies are equivalent.

It is clear that every strong perfect equilibrium is a weak perfect equilibrium because
dw(µ, ν) ≤ ds(µ, ν). The inclusion can be strict.
Homework 5.15. Consider the two person game Γ with A1 = {−1} ∪ [0, 1] and A2 =
[0, 1]. Agent 2’s payoffs are strictly decreasing in her own actions and independent of 1’s
actions: u2(a1, a2) = −a2, while Agent 1’s payoffs are is given by7

u1(a1, a2) =


1
8a2 if a1 = −1
a1 if a1 ∈ [0, 12a2)

a2 − a1 if a1 ∈ [12a2, 1]
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(In a continuous time entry game interpretation of this model, a1 = −1 corresponds to the
first firm entering the market long before the second firm can.)
This problem asks you to fill in the steps to prove:
In any Nash equilibrium for Γ, 2 puts mass 1 on her strict best response set, {0}, and

1 puts mass 1 on the two point set {−1, 0}. The only strong perfect equilibrium for this
game is (a1, a2) = (−1, 0), while (0, 0) is a weak perfect equilibrium.
1. Verify that the Nash equilibrium set is as described.
2. (−1, 0) is the unique strong perfect equilibrium: let (µε1, µε2) be a strong ε-perfect
equilibrium. Because 0 is 2’s strict best response, µε2({0}) ≥ 1 − ε. Show that, for
small ε, 1’s payoff to any a1 ≥ 0 is less than or equal to 0 against any such µε2. By
contrast, show that against any such µε2, 1’s payoffs to a1 = −1 is strictly positive.
Taking limits, show that (−1, 0) is the unique strong perfect equilibrium.

3. (0, 0) is a weak perfect equilibrium: show that it is possible to construct full support
distributions for agent 2 that have two properties: they put mass greater than or equal
to 1 − ε on a 2ε-neighborhood of 2’s strict best response set; and 1’s best response
is strictly positive. [Pick ε > 0. Let νε2 denote a full support distribution and set
µε2 = (1− ε) · δε+ ε ·νε2 where δε denotes point mass on the point ε in A2. Against µε2,
agent 1’s payoff to a1 = −1 is equal to 18 times the mean of µε2, and this is bounded
above by 18 [(1− ε) · ε+ ε · 1] = 1

8 [2 · ε− ε2] = 1
4ε+ o, where o is a second order term

in ε. To calculate a lower bound for agent 1’s payoff to playing a1 =
1
2ε against µ

ε
2,

note that u1(
1
2ε, ·) ≥ −12ε. Thus, agent 1’s payoff to a1 = 1

2ε is greater than or equal

to (1 − ε)12ε + ε(−12ε) = 1
2ε − o, strictly greater than 14ε + o for small ε, so 1’s best

response is strictly positive.]

Homework 5.16. A1 = A2 = {−1} ∪ [0, 1]. The utility functions are symmetric,

ui(ai, aj) =

 0 if ai = −1
2 if ai, aj ∈ [0, 1]
−ai if aj = −1 and ai ∈ [0, 1]

1. The strategy ai = 0 weakly dominates every other strategy.
2. (a1, a2) = (−1,−1) is a lof perfect equilibrium. [For i = 1, 2, let Bni be a sequence of
a finite approximations converging to Ai such that for all n ∈ N, (0, 0) 6∈ (Bn1 , Bn2 ).
If j is playing aj = −1, then because Bni does not contain the point 0, ai = −1 is a
strict best response.]

3. Verify that {−1} is an open subset of the set of weakly dominated strategies. This
means that this lof perfect equilibrium violates limit admissibility.

Definition 5.16. For i ∈ I, let Fi denote a finite subset of Ai and let F denote ×i∈IFi.
(a) The sequence of approximations Bn is anchored at F if F ⊆ Bn for all n ∈ N.
(b) A vector of strategies µ = (µi)i∈I is a lof perfect equilibrium anchored at F
if it satisfies Definition 5.14 above, with the added restriction that the sequence of
approximations, Bδ

n
, be anchored at F .
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(c) A vector of strategies µ = (µi)i∈I is an anchored perfect equilibrium if µ ∈
∩FPer(F ) where Per(F ) denotes the set of lof perfect equilibria anchored at F and
the intersection is taken over all finite F .

Anchored perfect equilibria are immune to the inclusion of any finite set of pure strate-
gies in the sequence of finite approximations to the infinite strategy spaces.

Homework 5.17. Show that (−1,−1) is not an anchored lof perfect equilibrium in Home-
work 5.16.

There is improvement in anchoring the lof approach, but it still does not rid us of many
weakly dominated equilibria.

Homework 5.18. In this two firm entry game, (γ, t) represents entry in market γ at
time t, γ = α, β. Firms have resources sufficient to enter only one market. Firm 2 is
indifferent between markets and times of entry, while firm 1 wishes to enter market α if
2 enters, and wishes to enter market β at the same time as 2 if 2 enters that market.
The pure strategies are A1 = A2 = {{α} × [0, 1]} ∪ {{β} × [0, 1]} with typical element
(mi, ai), mi ∈ {α, β}, ai ∈ [0, 1]. 2’s utility function is constant at 0. 1’s utility function
is u1((m1, a1), (β, a2)) = −|a1−a2|, while u1((α, a1), (α, a2)) = 0 and u1((β, a1), (α, a2)) =
−1.
1. For every a1 ∈ [0, 1], the strategy (α, a1) is weakly dominated by (β, a1) and by no
other strategy.

2. No (β, a1) is weakly dominated for 1.
3. ((α, a), (α, a)) is an anchored perfect equilibrium for any a ∈ [0, 1]. [Fix an arbitrary
a ∈ [0, 1] and finite set F = F1 × F2 ⊂ A1 × A2. Let S ⊂ [0, 1] be the set of points,
s, such that (mi, s) ∈ Fi for some i and/or some mi. Pick two sequences of finite
subsets of [0, 1], Cn and Dn converging to [0, 1], such that Cn, Dn and S are pair-
wise disjoint. Let Bni = {{α} × Cn} ∪ {{β} × Dn} for i = 1, 2. Choose cn in Cn
converging to a. Because (α, cn) is a strict best response for 1 against the play of
(α, cn) by 2, ((α, cn), (α, cn)) is a perfect equilibrium for the finite game played on
Bn1 ×Bn2 .]

5.5.3. Proper equilibria for finite games. From the musty recesses of your brain, pull out
the following

Definition 5.17 (Myerson). For a finite game, µε ∈ ∆ is an ε-proper equilibrium if
(a) it is an ε-perfect equilibrium, and
(b) for all i ∈ I, ai, bi ∈ Ai, if ui(µε\ai) < ui(µε\bi), then µεi(ai) ≤ ε · µεi(bi).

A vector µ ∈ ∆ is a proper equilibrium if it is the limit as εn → 0 of εn-proper equilibria.
Enough of that finite stuff.
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5.5.4. LOF proper equilibria for continuous payoff, compact metric space games. From the
lof perspective, there is no problem defining properness: we simply replace the word “per-
fect” in Definition 5.14 with “proper.” For finite games, proper equilibria are a non-empty
subset of the perfect equilibria, so the same holds for lof proper equilibria or anchored lof
proper equilibria. For lof proper equilibria, the choice of a particular large finite game
may determine the set of predictions, even in the anchored approach.

Homework 5.19. A1 = A2 = [−1,+1]. 1’s payoffs achieve a strict maximum at a1 = 0,
u1(a1) = −|a1|. 2’s payoffs are given by u2(a1, a2) = a1 · a2.
1. The Nash equilibria for the game involve 1 playing 0 and 2 playing any mixed strategy.
2. For every anchoring set F , there is a sequence Bn ⊇ F of finite approximations to
A such that (0,+1) is the only limit of proper equilibria for the games played on Bn.

3. For every anchoring set F , there is a sequence Bn ⊇ F of finite approximations to
A such that (0,−1) is the only limit of proper equilibria for the games played on Bn.

5.5.5. Weak and strong proper equilibria for continuous payoff, compact metric space
games. It may not be possible to simultaneously satisfy infinitely many relative weight
conditions on a mixed strategy.

Example 5.1. There is a single agent whose action space is [0, 2]. Her strictly decreasing
utility function is u(a) = −a so that the unique Nash equilibrium is 0. For the partition
A = {[0, 12), [12 , 34), . . . , [1, 112 ), [112 , 134 ), . . . , {2}} of [0, 2], there is no ε ∈ (0, 1) and full
support distribution, µ, on [0, 2] with the property that µ(A) ≤ ε · µ(B) for all pairs
A,B ∈ A with u(A)� u(B) (where for S, T ⊂ R, we write S � T if the supremum of the
numbers in S is less than the infimum of the numbers in T ).

The resolution of this difficulty is to require that the relative weight conditions hold for
finite measurable partitions of the action spaces. The final part of the definition requires
that the set of proper equilibria not depend on any particular finite partition by ‘anchoring’
the finite partitions.

Definition 5.18. Let ε > 0 and P = (Pi)i∈I denote a vector of finite partitions of (Ai)i∈I .
We say that a vector of strategies, µ = µε(P), is a strong (weak) ε-proper equilibrium
relative to P if it is
(a) a strong (weak) ε-perfect equilibrium, and if
(b) for all i ∈ I, if ui(µ\Ri)� ui(µ\Si), Ri, Si ∈ Pi, then µi(Ri) ≤ ε · µi(Si).

We say that µ is a strong (weak) proper equilibrium relative to P if it is the
limit of strong (weak) εn-proper equilibria relative to P, εn → 0. Finally, a vector of
strategies, µ = (µi)i∈I , is a strong (weak) proper equilibrium if µ ∈ ∩PPros(P)
(µ ∈ ∩PProw(P)) where Pros(P) (Prow(P)) denotes the strong (weak) proper equilibria
relative to P and the intersection is taken over all finite measurable partitions P.
There are equilibria that are weakly proper even though they are not even strongly

perfect.
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Homework 5.20. Show that the strategies (0, 0) are a weak proper equilibrium in Home-
work 5.15. [Fix a measurable partition P2 = {P2,1, . . . , P2,k} of A2 = [0, 1]. The strategy
of the proof is to take a sequence of normal random variables with mean ε and variance ε2,
condition their densities to the interval [0, 1], and to perturb the resulting random variable
so that each element of P2 is assigned positive mass. Choose the perturbation so that as
ε converges to 0 the relative probability relations required by properness are satisfied. In
response to a distribution which is nearly point mass at ε, the payoffs to agent 1 of playing
−1 are essentially 18ε, while the payoffs to playing 12ε are essentially 12ε so that 1’s best
response set is strictly positive.]

5.5.6. One of the existence and closure proofs. The following shows of one more use of the
fip property characterization of compactness.

Theorem 5.19. The set of anchored perfect (proper) equilibria is a closed, nonempty set
of the Nash equilibria.

Homework 5.21. Using the following outline, prove Theorem 5.19.

1. For ε, δ > 0, let clP (ε, δ, F ) denote the closure of the set of ε-perfect (resp. proper)
equilibria for finite games where each i ∈ I uses the strategy set Bδi ⊇ Fi within
Hausdorff distance δ of Ai. By Selten [1975] (resp. Meyerson [1978]), this set is not
empty.
Show that the collection {clP (ε, δ, F ) : ε > 0, δ > 0} has the finite intersection

property.
2. Because ∆ is compact, the set P (F ) :=

⋂
ε,δ>0{clP (ε, δ, F )} is not empty. To finish

the proof for perfect (proper) equilibria anchored at F , show that
(a) P (F ) is a subset of the Nash equilibria,
(b) P (F ) is equal to the set of perfect (resp. proper) equilibria anchored at F .

3. Show that the collection {P (F ) : F a finite subset of A} has the finite intersection
property in the compact set ∆. Hence the set of anchored perfect equilibria,

⋂
F P (F ),

is not empty.

5.5.7. Questions about infinitely repeated finite games. Let (Si, ui)i∈I be a finite game and
µ = (µi)i∈I a proper equilibrium for (Si, ui)i∈I . Let Γ be the compact metric space game
with continuous payoffs that arise when (Si, ui)i∈I is repeated infinitely often and payoffs
to the history h ∈ S∞ are given by Ui(h) =

∑
t(βi)

tui(zt(h)), 0 < βi < 1.
Question: What do the finite ε-nets of the repeated game strategy sets look like? [This

is known, see [8].]
Question: is σi,t ≡ µi a strong (weak, lof, anchored lof) proper equilibrium? [This is

not known so far as I know, but I’d bet the answer is yes in each case except, possibly,
the lof proper case.]

5.5.8. Stability by Hillas. A gtc (game theory correspondence) from a compact, convex
metric space to itself is one that is non-empty valued, convex valued, and has a closed
graph. Such correspondences are known to have fixed points. From this one can derive
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the existence of Nash equilibria in compact metric space games just as one does for finite
games.
Define the strong Hillas distance between two gtc’s mapping ∆ to ∆ by

ρs(Ψ,Ψ
′) = sup

x∈X
dH,s(Ψ(x),Ψ

′(x)),

where dH,s is the Hausdorff distance using ds to measure the distance between strategies.
To define the weak Hillas distance between two gtc’s, replace dH,s by dH,w,

ρw(Ψ,Ψ
′) = sup

x∈X
dH,w(Ψ(x),Ψ

′(x)),

where dH,w is the Hausdorff distance using dw to measure the distance between strategies.
Let Br be the correspondence µ 7→ ×iBri(µ).

Homework 5.22. Br is a gtc.

Definition 5.20. A closed set E ⊂ Eq(Γ) has the strong (respectively weak) property (S)
if it satisfies

(S) for all sequences of gtc’s Ψn, ρs(Ψ
n, Br) → 0, (respectively ρw(Ψn, Br) →

0), there exists a sequence σn of fixed points of Ψn such that dw(σ
n, E)→ 0.

A closed set E ⊂ Eq(Γ) is strongly (respectively weakly) Hillas stable if it has the strong
(respectively weak) property (S) and no closed, non-empty, proper subset of E has the
strong (respectively weak) property (S).

This can be said as “E is (Hillas) stable if it is minimal with respect to the strong
(weak) property (S).” It can be shown that

Theorem 5.21. Strong (weak) Hillas stable sets exist for compact, continuous games.
Further, every strong (weak) Hillas stable set is a subset of the strongly (weakly) perfect
equilibria and contains a strongly (weakly) proper equilibrium.

However, the only hard copy of the proof is lost, and electronic copies cannot be found

either.

5.6. Detour #5: Stochastic versions of Berge’s Theorem of the Maximum. Fix
a probability space (Ω,F , P ). Let (Θ, d) be a compact metric space and C(Θ) the set of
continuous, real-valued functions on Θ. Let C denote the Borel σ-field on C(Θ).
For f, g ∈ C(Θ), and α, β ∈ R, we define the functions αf + βg and f · g by

(αf + βg)(x) = αf(x) + βg(x), (f · g)(x) = f(x) · g(x).
Homework 5.23. If f, g ∈ C(Θ), then αf + βg, f · g ∈ C(Θ).
Definition 5.22. A class of functions A ⊂ C(Θ) is an algebra if for f, g ∈ A, and
α, β ∈ R, the functions αf+βg, f ·g ∈ A. The class A separates points if for all θ 6= θ′,
there is a functon f ∈ A such that f(θ) 6= f(θ′). The class A contains the constant
functions if for all α ∈ R, α · 1 ∈ A where 1 is the function identically equal to 1.
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Remember that C(Θ) has the metric ρ defined by ρ(f, g) = maxθ |f(θ)− g(θ)|. We can
substitute “max” for “sup” because we’ve assumed that Θ is compact.
The following is very important. We’ll use it for some relatively trivial stuff, but we

won’t prove it.

Theorem 5.23 (Stone-Weierstrass). If Θ is compact and A ⊂ C(Θ) is a dense subset of
an algebra that separates points and contains the constants, then clA = C(Θ).
The following uses the Stone-Weierstrass theorem to show that (C(Θ), ρ) is a csm when

Θ is compact.

Homework 5.24. Let Θ′ be a countable dense subset of Θ. For each θ′ ∈ Θ′ and each
rational q ≥ 0, define fθ′,q(θ) = max{1− qd(θ, θ′), 0}.
1. Show that fθ′,q ∈ C(Θ).
2. Show that the collection A′ = {f(θ′, q) : θ′ ∈ Θ′, q ∈ Q+} separates points and
contains the constants.

3. Let Pn,Q denote the set of polynomials of degree n having rational coefficients. For
all n, if p ∈ Pn,Q and f1, . . . , fn ∈ C(Θ), then p(f1, . . . , fn) ∈ C(Θ).

4. Show that ∪nPn,Q(A′) is a countable set that is dense in an algebra that separates
points and contains the constants.

5. (C(Θ), ρ) is a csm.

Definition 5.24. The evaluation mapping is the function e : C(Θ) × Θ → R defined
by

e(f, θ) = f(θ).

Remember that product spaces are given product metrics, in particular, C(Θ) × Θ is
given the metric d((f, θ), (g, θ′)) = max{ρ(f, g), d(θ, θ′))}
Homework 5.25. The evaluation mapping is continuous.

Let X : Ω → C(Θ) be a random variable, that is, for all E ∈ C, X−1(E) ∈ F . For
ω ∈ Ω, let Xω be the value of X at ω. We are interested in the stochastic maximization
problem

max
θ∈Θ
Xω(θ),

and the behavior of the related

Ψ(ω) := {θ∗ ∈ Θ : (∀θ′ ∈ Θ)[Xω(θ∗) ≥ Xω(θ)]}.
For f ∈ C(Θ),

Ψ(f) := {θ∗ ∈ Θ : (∀θ′ ∈ Θ)[f(θ∗) ≥ f(θ)]}.
Thus, we are using Ψ(ω) as short-hand for Ψ(Xω).

Homework 5.26. Suppose that Ψ(f) contains only one element, call it θf . For every
ε > 0, there exists a δ > 0 such that for all g satisfying ρ(f, g) < δ, d(θf ,Ψ(g)) < ε.
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Theorem 5.25. If Xn : Ω → C(Θ) is a sequence of random variables, P (Xn → f) = 1,
θ̂n(ω) is a measurable function with the property that P (θ̂n ∈ Ψ(Xn(ω)) = 1, and Ψ(f)
contains only one element, call it θf , then P (hthetan → θf ) = 1.
Homework 5.27. Prove Theorem 5.25.

Homework 5.28. Let ES ⊂ C(Θ) denote the set of f such that Ψ(f) contains only one
element.

1. Show that ES ∈ C.
2. Show that the function θ̂ : ES → Θ defined by {θ̂(f)} = Ψ(f) is continuous, hence
measurable.

Theorem 5.26. Suppose that X : Ω→ C(Θ) satisfies P (X ∈ ES) = 1. If Xn : Ω→ C(Θ)
is a sequence of random variables, P (Xn → X) = 1, θ̂n(ω) is a measurable function with
the property that P (θ̂n ∈ Ψ(Xn(ω)) = 1, then P (θ̂n → Ψ(X)) = 1.
Homework 5.29. Prove Theorem 5.26.

[THIS DETOUR IS NOT QUITE FINISHED YET]

6. Fictitious Play and Related Dynamics

Fictitious play gives a deterministic dynamic process with a state space which is

the product of an infinite and a finite state space. We are mostly, but not exclusively,

interested in the behavior of the finite part of the state space. For these purposes,

fix a finite game Γ = (Si, ui)i∈I and let S = ×iSi.

6.1. The basics. The “beliefs” of each i ∈ I at times t ∈ {0, 1, 2, . . .} are points
γit ∈ ∆fs(S−i) where for any finite set E, ∆fs(E) = {m ∈ RE++ :

∑
e∈Em(e) = 1} is

the set of strictly positive probabilities on E. The “weight” given to beliefs by i at

time t is wit ∈ R++. Given beliefs γt = (γit)i∈I , a vector st ∈ ×iBrPi (γit) is picked. To
be complete, if more than one of i’s pure strategies are indifferent given beliefs γit ,

i will pick according to some ordering of the points in Si. We now specify how the

vector (γt, wt) is updated. If at time t, the vector s happens, then i’s beliefs-weight

vector at time t+ 1 is

(γit+1, w
i
t+1) = (

wit
wit + 1

γit +
1

wit + 1
δs−i, w

i
t + 1).
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Let wt = (w
i
t)i∈I . The whole dynamic process (st, γt, wt) is specified once the initial

conditions (γ0, w0) are given. This class of dynamic processes is called “fictitious

play.”

Letting es−i ∈ RS−i denote the unit vector in the s−i direction. Setting κit(s−i) =
witγ

i
t(s−i) and κ

i
t+1 = κit + es−i gives another formulation of the dynamic that is

sometimes easier to keep track of since one simply adds 1 to κit(s−i) if s−i happens,

and add 0 otherwise.

Definition 6.1. A pure strategy equilibrium s∗ ∈ S is strict if for all i ∈ I, BrPi (s∗) =
{s∗i }.

Homework 6.1. Suppose that s∗ is a strict equilibrium for Γ. Show that for each

i ∈ I, there is an open G−i ⊂ ∆fs(S−i) containing δs∗−i such that if there exists a T
with γT ∈ ×iG−i, then for all t ≥ T , γt ∈ ×iG−i and st = s∗.

Given any sequence s ∈ S∞, we construct the sequence Dt of empirical distribu-
tions as follows:

Dt(a) =
1
t

t∑
τ=1

1zτ (s)=a,

so that Dt ∈ ∆(S). For each i ∈ I and Dt ∈ ∆(S), define Dit ∈ ∆(S−i) to be the
marginal distribution of Dt on S−i, that is, by

Dit(s−i) =
∑
ti∈Si

Dt(ti, s−i).

The following problem should be compared with Homework 6.1

Homework 6.2. If Dt → δs∗ and s results from fictitious play, then s
∗ is an equi-

librium of Γ.

If s is arbitrary, in particular, if it need not come from fictitious play, then the

behavior of the sequence Dt in the compact metric space ∆(S)
∞ can be pretty

arbitrary.
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Homework 6.3. Without assuming that s results from fictitious play, give an s ∈
S∞

1. such that s is not convergent but Dt converges to a point in ∆(S),

2. such that Dt is non-convergent,

3. such that accum(Dt) = ∆(S), and

4. such that Dt is non-convergent, but Qt :=
1
t

∑t
τ=1Dt is convergent.

Homework 6.4. If s ∈ S∞ results from fictitious play starting at arbitrary initial
conditions (γ0, w0), then for all i ∈ I, i’s beliefs are asymptotically empirical,
that is, ‖γit −Dit‖ → 0. [Note that this is true whether or not Dt converges.]

Homework 6.5. Consider the 2× 2 game
Left Right

Up (0, 0) (1, 1)

Down (1, 1) (0, 0)

Find the sets of initial conditions (γ0, w0) for which the corresponding fictitious

play process has the property

1. that each Dit converges,

2. that Dt converges, and

3. that Dt converges to a Nash equilibrium.

For ν ∈ ∆(S), let margSi(ν) be the marginal distribution of ν on Si.

Lemma 6.2. If for all i ∈ I, margSi(Dt)→ σi, then (σi)i∈I is a Nash equilibrium.

6.2. Bayesian updating and fictitious play. One of the interpretations of fic-

titious play is that all the players are convinced that everyone else is playing some

iid mixed strategy. We know, from Nachbar [18], that optimization against correct

beliefs is difficult to arrange unless one starts with an equilibrium. Here, we’ve got

a model of players who act a bit psychotically — they believe that everyone else is

an automaton, and may persist in this belief in the face of a huge amount of evi-

dence to the contrary. Before going through that interpretation in detail, it is worth
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“reviewing” Bayesian updating and Bayesian consistency, both with and without

the assumption of an absolute conviction that the distribution of what one sees over

time is iid.

6.2.1. The finite case. Let S be a finite set, S∞ = ×∞t=1 the countable product of
S. For any t ≥ 1, let ht = (x1, . . . , xt) be a point in St, and A(ht) the cylinder set
determined by ht,

A(ht) = {s : (z1(s), . . . , zt(s) = (x1, . . . , xt)}.
For any m ∈ ∆(S), let m∞ denote the distribution on S∞ defined by

m∞(A(ht) = Πtn=1m(xn),

that is, m∞ is the distribution of an infinite sequence of iid draws distributed ac-

cording to m. Let λ ∈ ∆(S) denote the true distribution governing an iid set of
draws, and let µ ∈ ∆(∆(S)) denote a prior distribution over the possible λ’s. With
beliefs µ, the prior probability that ht happens is

Prµ(ht) :=

∫
∆(S)

m∞(A(ht)) dµ(m).

Definition 6.3. For any Borel P on the csm (X, d), the support of P is supp(P ) =

∩{F : F is closed and P (F ) = 1}, the smallest closed set having probability 1.

Having a large support set means that a probability is “everywhere.” The follow-

ing, the proof of which uses only additivity and the fact that a set is closed iff its

complement is open, is meant to indicate why this is a sensible interpretation.

Lemma 6.4. supp(µ) = X iff for all non-empty, open G, µ(G) > 0.

Homework 6.6. If supp(µ) = ∆(S), then for all t and all ht, Prµ(ht) > 0.

Don’t get too excited by the previous result, if µ = δG and G(s) > 0 for all s,

then for all t and all ht, Prµ(ht) > 0. We need Prµ(ht) > 0 in order to use Bayes

law to update beliefs after every possible partial history ht.
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After seeing ht, the prior beliefs µt are updated to µt(·|ht), defined by

µt(E|ht) =
∫
E
m∞(A(ht)) dµ(m)∫

∆(S)
m∞(A(ht)) dµ(m)

=

∫
E
m∞(A(ht)) dµ(m)

Prµ(ht)
.

Definition 6.5. The beliefs-truth pair (µ, λ) is consistent if

λ∞{s : limt ρw(µt(·|A(z1(s), . . . , zt(s))), λ) = 0} = 1,
that is, almost always, Bayesian updating leads to the truth.

It is true (but not as easy to prove as it should be) that if µ is full support, then for

all λ, (µ, λ) is consistent. When we look in ∆(S), the set of full support distributions

is “most” of the set of distributions. In this sense, consistency is generic. However,

even for consistent beliefs-truth pairs, the convergence can be awfully slow.

Homework 6.7. Suppose that S = {H, T} so that ∆(S) = [0, 1], with x ∈ [0, 1]
giving the probability of H. Suppose that µ ∈ ∆([0, 1]) has the cdf Fµ(x) = xr.

Suppose that λ corresponds to x = 0, that is, to T with probability 1.

1. Find, as a function of r, the rate at which ρw(µt, λ) → 0. [Intuitively, for r
large, the convergence should be very slow.]

2. Suppose that µ is replaced by a probability ν having the properties that ν(Q) = 1,

for all q ∈ Q∩ [0, 1], ν(q) > 0, and for all x ∈ [0, 1], Fν(x) ≤ Fµ(x). Show that

(ν, λ) is consistent.

If beliefs are not full support, consistency may fail.

Homework 6.8. Suppose that S = {H, T} so that ∆(S) = [0, 1], with x ∈ [0, 1]
giving the probability of H. Suppose that for some 0 < s < 1, µ ∈ ∆([0, 1]) has the
cdf

Fµ(x) =

{
0 if x ≤ s

(x− s)r/(1− s)r if s < x ≤ 1
Show that for all t and all ht, Prµ(ht) > 0. Nevertheless, if λ is given by any

x ∈ [0, s), then the pair (µ, λ) is not consistent.
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6.2.2. The infinite case. The calculations we’ve done so far leaned pretty heavily

on the iid assumption. This can be reformulated as the assumption that we are

interested in updating to distributions over S∞ that are in a very small subset

of ∆(S∞, C◦). The general question of what distributions, λ, in ∆(S∞, C◦) are
learnable is the topic of [13], which produces, whenever possible, an asymptotic

Bayesian representation of λ by setting µ(·) = λ(·|F∞). It seems pretty clear that
this induces a pretty special, non-generic, relation between beliefs, µ, and the truth,

λ, in order to get at learnability, which is something like consistency. In fact, we

saw if λ picks one of a set of iid probabilities, then µ(·) = λ(·|F∞) gives exactly that
representation, and learnability and consistency are identical.

One can still ask about consistency in the context of infinite metric spaces. For

the simplest starting point, one would like to know how widespread consistency is

when S = N and the iid assumption is in place. It turns out that the full support

assumption is no longer sufficient. Intuitively, this is plausible because we could

get arbitrarily slow convergence in the finite case (Homework 6.7), and getting the

slowest of an infinite sequence of slower and slower convergences might get us no

convergence at all.

Borel probabilities µ on a metric space (X, d) are said to have full support if

supp(µ) = X. We’re about to use the following, fairly immediate consequence of

Lemma 6.4.

Lemma 6.6. If X ′ is a countable dense subset of X and µ(x′) > 0 for all x′ ∈ X ′,
then supp(µ) = X.

Another useful fact is that for the metric space (N, d) andGn, G Borel probabilities

on N, ρw(Gn, G)→ 0 iff for all finite E ⊂ N, Gn(E)→ G(E).

Homework 6.9. This problem consists of some preliminaries and then a proof that

there is a dense set of full support beliefs, denoted here by µε, with the property that

for every λ in a dense subset of ∆(N), the pair (µε, λ) is not consistent.
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1. Let Mn ⊂ ∆(N) be the set of probability distributions, P , with #supp(P ) = n

and P (m) ∈ Q for all m ∈ N. M ′ = ∪nMn is a countable dense subset of
∆(N).

2. The set ∆fs of full support probabilities is dense in ∆(N).

3. The set ∆fs is dense in itself, that is, for any G ∈ ∆fs, the set ∆fs \ {G} is
dense in ∆fs, hence dense in ∆(N).

4. Let ν ∈ ∆(∆(N)) satisfy ν(M ′) = 1 and for all P ∈ M ′, ν(P ) > 0. Let

G ∈ ∆fs. For any ε ∈ (0, 1), define µε ∈ ∆(∆(N)) by µε = (1− ε)ν + εδG. For
all ε ∈ (0, 1), supp(µε) = ∆(∆(N)).

5. For any λ in the dense set ∆fs \ {G}, every pair (µε, λ) fails consistency.
6. The set of µε constructed as above is dense in ∆(∆(N)).

6.3. Conjugate families and fictitious play. In the case that observations are

iid λ ∈ ∆(X), beliefs, µ, are points in ∆(∆(X)). A class of priors, MΘ = {µθ :
θ ∈ Θ}, is a conjugate family if each µt(·|ht) ∈ MΘ. For general csm X, setting

MΘ = ∆(∆(X)) gives a conjugate family, one that is generally too big to be useful.

For finite X, taking MΘ = {δλ} when supp(λ) = X gives another conjugate family,
one too small to be useful unless the truth is actually λ.

The typical conjugate families have Θ ⊂ R` for some ` ∈ N. For example, for
each r ∈ R, let λr = N(r, σ2) for some fixed σ2 > 0. Let Θ = R1, and for each

θ ∈ Θ, have µθ ∈ ∆(∆(R) be described by picking a λr where r ∼ N(θ, ψ2) for some

fixed ψ2 > 0. In words, ones beliefs about λ is that they are normal with variance

σ2 and unknown mean, and that one’s prior about the mean is that it is distributed

N(θ, ψ2). Having beliefs like that and updating according to Bayes rule leads to

well-known statistical procedures.

Mis-specification of the model/beliefs is a severe problem with classes of distribu-

tions that are parametrized by finite dimensional vectors. Slightly more formally,

when S is infinite, ∆(S) is a convex subset of an infinite dimensional vector space.

This means that ∆(∆(S)) is “even more” infinite dimensional. If θ 7→ µθ is a smooth

mapping from a finite dimensional Θ to ∆(∆(S)), one cannot expect MΘ to be a
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large or representative subset. One can prove that MΘ is what is called a “shy”

subset of ∆(∆(S)), and that there is a shy subset E of ∆(S) with the property that

µθ(E) = 1 for all θ ∈ Θ. Being a “shy” subset is the infinite dimensional analogue
of a “Lebesgue null” set. This means that typical conjugate families do not cover

anything but a very small subset of ∆(S).

Anyhow, all the generalities aside, the class of Dirichlet distributions form a con-

jugate family for multinomial sampling, and Bayesian updating looks just like the

fictitious play updating of the γit. Therefore, if we believe that all the players’

beliefs about others’ behavior is that they are iid according to some distribution,

p ∈ ∆(S−i), and our beliefs about p are Dirichlet, then Bayesian updating is exactly
the same as forming the γt as the convex combination of the empirical Dt and using

those beliefs as the new parameters of the Dirichlet. While this is nice, it may well

have nothing to do with how the people are actually behaving, and, since the people

never abandon their priors (even after several thousand cycles), it’s not a generally

attractive model of behavior.

7. Some “Evolutionary” Dynamics and “Evolutionarily” Stable

Strategies

In this section, we’re going to look at dynamics in which strategies that do better

are played a higher proportion of the time. This can be a story about one person’s

likelihood of playing a given strategy, as in Hart and Mas-Colell’s [10] work on the

convergence to correlated equilibria. Usually, however, it is a story with evolutionary

overtones to it, that is, a story about a large population of people/creatures where

the population average number of times a strategy is played increases with the payoff

to the strategy. This is what gives the work an “evolutionary” flavor.

This could be done in discrete time, and sometimes is, but we’ll follow the tradition

and use continuous time and differential equations to specify the dynamic systems.

Closely related to the dynamics is the idea of an Evolutionarily Stable Strategy

(ESS), which gives a (sometimes empty) subset of the Nash equilibria.
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An essential difference between the types of dynamic stories, and an essential limi-

tation on most of the work that’s been done in this part of the field is the assumption

that there is only one population of creatures interacting with other members of the

same population. This means that the theory only addresses symmetric games, a

very small subset of the games we might care about. We’ll start with these one

population dynamics, then go to a famous predator prey two population example,

then look at a variety of other examples and applications.

7.1. ESS and the one population model. Here’s the class of games to which

these solution concepts apply.

Definition 7.1. A two person game Γ = (Si, ui)i=1,2 is symmetric if

1. S1 = S2 = S = {1, 2, . . . , n, . . . , N},
2. for all n,m ∈ S, u1(n,m) = u2(m,n)

We have a big population of players, typically Ω = [0, 1], we pick 2 of them inde-

pendently and at random, label them 1 and 2 but do not tell them the labels, and

they pick s1, s2 ∈ S, then they receive the vector of utilities (u1(s1, s2), u2(s1, s2)).
It is very important, and we will come back to this, that the players do not have

any say in who they will be matched to.

Let pn be the proportion of the population picking strategy n ∈ S, and let

σ = (σ1, . . . , σN ) ∈ ∆(S) be the summary statistic for the population propen-
sities to play different strategies. This summary statistic can arise in two ways:

monomorphically, i.e. each player ω plays the same σ; or polymorphically, i.e.

a fraction σn of the population plays pure strategy n. (There is some technical

mumbo jumbo to go through at this point about having uncountably many inde-

pendent choices of strategy in the monomorphic case, but I know both nonstandard

analysis and some other ways around this problem.)
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In either the monomorphic or the polymorphic case, a player’s expected payoff to

playing m when the summary statistic is σ is

u(m, σ) =
∑
n∈S

u(m,n)σn,

and their payoff to playing τ ∈ ∆(S) is
u(τ, σ) =

∑
m∈S

τmu(m, σ) =
∑
m,n∈S

τmu(m,n)σn.

From this pair of equations, if we pick a player at random when the population

summary statistic is σ, the expected payoff that they will receive is u(σ, σ).

Now suppose that we replace a fraction ε of the population with a “mutant” who

plays m, assuming that σ 6= δm. The new summary statistic for the population is

τ = (1− ε)σ + εδm. Picking a non-mutant at random, their expected payoff is
vεn−m = u(σ, τ) = (1− ε)u(σ, σ) + εu(σ, δm).

Picking a mutant at random, their expected payoff is

vεm = u(m, τ) = (1− ε)u(m, σ) + εu(m,m).

Definition 7.2. A strategy σ is an evolutionarily stable strategy (ESS) if there

exists an ε > 0 such that for all ε ∈ (0, ε), vεn−m > vεm.

An interpretation: a strategy is an ESS so long as scarce mutants cannot suc-

cesfully invade. This interpretation identifies success with high payoffs, behind this

is the idea that successful strategies replicate themselves. In principle this could

happen through inheritance governed by genes or through imitation by organisms

markedly more clever than (say) amœbæ.

Homework 7.1. The following three conditions are equivalent:

1. σ is an ESS.

2. For all τ 6= σ, u(σ, σ) > u(τ, σ) or u(σ, σ) = u(τ, σ) and u(σ,m) > u(m,m).

3. (∃ε > 0)(∀τ ∈ B(σ, ε) τ 6= σ)[u(σ, τ) > u(τ, τ)].
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The last condition and the compactness of ∆(S) imply that there is at most a

finite number of ESS’s. It also, more seriously, implies that in extensive form games,

where there are often connected sets of equilibria, none of the connected sets can

contain an ESS. This means that applying this kind of evolutionary argument to

extensive form games is going to require some additional work. We’re probably not

going to have the time to do it though.

Since mutants are supposed to be scarce, we might expect them to play pure

strategies. In the polymorphic interpretation of play, this is all that they could

do. One might believe that the geometry of the simplex and convex combinations

imply that we can replace mutants playing pure strategies δm by mutants playing

any mixed strategy τ 6= σ. This is not true. This means that, in some contexts,

there may be a serious evolutionary advantage to being able to randomize. However,

since the example is non-generic, the succeeding problem means you should take this

conclusion with a grain of salt.

Homework 7.2. The first strategy in the following game is an ESS if only pure

strategy mutants are allowed, but a mixed strategy mutant playing (0, 1
2
, 1
2
) can suc-

cesfully invade.

Player 2

1 2 3

1 (1, 1) (1, 1) (1, 1)

Player 1 2 (1, 1) (0, 0) (3, 3)

3 (1, 1) (3, 3) (0, 0)

Homework 7.3. If σ is an ESS, then σ is a Nash equilibrium, if σ is a strict Nash

equilibrium, then σ is an ESS.

The following game may be familiar to you, if not, it should be, it’s about an

important set of ideas and it shows that ESS’s need not exist: The E-Bay auction

for a Doggie-shaped vase of a particularly vile shade of green has just ended. Now

the winner should send the seller the money and the seller should send the winner
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the vile vase. If both act honorably, the utilities are (ub, us) = (1, 1), if the buyer

acts honorably and the seller dishonorably, the utilities are (ub, us) = (−2, 2), if the
reverse, the utilities are (ub, us) = (2,−2), and if both act dishonorably, the utilities
are (ub, us) = (−1,−1).
For a (utility) cost s, 0 < s < 1, the buyer and the seller can mail their obligations

to a third party intermediary that will hold the payment until the vase arrives or

hold the vase until the payment arrives, mail them on to the correct parties if

both arrive, and return the vase or the money to the correct party if one side

acts dishonorably. Thus, each person has three choices, send to the intermediary,

honorable, dishonorable. The payoff matrix for the symmetric, 3 × 3 game just
described is

Seller

Intermed. Honorable Dishonorable

Intermed. 1-s , 1-s 1-s , 1 -s , 0

Buyer Honorable 1 , 1-s 1 , 1 -2 , 2

Dishonorable 0 , -s 2 , -2 -1 , -1

Homework 7.4. Verify the following: despite the labelling of the players by distinct

economic roles, the game is symmetric; the game has a unique, full support mixed

strategy equilibrium; the unique mixed strategy equilibrium is invadable by Honorable

mutants [use the second equivalent formulation of ESS’s]; therefore the game has no

ESS [since every ESS is Nash].

7.2. ESS without blind matching. ESS’s do not tell players who they are matched

against. It is blind. We’re going to spend a little bit of time looking at what happens

if we remove the blindness aspect a little bit (I learned to think about these issues

from reading [24]).

7.2.1. Breaking symmetry. The starting point is the following game shows that the

symmetry assumption has some real bite.
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1 2

1 (0, 0) (2, 2)

2 (2, 2) (0, 0)

Homework 7.5. Show that (1
2
, 1
2
) is the unique ESS for the game just given.

We’re now going to look at what happens if matching is no longer blind, but is

subject to evolutionary pressures.

Let’s suppose that mutants arise who can mess with the rules of the game. Specif-

ically, suppose that there are mutants who can condition on some aspect of the

meeting, in effect, allowing them to condition on whether they are player 1 or player

2. Suppose these mutants played the strategy “have s match which player I am.”

When a non-mutant meets either a non-mutant or a mutant, they receive expected

utility of 1. When a mutant meets a non-mutant, they get an expected utility of

1, when they meet another mutant, they get the higher expected utility of 2. This

invasion works. This strongly suggests that evolutionary pressures will push toward

assortative matching, at least, in this game.

7.2.2. Cycles of invasion and processing capacity. Here’s another example that pushes

our thinking in another direction.

1 2

1 (3, 3) (7, 1)

2 (1, 7) (5, 5)

You should recognize this as a version of the Prisoners’ Dilemma. It has a unique

strict equilibrium, hence a unique ESS. Continuing in the “messing with the rules

of the game” vein, let us suppose that mutants arise who can recognize each other,

and they play the strategy 1 if playing a non-mutant, 2 if playing a mutant. When

a non-mutant meets a mutant or a non-mutant, they will get utility of 3, when a

mutant meets a non-mutant, they will receive a utility of 3, when they meet another

mutant, they will receive a utility of 5. Again, an invasion that works.
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Let us now suppose that the mutants of the previous paragraph have taken over.

Remember, they have this vestigial capacity to recognize the previous population of

amœbæ that were playing 1. Now suppose a new strain of mutant arises, mutant′,

one that cannot be distinguished from the present population by the present pop-

ulation, but that plays 1 unless they meet another mutant′, in which case they

play 2. Again, this invasion is successful. One can imagine such cycles continuing

indefinitely. There are other variants. Suppose mutant′′ arise that cannot be dis-

tinguished from mutant′, but which plays the strategy 1 all the time. They can

succesfully invade up to some proportion of the population, at which point they and

the population of mutant′ are doing equally well. That population is inavadable by

mutant′′′ who recognizes both of the previous types, plays 1 against all others who

play 1, plays 2 against itself and against all others who play 2.

What I like about this arms race is that it shows how there may be reproductive

advantages to having more processing capacity, and that we expect there to be cycles

of behavior.

7.2.3. Cheap talk as a substitute for non-blind matching. Consider the coordination

game

a b

a (2, 2) (−100, 0)
b (0,−100) (1, 1)

Homework 7.6. The two strict equilibria of this game are ESS’s, but the mixed

Nash equilibrium is not an ESS.

The (b, b) ESS risk-dominates the (a, a) ESS, even though (a, a) Pareto dominates

(b, b). Suppose that we add a first, communicative stage to this game, a stage in

which the two players simultaneously announce a message m ∈ {α, β} and can
condition play in the second period on the results of the first stage. We assume that

the talk stage is cheap, that is,

1. any conditioning strategy for second period play is allowed, and
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2. utility is unaffected by messages.

Communication does not improve things using regular old equilibrium analysis.

Homework 7.7. In the extensive form game just described, the set of proper equi-

libria contains all the Nash plays of the second stage game. (The same is true for

stable sets of equilibria, but that’s a bit harder).

Homework 7.8. Consider the (proper) equilibrium in which the players say “α”

and play “b” no matter what is said in the first period. That is, the equilibrium is

a set of “liars” who ignore communication. This is not an ESS, it is invadable by

mutants who say “β,” play a if there are two β’s, and otherwise play b, that is, by

mutants who “lie,” but pay attention to communication.

This seems to suggest that evolutionary pressures could hitch a ride on the possible

efficiency gains of communication. It’s not quite true, the ESS for the first stage

of this game is unique: it involves each message being sent with equal probability.

In the second stage, the messages are ignored and then either efficient or inefficient

pure strategies are played. These are called “babbling” equilibria, in these equilibria,

what people say is “full of sound and fury, signifying nothing.”

Now suppose that the inefficient communication ESS was being played, and mu-

sically talented mutants come along who pitch their voices in a subtle fashion not

recognized by the existing population, and, if they run into each other, play the ef-

ficient equilibrium. Essentially, the present population has tuned out the messages,

the mutants invent, and use, a new message. (Sometimes, this new message is called

a “secret handshake.”) Again, we can see cycles coming into being, but can conclude

that inefficient play will be invaded by talkative, i.e. communicative, mutants.

7.2.4. Morals from ESSs without blind matching. We could reformulate any I-person

game into a symmetric game played by one population simply by picking I individ-

uals at a time, telling them their role, and then giving them the payoffs ui(s) when

they are in role i and s ∈ S is picked. This would mean that each organism (or

whatever) would need to have (coded in their genes) instructions on what to play
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in every role they might come into. This seems a bit of a stretch, and we’ll not go

down that road.

The various examples above showed that there can be advantages to being able to

tell what kind of person you’re matched with, that blindness may not be adaptive.

Information flows are crucial, and we must think carefully about the informational

flow assumptions that we make. This may take us to cycles or arms races. If we

had a dynamic, or class of dynamics, that we trusted, this would not be a major

intellectual concern, we’d simply follow the dynamics. This would involve analyzing

comparative dynamics rather than comparative statics, and this is harder, but not

fundamentally horrible. Still, before going to the evolutionary dynamics, let’s look

at multiple population versions of ESSs.

7.3. ESS and the multiple population model. Let Γ = (Si, ui)i∈I be an i

person game, σ = (σi)i∈I a strategy for Γ. The idea now is that each i ∈ I is
drawn from a population Ωi and matched against an independ set of draws form

the populations Ωj , j 6= i. Mutants are supposed to be rare, so let us imagine that

ε of them happen to one of the populations, the idea being that the probability of

mutants happening in two of the population pools would be on the order of ε2 and

we’re dealing with small ε’s. Above, σ was an ESS if no small enough proportion of

mutants can invade and change the payoffs so that the extant population is doing

less well. Now that we have many populations, we want no mutant invasion of i

to upset either the optimality of population i’s distribution or the optimality of

population j’s distribution, j 6= i.
Suppose the population summary statistic is σ∗ = (σ∗i , σ

∗
−i). After population i

is invaded by mutants playing m ∈ Si, the population summary statistic is (τi, σ∗−i)
where τi(ε) = (1− ε)σ∗i + εδm.

Definition 7.3. σ∗ is a multi-population ESS if for all i and all m ∈ Si, there
exists an ε > 0 such that for all ε ∈ (0, ε),
1. ui(σ

∗) > ui(τi(ε), σ
∗
−i), and

2. for all j ∈ I, uj(σ∗) ≥ uj(τi(ε), σ
∗
i ).
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Note that every multipopulation ESS is a Nash equilibrium, by the second line.

An interpretation: a strategy is an ESS so long as scarce mutants in population i

cannot succesfully invade population i, and the presence of mutants in population i

does not affect the optimality of the population(s) j 6= i. Again, this interpretation
identifies success with high payoffs, behind this is the idea that successful strategies

replicate themselves.

Let us suppose that we are dealing with a generic game in the sense that there

are finitely many equilibria, and at each of the finitely many equilibria, σ∗, i’s choice

matters: for all σ∗ ∈ Eq(Γ), there exists an m ∈ Si such that for all j ∈ I, the vector
(∂uj(τi(ε), s−i)/∂ε)|ε=0 ∈ RS−i has no zero components and no equal components.
Lemma 7.4. In a game where i’s choice matters, no strategy involving mixing is

an ESS.

Proof: Suppose that σ∗ is an equilibrium in such a game and suppose that some
j ∈ I is playing strategy not at a vertex. In this case, when population i is invaded
by mutants playing m, the j’s utility to playing the actions in the support of σ∗j
move at different rates over any interval (0, ε). Therefore, the mixed strategy is no
longer optimal and mutants will invade population j.

7.4. “Evolutionary” Differential Equations. We’ll start with some of the sim-

plest differential equations, hopefully this will be a reminder, but if not, it’s supposed

to be your introduction. After this, we’ll do a famous two population model, the

Lotka-Volterra predator/prey model. Then we’ll go back to the symmetric games

in which we discussed ESS’s and look at what are called “monotone” dynamics, the

famous “replicator” dynamics are a special case.

7.4.1. The simplest two cases. We imagine that a “state” variable, x ∈ Rn, moves
(?evolves?) over time in a smooth way. This means that t 7→ x(t) is differentiable.

We use ẋ and dx/dt and Dtx for the derivative of the time path t 7→ x(t). What is

sneaky about differential equations and related models is the (brilliant) simplifying

assumption that ẋ is a function of the state, and sometimes of the point in time too,

ẋ = f(x), or ẋ = f(x, t).
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By way of parallel, the first, ẋ = f(x), is like a stationary Markov chain, while the

second, ẋ = f(x, t), is like a Markov chain with transition probabilities that vary

over time.

The second simplest differential equation ever invented is

ẋ = rx ∈ R1.
The class of solutions to it is x(t) = bert for some constant b. If we specify the

value of x at some point in time we will have nailed down the behavior, x(0) = x0

is the usual convention for naming the time and place. This is exponential growth

or exponential decay.

The next step, if we’re thinking about populations is to introduce carrying capac-

ities. For example, suppose that the “carrying capacity” of an environmental niche

is γ, the equation might well be something like

ẋ = r

(
1− x

γ

)
x.

Notice that solving for ẋ = 0 gives either x = 0 or x = γ, extinction, or right at

carrying capacity. Before solving this, note that

sgn (ẋ) = sgn (γ − x) = sgn
(
1− x

γ

)
.

So, when x > γ, i.e. the population is above the carrying capacity, the population

declines, and when below, it increases. By doing some algebra,

x(t) =
γ

Be−rt + 1

for some constant B determined by x(0) = x0. Specifically, B = (γ − x0)/x0.

7.4.2. Lotka-Volterra. Remember the famous movie line, “I have always trusted the

kindness of strangers”?

There are two types of prey, those who trust in the kindness of strangers, and

those who carry deadly force. There are two kinds of strangers, the kind that are

trustworthy and the preying kind. Let x be the fraction of trusting prey, and y the
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fraction of preying strangers. The preying strangers grow at a rate δ1x and are sent

to meet their maker at a rate γ1(1− x). From this
ẏ

y
= δ1x− γ1(1− x),

equivalently,

ẏ = δy(x− γ),
where δ = δ1 + γ1 > 0 and γ = γ1/(δ1 + γ1) ∈ (0, 1).
Suppose that x following the differential equation

ẋ = x(g − µy),
where g is the growth rate of prey, µ > 0, and µy is the rate at which the prey is

removed by the predators.

Solve for ẋ = ẏ = 0, draw a phase diagram. An explicit solution to the system

of equations is not known. We could simulate it and watch the trajectories. This is

tempting in the age of the computer. However, a trajectory is a set

T (x0, y0) = {(x(t), y(t)) : t ≥ 0, ẋ = x(g − µy), ẏ = δy(x− γ), (x(0), y(0)) = (x0, y0)}.
It would be nice to say something about the shape of the sets T (x0, y0). Let’s look

for

S = {(x, y) : dy
dx
=
δy(x− γ)
x(g − µy)}.

If we can get an expression for the corresponding set of x and y, up to some constant

say, then we’re pretty sure we’ve got a function which is constant over the sets

T (x0, y0). Rearrange so the y’s and x’s are on separate sides, integrate both, and

we get the expression ygxδγe−(µy+δx) = eC . That is, we expect that

S = {(x, y) : ygxδγe−(µy+δx) = eC}
for some constant C. It’s now merely a tedious check that along any trajectory of

the system of differential equations, the expression holds as an equality. Now we do
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something really tricky: along the ray from the origin

x = γs, y = (g/µ)s,

we have an expression of the form

se−s = D

for some constant D. When s = 1, we’re at the stationary point of the system. This

is strictly decreasing in s for s > 1 and increasing for s < 1, hence the orbits of the

sytem are closed.

Whew!

7.4.3. Monotone dynamics. We just saw that multiple populations can be analyzed,

but that it’s complicated. Compare the result about “ESS” for multiple populations,

only the strict equilibria were possible. However, perhaps we end up with sensible

looking dynamics. Let σ(t) be the population summary statistic at time t.

Monotone dynamics come in many flavors.

First, for all σi � 0, if ui(σ(t), si) > (=)ui(σ(t), ti), then
σ̇i(si)

σi(si)
> (=)

σ̇i(ti)

σi(ti)
.

Second, we could apply the previous to mixed strategies: for all σi � 0, if

ui(σ(t), σi) > (=)ui(σ(t), τi), then∑
si∈Si
(σi(si)− τi(si)) σ̇i(si)

σi(si)
> (=)0.

Third, for all σi � 0, sign agreement.
Fourth, inner product > 0.
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