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Abstract. A game is specified by a non-empty set of players,
and for each player, a non-empty set of actions and a bounded von
Neumann-Morgenstern utility function. We show that all games
have equilibria in finitely additive mixed strategies. We also spec-
ify a finite approximation method for finding the equilibria that
put unit mass on the set of iteratively weakly undominated strate-
gies. Corollaries include the existence of equilibria in countably
additive mixed strategies for compact games with special kinds of
discontinuous utility functions.
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1. Introduction

Glicksberg [1952] showed that finite player games with jointly con-
tinuous payoffs and compact sets of actions have equilibria in count-
ably additive mixed strategies. Joint continuity is crucial for the result.
Sion and Wolfe [1957] gave a zero-sum, compact continuum game where
the discontinuities prevent the existence of approximate equilibria in
countably additive mixed strategies.

Over the intervening decades, considerable effort has been devoted
to identifying sufficient conditions weaker than joint continuity for the
existence of equilibria in countably additive mixed strategies. We take
a different path. We drop the requirement of countable additivity on
mixed strategies and establish the following result, subject to the most
minimal of requirements.

Theorem. All games have finitely additive mixed-strategy equilibria.

There are no cardinality assumptions on the player set, nor on the
sets of actions available to the players, nor are there any assumptions
beyond boundedness on the agents’ utility functions.
We make two contributions beyond this result. First, we give a

method for finding a closed non-empty set of finitely additive mixed
strategy equilibria with two properties: they put zero mass on the it-
eratively weakly dominated strategies; and they represent the limits of
equilibria on finite approximations to the game. The second contribu-
tion starts by identifying probabilities as continuous linear functionals
on the set of all bounded functions. By restricting these linear function-
als to different vector subspaces of possible utility functions, we give
simple proofs of some extant countably additive equilibrium existence
results as well as some new results.

The distinction between countably additive and finitely additive prob-
abilities hinges on whether or not the formula p(∪n∈SBn) =

∑
n∈S p(Bn)
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can be extended from {Bn : n ∈ S} being a finite disjoint collection of
sets to being a countably infinite disjoint collection. Belying the long
and sharply contentious debate about which choice is the correct one,
this has often been erroneously portrayed as a “merely technical” issue.

Our point of view is that correctness must be conditional on the uses
being made of probabilities. For some uses one choice will be better,
and for other uses the other will be better. We contend that the better
choice for games with infinite action sets is finite additivity. To put
our contention in context, we give an overview of the advantages and
disadvantages of using finitely additive probabilities that have arisen
in various contexts.

1.1. Advantages and their Contexts. Any finitely or countably ad-
ditive probability on a collection of subsets of a space has many exten-
sions to the class of all subsets of that space. All of them are finitely
additive but not necessarily countably additive. Savage [1972] and
de Finetti [1974, 1975] argued extensively that probabilities, under-
stood as someone’s degree of belief, should be allowed to be attached
to every set. While the argument has not convinced everyone, Savage,
and to a lesser extent de Finetti, wanted nonatomic subjective prob-
abilities on the class of all subsets of a subjective state space. There
are no countably additive nonatomic probabilities on the class of all
subsets, at least not within the usual axiomatizations of mathematics,
but there are nonatomic finitely additive probabilities.

A second part of their argument for finite additivity in models of
Bayesian priors appears in de Finetti [1974, pp. 299-231]. He notes that
under the usual assumptions in probability theory, a finitely additive
probability can be extended, perhaps in many ways, to any class of sets,
while countably additive probabilities, when they can be extended at
all, extend uniquely. He argues that this extra expressive power is
an important part, perhaps even a crucial part, of the description of
beliefs.

Viewed through the lens of modern multiple prior subjective state
space theories of choice under ambiguity, it is tempting to use the set
of extensions as a set of priors. While this does not capture all of de
Finetti’s nuanced distinctions between imprecision, indeterminacy and
unverifiability, it provides a set of priors with the same properties as
those associated with the econometrics of unobservable variables.1

1See Stinchcombe [2016] for this. That paper also showed that using the set of
finitely additive extensions as the set of priors for modern multi-prior choice under
ambiguity models allows a small, but still interesting, class of ambiguous choice
problems to be successfully modeled and analyzed.
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When one assigns probability to all subsets of a space, measurability
arguments are drastically simplified, and this paper will make central
use of these simplifications. Measurability issues have played a central
role in the theory of large population games initiated by Schmeidler
[1973]. He used a nonatomic probability space to model the set of
agents, which handily captures the idea that each player is a vanish-
ingly small portion of the whole population. A difficulty arises because
the theory of Nash equilibrium is built on independent randomization
by the agents, and a continuum of independent choices involves some
rather complicated mathematics.

If the large population is modeled as a nonatomic distribution over,
say, a metric space of characteristics and that distribution is countably
additive, then measurable functions are, with high probability, contin-
uous. In order that there be a well-defined distribution of equilibrium
actions, the mapping from characteristics to actions chosen must be
Borel measurable. Therefore, in the presence of countable additivity, it
is a high probability event that people whose characteristics are close
choose close actions. This precludes independent randomization, an
observation with a long history.

As far back as the work in Doob [1937, Theorem 2.2], it has been
known that a continuous-time stochastic process can not be have non-
degenerate independent realizations at all points in time and simultane-
ously have measurable time paths. This implies that when the players,
modeled as points on an interval subset of the real line, or as points
on any set measurably isomorphic to the real line, are independently
randomizing over, say, Heads and Tails, one cannot assign probability
to the set of players who choose Heads. The solution to these difficul-
ties requires an enrichment of the σ-algebra over the product of the
measurable spaces as in Sun [2006, §6] and the references cited there.
Starting by modeling the population using a finitely additive distri-
bution on the class of all subsets of the space of characteristics as in
Cerreia-Vioglio et al. [2022], and as we do, drastically simplifies this
process.

For us, the central advantage of the class of finitely additive prob-
abilities is their compactness. Probabilities on a class of sets E can
be understood as points in the product space [0, 1]E , i.e., in the space
of all functions from E to [0, 1]. By Tychonov’s theorem, this space
is compact in the product topology. In the product topology, a net
(generalized sequence) of probabilities pα converges to a probability p
if pα(E) converges to p(E) for all sets E in the class of sets E . Since
finite sums are continuous in their arguments, the set of finitely addi-
tive probabilities is a closed subset of the compact product space. For
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present purposes, there are two particularly useful implications of this
compactness.

First, if a class of closed sets of probabilities has the finite intersection
property, then it has a non-empty intersection. To put it differently,
finitely satisfiable properties of probabilities can always be represented.
The crucial finite satisfiability property for us shows up in the set of
limits of equilibria on finite approximations to the games.

For F a finite set of actions, let Eq(F ) denote the closed set of all
limits of equilibria along a nets (generalized sequences) of finite approx-
imations to the game that eventually all contain F . If F ′ is another
finite set, then Eq(F ) ∩ Eq(F ′) = Eq(F ∪ F ′). This means that the
class of sets, Eq(F ), indexed by finite sets of actions has the finite in-
tersection property. The necessarily non-empty intersection represent
equilibria that are limits along nets that are “exhaustive,” nets allow
every player every action. As we will see, this class of equilibria can
still be analyzed as if the game were finite if one uses the exhaustive hy-
perfinite sets from nonstandard analysis that correspond to exhaustive
nets.

Second, since every bounded function is a uniform limit of simple
functions, a net of probabilities pα defined on the class of all subsets of
a space converges to a probability p if and only if its integrals against
all bounded functions, f , converge,

∫
f dpα →

∫
f dp. In particular,

the linear functional p 7→
∫
f dp is always continuous, hence always has

a maximum on the compact set of probabilities.
One can say a good bit more about the set of maxima, and this

will provide a segue to contexts in which the disadvantages of finitely
additive probabilities appear. The set of finitely additive probabilities
is both compact and convex. The Krein-Milman theorem tells us that
the compact, convex set of maximizers for a continuous linear objective
function p 7→

∫
f dp always has a solution in the set of extreme points

of the set of probabilities. The extreme points are Z1 probabilities,
that is, probabilities with p(B) equal to either Zero or 1 for all sets
B. These represent point masses on the solutions to the problem of
maximizing a bounded function and yield a maximum in the set of Z1’s
for any bounded function.
There are many more Z1’s than there are points in the original space.

Yosida and Hewitt [1952, §4] used the set of Z1’s to represent the
finitely additive Z1’s as countably additive point mass probabilities on
that larger space. This is a set of points that do not appear in the
original space. Yosida and Hewitt [1952, p. 56-8] used properties of
these points to get at “various peculiar properties that finitely additive
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measures . . . may exhibit.” The peculiar properties of the new points
are at the heart of many of the disadvantages.

1.2. Disadvantages and their Contexts. We will show that for ev-
ery game, there are finitely additive equilibria that put full mass on
the set of iteratively weakly undominated strategies. We will also give
an example of a two-player game with the compact strategy sets [0, 1]
and jointly continuous utility functions for which the set of iteratively
weakly undominated strategies is empty. The way that these state-
ments are consistent is that the finitely additive equilibria are Z1’s
that, for any ϵ > 0, put unit mass on the interval (0, ϵ). The decidedly
peculiar property of these Z1’s is that that the intersection of these
sets, ∩ϵ>0(0, ϵ), is empty.

The Z1’s that represent these equilibria are point masses on “new
points.” Thus, even in the class of games analyzed in Glicksberg [1952],
there are phenomena of game theoretic interest that are not captured
by the original set of actions. The disadvantage is that the new points
must be added to the model. One might argue that if the modeler had
wanted these points in the model, then they would have included them.
But from our point of view, the use of the larger set of finitely additive
probabilities presumes that they are already there.

These new points also appear if one wishes to use the Bayesian sub-
jective state space model developed in Savage [1972] to model choices
between different continuously distributed random variables and si-
multaneously avoid money pumps. Stinchcombe [1997] collected the
various money pump examples from the literature and then systemat-
ically added the new points to the subjective state spaces in a fashion
that minimally expanded the model and avoided money pumps. Again,
the ostensibel disadvantage is that the points were not in the original
model, and one may find that objectionable.

From de Finetti [1975, p. 353], we have the following about the new
points.

The basic idea is the possibility of stretching the inter-
pretation in such a way as to be able to attribute the
“missing” probability in the partition to new fictitious
entities in order that everything adds up properly. In
some cases, in order to salvage countable additivity, it
is even claimed that the new entities are not fictitious,
but real.

From our point of view, it is perhaps better to think of the new points as
having always been in the model even though they were not explicitly
mentioned.
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Another disadvantage of finitely additive probabilities is the failure
of Fubini’s theorem for finite product spaces. The set of functions on a
finite product of spaces that have a well-defined integral for all products
of finitely additive probabilities is very small. This can make defining
or understanding equilibrium utilities problematic.

Stinchcombe [2005] develops a theory of set-valued integration from
which one can take selections in a fashion that respects the Nash equi-
librium best-response properties. This is an awkward undertaking, and
Examples demonstrate the difficulties of systematically selecting from
the set of integrals. Here we circumvent the problem by noting that
products of finitely supported Nash equilibria define the probability of
all subsets of the products of spaces of actions. This means that their
limits specify a probability on the class of all subsets of the product
space. This in turn means that every bounded utility function has a
well-defined integral.

A final disadvantage of finitely additive probabilities for games arises
when players in nonatomic continuum are identified with characteristics
such as their utility functions. Such characteristics are points in e.g.
the unit ball in an infinite dimensional space of functions. As discussed
in Stinchcombe [2023, §8], the Z1’s that support the finitely additive
probabilities on such unit balls are quite difficult to work with. We will
address these difficulties in a companion paper on infinite population
games that is under preparation.

1.3. Outline. The next section gives the notation necessary to for-
mally state the main existence result, Theorem A. It then gathers the
necessary background for the rest of the paper. As Corollaries to the ex-
istence of finitely additive equilibria, this section uses the background
on duality to deliver known and new countably additive equilibrium
existence results.

The subsequent section systematically uses nets of finite approxima-
tions to give finitely additive equilibria for three different two-player
games games with discontinuous payoffs. None of these games have
countably additive equilibria, and only one of them has approximate
countably additive equilibria. These games highlight aspects of the dif-
ferences between the countably and the finitely additive mixed strate-
gies, and also highlight differences in the approaches one can take to
the class of finitely additive equilibria. In general, the limits of equilib-
ria taken along nets of exhaustive finite approximations to a game are
an easier way to analyze the finitely additive equilibria, and the equi-
libria of games using the exhaustive hyperfinite sets from nonstandard
analysis are an easier way to analyze the nets of equilibria.
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The next section contains two results. First, Theorem B shows that
the set of finitely additive equilibria is a compact set and that the
equilibrium correspondence is upper hemi-continuous. This means that
the set of finitely additive equilibria satisfies the same basic robustness
criteria as the set of countably additive equilibria that we are used
to. Next, Theorem C shows that there is a non-empty, compact set of
finintely additive equilibria that represent the limits of equilibria along
nets of finite approximations to the game and which put unit mass on
the iteratively weakly undominated strategies. While Theorems A and
B concern the set of all finitely additive equilibria, Theorem C concerns
the subset of equilibria that we find most reasonable.

We then turn to the payoff equivalences of countably additive and
finitely additive equilibria. For these to hold, one must have very spe-
cial kinds of discontinuities in the utility functions. There are some
relations, unfortunately rather tenuous, between these special discon-
tinuities and the well-behaved discontinuities that have dominated the
study of countably additive equilibrium existence for compact games.

The last section contains some concluding remarks and sketches how
finitely additive mixtures seem likely to make contributions to two very
different areas in game theory. Finally, proofs not in the text are gath-
ered in the appendix.

2. Finitely Additive Equilibria

We begin with a formal description of the class of games under con-
sideration. Essentially the only assumption that we make is that the
von Neumann Morgenstern utility functions are bounded, an assump-
tion necessary to preclude the St. Petersburg paradox and similar phe-
nomena. We then turn to the relevant properties of the set of finitely
additive probabilities.

First, there is no loss in assuming that they are total, that is, they are
defined on the class of all subsets of the space under consideration. This
property drastically simplifies measurability considerations. Second,
they are compact, which, in the absence of measurability issues, entails
the existence of optima for problems with bounded utility functions.
It also entails the existence of probabilities with ‘finitely satisfiable’
properties.

2.1. Equilibria. The starting point is the set of total probabilities.

Definition 2.1. For any non-empty set X, 2X denotes the class of all
subsets of X. A total probability on X is a function p : 2X → [0, 1]
that satisfies p(X) = 1 and p(B1 ∪B2) = p(B1) + p(B2) for all disjoint
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B1, B2 ∈ 2X . The set of probabilities on the class of all subsets of X is
denoted by ∆(X) or ∆ when X is clear from context.

By induction, if {Bn : n = 1, . . . , N} is a finite collection of disjoint

sets, a total probability must satisfy p(∪N
n=1Bn) =

∑N
n=1 p(Bn).

Definition 2.2. A game Γ = (Ai, ui)i∈I is specified by:

(1) a non-empty set of players, I;
(2) for each i ∈ I, a non-empty set of actions Ai; and
(3) for each i ∈ I, a bounded von Neumann-Morgenstern utility func-

tion ui : A → [−B,+B] where A = ×j∈IAj.

An equivalent formulation of the profile of utility functions is that
utilities are specified by a function u : A → [−B,+B]I .

The set of total probabilities on Ai is denoted by ∆i = ∆(Ai) and the
set of total probabilities on A := ×i∈IAi is denoted by ∆. The linear
extension of ui from A to ∆ is also denoted by ui, that is, ui(µ) =∫
A
ui(a) dµ(a) for any µ ∈ ∆. In the same way, the linear of extension

of u is also denoted by u, that is, u(µ) = (ui(µ))i∈I ∈ [−B,+B]I .
Nash equilibria may involve independent randomization by the play-

ers.

Definition 2.3. A probability µ̂ ∈ ∆ is a independent extension of
(µi)i∈I ∈ ×i∈I∆i if for all finite IF ⊂ I, for all Bj ⊂ Aj for j ∈ IF ,

µ̂(proj−1(×j∈IFBj)) =
∏

j∈IF µj(Bj). (1)

We use the following game-theoretic notation, for a ∈ A, i ∈ I, and
bi ∈ Ai, the point a\bi ∈ A is defined by projj(a\bi) = aj for j ̸= i and
proji(a\bi) = bi. And we extend this notation to mixtures over A, for
µ a probability on A, i ∈ I and bi ∈ Ai, µ\bi is the image measure of
µ under the mapping a 7→ a\bi from A to A.

Definition 2.4. An independent extension µ∗ of (µ∗
i )i∈I is a Nash

equilibrium if for all i ∈ I and all bi ∈ Ai, ui(µ
∗) ≥ ui(µ

∗\bi).

With these in place, we can state our major result.

Theorem A. For any game Γ satisfying the assumptions (1)-(3) above,
an equilibrium exists.

Here is an outline of the proof: take larger and larger finite approx-
imations, IF , to the set of players, I; combine that with larger and
large finite approximations, Hi, to the actions sets of the i ∈ IF ; use
Nash’s existence theorem to get an equilibrium for the finite games;
use the compactness of ∆ to guarantee the existence of accumulation
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points of the equilibria; and we verify that the accumulation points are
equilibria.2

There is a subtlety when I is infinite. To specify payoffs in a fi-
nite game ΓF = (Hi, ui)i∈IF , we must specify what the players j ̸∈ IF
are choosing. That choice can determine aspects of the equilibrium
behavior in the limit and we allow all possible choices. We interpret
the dependence as a form of players’ beliefs in what some un-named
set of “others” are doing. This provides an endogenous form of vari-
ability that might be called “animal spirits” or “sun spots.” In the
companion paper about infinite population games, we hope to charac-
terize the class of games in which the set of equilibria does not have
this variability.

In this paper, we will actually prove a good bit more. Theorem B
shows that the set of equilibria is compact and that the correspondence
from utility functions to the set of equilibria is upper hemi-continuous.
Theorem C shows that there is a non-empty, compact set of equilibria
that put all of their mass on the iteratively undominated strategies.

2.2. Properties of ∆. The central property of ∆ is its compactness.
Corollaries of compactness include include various extension results as
well as a very general existence result for solutions to optimization
problems.

2.2.1. Compactness. With A denoting the class of all subsets of A,
every total probability can be identified with a point p in the product
space [0, 1]A. Being the product of compact spaces, [0, 1]A is compact
in the product topology (by Tychonov’s theorem). In this topology,
convergence is defined by pα → p if pα(B) → p(B) for all sets B. Since
finite sums are continuous in their arguments, ∆ is a closed, hence
compact set.

Since every bounded function on A is the uniform limit of simple
functions, the usual approximation arguments show that (a) the inte-
gral of any bounded function with respect to any total probability is
well defined, and (b) that pα → p if and only if

∫
f dpα →

∫
f dp for

all bounded function f defined on A. It is perhaps worth emphasizing
again the simplicity of the theory that comes from all functions being
measurable.

2.2.2. Extensions. The compactness of ∆ is equivalent to the property
that every collection of closed subsets having the finite intersection
property has a non-empty intersection.

2The details are in the appendix.
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Example 2.1 (Extension 1). Suppose that q is a countably additive
probability on the Borel σ-field of a metric space. The set of total
probabilities that agree with q on the Borel σ-field is denoted Ext(q).
It is a non-empty, compact, convex set: for each finite collection BF of
Borel sets, the class of finitely additive total probabilities, S(BF ), that
agrees with q on BF is a non-empty, compact and convex set; since
S(BF ) ∩ S(B′

F ) = S(BF ∪ B′
F ), the class has the finite intersection

property; and the set of total probabilities that agree with q is
⋂
S(BF )

where the intersection is taken over all finite collections of Borel sets.

One can also go in the opposite direction: every p ∈ Ext(q) inte-
grates the bounded continuous functions on the metric space to the
same number that q does; when the countably additive q is determined
by its integral against the continuous functions, each of these total
probabilities p is equivalent, for all continuous purposes, to q.

Products of finitely additive probabilities also have many extensions,
and this is the reason that Fubini’s theorem does not hold except for
very special utility functions.

Example 2.2 (Extensions 2). Suppose that q1 and q2 are total proba-
bilities on A1 and A2. The field of measurable rectangles, R◦, is the set
of finite unions of sets of the form B1×B2, Bi ⊂ Ai. The product prob-
ability [q1× q2] is defined on R◦ by [q1× q2](B1×B2) = q1(B1) · q2(B2).
By a small variant of the arguments used in the previous Example,
Ext([q1 × q2]), the set of total probabilities on A1 × A2 that agree with
[q1 × q2] on R◦, is a non-empty, compact and convex set.

The set of utility functions for which the product integral is well-
defined is quite small and the games with such utility functions are
“simple” in an essential way. We use the notation from the previous
Example in the following.

Lemma 2.1. A bounded u : A1×A2 → R is the uniform limit of simple
functions that are R◦ measurable if and only if for every q1 and q2 and
every p, p′ ∈ Ext([q1 × q2]),

∫
u dp =

∫
u dp′.

This follows from Harris et al. [2005, Theorem 1]. That paper shows
that games with utility functions that are uniform limit of simple R◦-
measurable functions are equivalent, in all of the essential ways, to
games with compact metric spaces of actions and jointly continuous
utility functions.

The following example will matter for our analysis of the Sion and
Wolfe [1957] game in the next section.
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Example 2.3. Suppose that for (x, y) ∈ [0, 1],

u(x, y) =


−1 if x < y

0 if x = y

+1 if x > y,

and that q1 and q2 are both Z1’s that put unit mass on each interval
(1
2
− ϵ, 1

2
). There are elements p−1, p0, and p+1 in Ext([q1 × q2]) such

that
∫
u dp−1 = −1,

∫
u dp0 = 0, and

∫
u dp+1 = +1.

To see why, let L−1, L0, and L+1 be lines through (1/2, 1/2) with
slopes 1/2, 1, and 2. For each of these lines, the set of p ∈ Ext([q1×q2])
that put unit mass on that line and each (1

2
− ϵ, 1

2
) × (1

2
− ϵ, 1

2
) is a

collection of compact convex sets having the finite intersection property.

Fubini’s theorem says that the order of integration does not matter
for products of countably additive probabilities. The order does matter
for finitely additive probabilities.

Example 2.4. In the previous example, define f(y) =
∫
u(x, y) dq1(x).

The function y 7→ f(y) is equal to −1 for y ≥ 1
2
and is equal to +1

for y < 1
2
. This means that

∫
f(y) dq2(y) = +1. Thus, integrating first

w.r.t. x and then y gives +1. For integrating in the opposite order,
define g(x) =

∫
u(x, y) dq2(y). This is equal to +1 for x ≥ 1

2
and is

equal to −1 for x < 1
2
so that

∫
g(x) dq1(x) = −1.

2.2.3. Extreme Points and Optimization. The extreme points of ∆ are
the Z1’s, the probabilities with p(B) being either equal to Zero or to 1
for all sets B. The class of Z1’s is closed (since the limit of a net of 0’s
and 1’s can only be a 0 or a 1), hence compact. Here is the existence
of optima result referred to above, any bounded function on A has a
maximand in the set of Z1’s.

Lemma 2.2. For any bounded f : A → R, there is a Z1 that solves
maxp∈∆

∫
f dp.

Proof. Let r = supa∈A f(a), and for each n ∈ N, let Fn denote the
necessarily non-empty set of a ∈ A with r − 1

n
≤ f(a) ≤ r, and let

Sn denote the closure of the set of Z1’s that put mass 1 on Fn. The
class {Sn : n ∈ N} has the finite intersection property, and any Z1 in
its intersection solves the maximization problem. □

2.3. Finite Approximations to Games. To talk about limits of ap-
proximate games in such a fashion that we can guarantee that every
action of every player is included, we require the following generaliza-
tion of sequences.
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Definition 2.5. A directed set is a pair (D,≿) where D is a nonempty
set and ≿ is a transitive binary relation on D satisfying: α ≿ α for all
α ∈ D, and for all α, β ∈ D, there exists γ ∈ D with γ ≿ α and γ ≿ β.
A net in a set X is a mapping α 7→ xα ∈ X from a directed set D to
X.

A sequence is the special case of a net where the directed set, (D,≿),
is (N,≥). We will need nets of finite approximations to a game as well
as nets of equilibria for those approximate games.

Definition 2.6. A net of finite approximations to a set X is a
mapping α 7→ Fα from a directed set (D,≿) to the class of finite subsets
of X. We write Fα ↑ ∞ if the net exhausts X, that is, if for all finite
F ⊂ X, there exists an α ∈ D such that for all β ≿ α, F ⊂ Fβ.

Sequences of finite sets can exhaust countable sets. The right choice
of indexing set shows that nets of finite sets can exhaust any set.

Example 2.5. Let D denote the class of finite subsets of a set X. For
F, F ′ ∈ D, define F ≿ F ′ if F ⊃ F ′. Taking the mapping from D to
the finite sets to be the identity mapping, we have, for all finite F ⊂ X,
there exists an α ∈ D, namely α = F , such that for all β ≿ α, F ⊂ Fβ.

For a finite player game Γ = (Ai, ui)i∈I , we study equilibria that
arise as accumulation points or as limits of equilibria on the games
Γα = (Fi,α, ui)i∈I where for each i ∈ I, the mapping α 7→ Fi,α exhausts
Ai. Let µα be the product total probability induced by an equilibrium
for the finite game Γα. It is a textbook exercise to show that the
compactness of ∆ implies that the net α 7→ µα has a non-empty set of
accumulation points.

Definition 2.7. For A = ×i∈IAi, a total probability µ ∈ ∆ is a limit
point of the net α 7→ µα of total probabilities if for all sets B ⊂
A and all ϵ > 0, there exists an α ∈ A such that for all β ≿ α,
|µβ(B) − µ(B)| < ϵ, and µ is an accumulation point of the net
α 7→ µα if for all sets B ⊂ A, all ϵ > 0, and all α, there exists β ≿ α
such that |µβ(B)− µ(B)| < ϵ.

To more easily work with the set of all accumulation points of all
equilibria on all exhaustive nets of finite approximations to a given
game, the next section will use the exhaustive hyperfinite sets con-
structed in nonstandard analysis.3 Exhaustive hyperfinite sets allow

3For a textbook treatment of nonstandard analysis, see Hurd and Loeb [1985],
where Chapter II.4 shows how to guarantee that exhaustive hyperfinite sets exist.
Lindstrøm [1988] gives a development of nonstandard analysis that builds closely
on the sequence- and net-based intuitions that permeate analysis.
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us to analyze the net of finite games as if it is a single finite game,
while at the same time taking into account e.g. the iterated deletion of
weakly dominated strategies. We will, mostly, use the hyperfinite sets
for developing intuition and provide proofs based on nets.

2.4. Duality and Restrictions. There is a dual space representation
of ∆ that provides a method of restricting finitely additive equilibria to
their actions on subspaces of functions. For some games, this allows us
to obtain countably additive equilibria from finitely additive equilibria.
Let B = B(A) denote the Banach space of bounded functions on A with
the sup norm. The essential mathematics is contained in the following

Lemma 2.3. If p is a total probability on A, then the mapping f 7→
L(f ; p) :=

∫
f dp from B(A) to R is a Lipschitz continuous, linear,

monotonic functional that integrates the constant function, 1A, to 1. If
L : B(A) → R is a Lipschitz continuous, linear, monotonic functional
that integrates the constant function to 1, then there is a unique total
probability pL such that L(f) =

∫
f dpL.

Proof. The given properties of the mapping f 7→ L(f ; p) are immedi-
ate for simple functions. The simple functions are sup norm dense in
B(A), and the integral is the unique Lipschitz continuous functional
that extends the integral from the dense subset of simple functions.

If L : B(A) → R has the given properties, then defining pL(B) =
L(1B) gives a total probability. The linearity of L(·) implies that that
L(f) =

∫
f dpL for all simple functions f , and the Lipschitz continuity

of L(·) and the sup norm density of the simple functions implies that
L(f) =

∫
f dpL for all f ∈ B(A). □

Every sup norm closed vector subspace of V ⊂ B gives rise to a
compact, but not generally Hausdorff, topology τV on ∆ defined by
pα →τV p if

∫
g dpα →

∫
g dp for all g ∈ V. Thus, the convergence

defined above is in the τB-topology, also known as theweak∗-topology
for finitely additive probabilities.

2.4.1. Continuous Compact Games. If the product space A is a com-
pact Hausdorff space and V = C(A) is the sup norm closed set of con-
tinuous functions on A, then (the Riesz representation theorem tells us
that) each restriction of L(·; p) to V is associated with a unique count-
ably additive qca = qca(p) on the Baire, and hence on the Borel σ-fields.
The countably additive qca is defined on a much smaller σ-field of sub-
sets than p is. On that smaller class of sets, qca is determined by the
restriction that it integrates every (necessarily bounded) g ∈ V to the
same number that p does, i.e.

∫
g dqca =

∫
g dp. When Γ = (Ai, ui)i∈I

14



is a compact and continuous game, this delivers countably additive
equilibrium existence.

Corollary A.1 (Generalized Glicksberg). If each Ai is a compact
Hausdorff space and each ui : A → [−B,+B] is continuous in the
product topology on A, then for any finitely additive equilibrium p∗, if
the countably additive q∗ = qca(p

∗) is an equilibrium.

Proof. For any i ∈ I and any bi ∈ Ai, the functions a 7→ ui(a) and
a 7→ ui(a\bi) are both continuous. Thus, a finitely additive p∗ is an
equilibrium if and only if every p on the Borel σ-field that integrates
continuous functions to the same number is an equilibrium. □

Since a finitely additive equilibrium exists, this means that a count-
ably additive equilibrium exists. When I is finite, this existence result
is due to Glicksberg [1952]. Here I is arbitrary.4

2.4.2. Continuous Polish Games. When A is not compact, a finitely
additive p must satisfy an additional condition in order that there be
a countably additive q that integrates all of the bounded continuous
functions to the same number.
A metric space is Polish if it is both complete and separable. A

finite or countable product of Polish metric spaces with the product
topology is itself Polish. It is well-known that any countably additive
probability q on the Borel subsets of a Polish space is tight, that is,
for any ϵ > 0, there is a compact K such that q(K) > 1 − ϵ. The
following is the appropriate generalization for general finitely additive
probabilities.

Definition 2.8. A finitely additive p on the class of all subsets of a
Polish space X is near-tight if for all ϵ > 0, there is a compact K ⊂ X
such that p(Kδ) > 1− ϵ for all δ > 0 where Kδ is the set of b ∈ X such
that d(b,K) < δ.

We will now consider the case that V = Cb(X) is the sup norm closed
set of all continuous bounded functions on a Polish space X.

Definition 2.9. For (X, d) a Polish space, two probabilities p1 and p2
on a class of subsets of X that contain the Borel σ-field are continu-
ously equivalent if for all f ∈ Cb(X),

∫
f dp1 =

∫
f dp2. If q = qca(p)

is a countably additive Borel probability that is continuously equivalent

4For a finite set of players, the generality of compact Hausdorff spaces rather than
compact metric spaces is illusory. Stinchcombe [2005, Corollary 3, p. 217] shows
that, after identifying strategically equivalent strategies, the game is equivalent to
one with compact metric spaces of actions.
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to a near-tight finitely additive p, then q is the countably additive
version of p.

As part of a nonstandard analysis characterization of countably ad-
ditive probabilities on Polish spaces, Stinchcombe [2023, Corollary 4.1]
shows that a finitely additive p on the class of all subsets of a Polish
space is near-tight if and only if it has a (necessarily unique) countably
additive version. These considerations deliver the following.5

Corollary A.2. If I is finite or countable, each Ai is Polish and each
ui : A → [−B,+B] is continuous in the product topology on A, then a
near-tight p∗ is an equilibrium if and only if every continuously equiva-
lent p is an equilibrium if and only if the countably additive q∗ = ca(p∗)
is an equilibrium.

3. Two-Person Games on the Line

In this section we cover three two-person games, all of them having
action sets that are a subsets of the real line, none of them having
countably additive equilibria. We begin with an asymmetric Hôtelling
game due to Simon and Zame [1990] in which there are countably ad-
ditive ϵ-equilibria for every ϵ > 0, but no countably additive equilibria.
After deleting the weakly dominated strategies along an exhaustive net
of finite games, the limits have a particularly simple form. We then
turn two games in which there are no approximate countably additive
equilibria: the classic Sion and Wolfe [1957] game; and a version the
“pick the largest number” game.

For the analysis of the Hôtelling game, we give a nets-of-finite-
approximations argument and then give the hyperfinite sets version
of the same argument. For the second and third games, we start with
the hyperfinite analysis and sketch how one turns this into an argument
along the nets of finite approximations.

There is a long history of taking standard parts of hyperfinite objects.
The particulars of directly representing finitely additive probabilities
in the way that we do goes back to Robinson [1964], and details of
the general procedure are gathered in Stinchcombe [2023, §2]. These
techniques allow us to sidestep the complications of keeping track of the
details of the net of finite approximations while we analyze equilibria.
This is particularly useful when, for each finite game in the net of finite
games that exhausts the actions sets of the players, we iteratively delete
weakly dominated strategies.

5The omitted proof directly parallels the previous argument for the generalized
Glicksberg result.
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3.1. An Asymmetric Hôtelling Game. There is a uniform distribu-
tion of consumer locations on the interval [0, 1]. Due to licensing restric-
tions, player 1 can only pick a location, x, in the interval A1 = [0, 0.8]
while player 2 can only pick a location, y, in the interval A2 = [0.8, 1].
Given choices x < y, consumers go to the location closest to their own
location, and what the consumer at the midpoint 1

2
x + 1

2
y does has

no effect on payoffs. But if x = y = 0.8, the consumers view the two
as perfect substitutes, with 1

2
patronizing one of the players and the

remainder patronizing the other. The discontinuity of the payoffs at
(x, y) = (0.8, 0.8) means that there is no countably additive equilib-
rium, although there are ϵ equilibria for every ϵ > 0.

Lemma 3.1. With µ∗
1 being a finitely additive Z1 putting mass 1 on

(0.8−ϵ, 0.8) for all ϵ > 0 and µ∗
2 being the countably additive point mass

on a2 = 0.8, (µ∗
1, µ

∗
2) is an equilibrium for the asymmetric Hôtelling

game yielding equilibrium utilities (u∗
1, u

∗
2) = (0.8, 0.2). Further, along

all exhaustive nets of finite approximations, all nets of equilibria that
survive deletion of weakly dominated strategies have limits of this form.

Proof. Verifying that µ∗ is an equilibrium is immediate. For the rest,
in any finite approximation (F1,α, F2,α) containing (0.8, 0.8), let h′

1,α ∈
F1,α be the largest element smaller than 0.8. Any h1,α < h′

1,α in F1,α is
weakly dominated for 1 and any h2,α > 0.8 in F2,α is weakly dominated
by 0.8 for player 2. After eliminating these strategies in Γα, the unique
equilibrium in the 2 × 1 game is point mass on the pair (h′

1,α, 0.8).
Taking limits as F1,α becomes exhaustive guarantees that for all ϵ > 0,
there exists an α such that for all β ≿ α, h′

1,β ∈ (0.8−ϵ, 0.8). The limit
Z1’s must have µ∗

1((0.8− ϵ, 0.8)) ≡ 1 while µ∗
2 is the countably additive

point mass on 0.8. □
Starting with a set X, a hyperfinite subset is a set constructed from

nets of finite subsets of X (using an ultrapower construction) in non-
standard analysis. A hyperfinite set is exhaustive if contains every finite
subset of X, and these correspond to sets constructed from exhaustive
nets of finite subsets. A key virtue of these sets is that they satisfy
many of the same logical properties as finite sets.

The hyperfinite analysis of the asymmetric Hôtelling game replaces
A1 and A2 with exhaustive hyperfinite sets H1 and H2.
A special point for player 1. For player 1, let h′

1 be the largest
element of H1 strictly less than than 0.8. This point exists because, far
enough along the net of finite subsets that goes into the construction of
H1, there is a largest element strictly less than 0.8. Since H1 is exhaus-
tive, 0.8 − ϵ ∈ H1 for every positive ϵ > 0, which in turn means that
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h′
1 belongs to every interval (0.8− ϵ, 0.8), that is, h′

1 is infinitesimally
close to 0.8.
A special point for player 2. Because H2 is exhaustive, 0.8 ∈ H2,
and we let h2 = 0.8.
Deletion of weakly dominated strategies. For player 1, any h1 <
h′
1 is weakly dominated by h′

1. For player 2, any h′
2 > 0.8 is weakly

dominated for player 2 by 0.8. After removing the weakly dominated
strategies from the game, player 1 has only the strategies h′

1 and 0.8
which player 2 has only the strategy, 0.8. Given that player 2 is playing
0.8, player 1’s choice is between h′

1, which yields a payoff infinitesimally
close to 0.8 and 0.8, which yields the payoff of 0.5. The only Z1s
corresponding to this are of the form given above.

3.2. A Colonel Blotto Game. Sion and Wolfe [1957] give an asym-
metric, two battlefield Colonel Blotto game where both players have
one unit of force to allocate between the battlefields. The player al-
locating the larger/smaller force to a battlefield wins/loses, and equal
force allocations lead to ties. The payoffs are additive, with +1 for each
battlefield won, −1 for each one lost, and 0 for ties. There is, however,
one asymmetry in the game, player 2 starts with an advantage of 0.5
immobile units of force already present in the second battlefield.

Let x and (1 − x) denote player 1’s force allocations to the first
and second battle fields, and y and (1 − y), denote player 2’s force
allocations. The payoffs are given by

v1(x, y) = sgn(x− y) + sgn((1− x)− (1.5− y)), and

v2(x, y) =− u1(x, y). (2)

To make the payoffs stay in the interval [−1,+1], Sion and Wolfe [1957]
add +1 to player 1’s payoffs so that utilities are given by

u1(x, y) =


−1 if x < y < x+ 1

2

0 if x = y or y = x+ 1
2

1 otherwise,

(3)

and u2(x, y) = −u1(x, y). Diagramatically, we can represent u1(·, ·) as
in Figure 1.

Sion and Wolfe [1957] show that this game has no countably additive
ϵ-equilibria for a range of strictly positive ϵ. We give finitely additive
representations of the limits of “reasonable” equilibria for this game,
providing a contrast with both the Sion and Wolfe result and the lit-
erature on discontinuous games that has studiously avoided games of
this sort.
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u1(x, y) = 1

u1(x, y) = 1

u1(x, y) = −1

u1(x, y) = 0

Figure 1. The Sion-Wolfe Game [1957]

The finitely additive equilibria depend on details of the hyperfinite
action sets, equivalently on the details of the net of finite approxima-
tions. Player 2’s advantage of 1/2 in the second battlefield means that
fine details of the approximation around (0.5, 0.5) can matter. Let H1

and H2 denote the two players’ exhaustive hyperfinite action sets, and
throughout, let h′

i denote player i’s largest strategy strictly less than
0.5 in Hi.

We analyze two cases, the fully symmetric one and one of the asym-
metric ones. In the fully symmetric case, we suppose that H1 = H2,
equivalently, that the nets of finite approximations satisfy F1,α = F2,α.
In the asymmetric case, we suppose that h′

1 < h′
2, that is, that 2 can

better approximate 0.5 from below than 1 can. This is equivalent to
working withh nets of finite approximations Fi,α in which player 2’s
largest strategy less than 0.5 larger than the corresponding strategy
for 1. The represent the equilibrium in the symmetric case, we must
specify the product extension as the issues in Example 2.3 are crucial.

Lemma 3.2 (The symmetric version). If the exhaustive hyperfinite sets
satisfy H1 = H2 and h′ is the largest element of Hi that is strictly less
than 0.5, then after interated deletion of weakly dominated strategies,
the unique equilibrium has player 1 playing 0, h′ and 1 with probabilities
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1/5, 1/5 and 3/5 while player 2 plays h′, 0.5, and 1 with probabilities
1/5, 1/5 and 3/5, and this delivers utilities (2/5,−2/5).

Letting ν be a Z1 that puts mass 1 on every interval (0.5 − ϵ, 0.5),
we have µ∗

1 = 1
5
δ0 +

1
5
ν + 3

5
δ1 and µ∗

2 = 1
5
ν + 1

5
δ0.5 +

3
5
δ1. To give the

independent extension, µ∗ of (µ∗
1, µ

∗
2) that represents the hyperfinite

equilibrium, we must represent the tie that happens in the hyperfinite
game when both players play h′. To this end, let Lϵ be the line joining
the points (0.5−ϵ, 0.5−ϵ) and (0.5, 0.5) and let η be a Z1 on [0, 1]×[0, 1]
that satisfies η(Lϵ) = 1 for all ϵ > 0. The independent extension µ∗

representing the equilibrium is given in the following table.

Mass Z1’s with the given mass
1/25 η, δ0 × ν, δ0 × δ0.5, and ν × δ0.5
3/25 δ0 × δ1, ν × δ1, δ1 × ν, and δ1 × δ0.5
9/25 δ1 × δ1 .

In the next equilibrium, the product extension needs no extra spec-
ification.

Lemma 3.3 (An asymmetric version). If h′
1 < h′

2 then there is a
unique equilibrium in the hyperfinite game that survives iterated dele-
tion of weakly dominated strategies. The finitely additive equilibrium
that represents it is µ∗ = (µ∗

1, µ
∗
2) where µ∗

1 is the countably additive
mixture 1

3
δ0 +

2
3
δ1 and µ∗

2 is the finitely additive 1
3
η + 2

3
δ1 where η is

a Z1 satisfying η((0.5 − ϵ, 0.5)) ≡ 1 and the equilibrium utilities are
(u∗

1, u
∗
2) = (1

3
,−1

3
).

In particular, along all exhaustive filters of finite approximations
where player 2’s largest element strictly less than 0.5 is larger than
player 1’s, all limits of equilibria that survive iterated deletion of weakly
dominated strategies are of this form.

3.3. The Largest Integer Game. The action sets are A1 = A2 = N.
With Φ(·) a strictly increasing cdf on [0,∞), the utilities are given by
ui(ai, aj) = sgn(ai − aj) + Φ(ai). If one player is using a countably
additive strategy, then the supremum of the achievable payoffs for the
other player is 2. Since this is true for both players and the supremum
of the Φ(·) part of the utility function is 1, there is no countably additive
ϵ-equilibrium for any ϵ < 1.

Replace each Ai by an exhaustive hyperfinite Hi and let h̄i be the
maximal element of Hi. Since every strategy h′

i ∈ Hi is strictly domi-
nated by any larger element of Hi, the unique equilibrium is (h̄1, h̄2).
There are three cases: h̄1 > h̄2; h̄1 = h̄2; and h̄1 < h̄2. Corresponding
to these three cases are the three purely finitely additive equilibria that
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arise as limits of exhaustive hyperfinite filters: the corresponding equi-
librium payoffs, (u∗

1, u
∗
2), are either (2, 0), (1, 1), or (0, 2). In each case,

if µ∗ is the finitely additive equilibrium, then it puts mass “to the right
of” all of the actions in N, that is to say, for any (N1, N2) ∈ A1 × A2,
µ∗({(n1, n2) : n1 ≥ N1, n2 ≥ N2}) = 1.

In the symmetric version of the Sion-Wolfe game, we needed to ex-
plicitly give the product extension, in this game, we must also do this.

(1) Because of the failure of Fubini’s theorem demonstrated in Example
2.4, the marginals of the equilibrium do not determine payoffs. In
this game, perhaps the easiest way to see this is to use hyperfinite
sets rather than nets. [Stinchcombe, 2023, Cor. 5.2, p. 648] shows
that for any Z1, p, putting mass “to the right of” N, and any
infinite integerN ∈ ∗Ai, there is a pair of infinite integersm,M with
m < N < M with p(B) = δm(

∗B) = δM(∗B) for all B ⊂ N. Thus,
even if the marginals of an equilibrium µ∗ are equal, the payoffs may
be either (2, 0), (1, 1), or (0, 2) depending on the product extension
that represents the hyperfinite equilibrium.

(2) When using the finitely additive strategies, the original sets of
strategies for the players do not yield a dense set of possible pay-
offs. The strategy µ∗ involves both players playing “to the right
of” the set N. This means that it is possible that an equilibrium µ∗

delivers the payoffs (u∗
1, u

∗
2) = (2, 0) while we simultaneously have

supn1∈A1
u1(µ

∗\n1) = 0 < 2.

The last point demonstrates the relative ease of using hyperfinite
sets, or nets of finite sets, to analyze the finitely additive equilibria.

4. Properties of the Set of Equilibria

One might worry that the use of “exotic” probabilities would deliver
an equilibrium theory that is not recognizable. This section is meant
to systematically allay some of those worries and give a more nuanced
view of when the “exotic” does and does not arise.

For a game Γ(u) = (Ai, ui)i∈I , Eq(Γ(u)) denotes the set of finitely
additive equilibria when the utility function is given by u = (ui)i∈I .
The basic structural results from finite games carry over with much
the same proofs. Theorem B shows that the set of equilibria is closed
and that the equilibrium correspondence from utility functions to the
corresponding set of equilibria is upper hemi-continuous.

Theorem C concerns equilibria that put zero mass on the set of
iteratively weakly undominated strategies. The iterated deletion of
weakly dominated strategies is one of the most powerful and widely
used methods for finding a “reasonable” set of equilibrium predictions
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from a game theory model. The “exotic” properties of finitely additive
equilibria are on full display here, but these properties are necessary to
capture phenomena of game theoretic interest even in the tamest class
of infinite action games.

Example 4.1 gives a two-person game on [0, 1]× [0, 1] having jointly
continuous utility functions in which the set of iteratively undominated
strategies for either player belongs to (0, 1/2n] for every n ∈ N. In the
original set of strategies, there is no representation for this set. In
every element of an exhaustive net of finite approximations, there is
an action that is not weakly dominated, and for large finite sets, that
action is close to 0. In a direct parallel, the finitely additive equilibria
that represent play of these actions are Z1’s that puts mass 1 on (0, ϵ)
for every ϵ > 0.

4.1. Basic Structural Results. We parametrize games by their util-
ity functions, u 7→ Γ(u) where u = (ui)i∈I with each ui : A → [−B,+B]
for some B > 0. We give the set of utility functions the product sup-
norm topology, that is, uα → u if (and only if) for all i ∈ I, the supnorm
distance, ∥uα

i (·)− ui(·)∥, converges to 0.
The proofs of the following claims are minor variants on the textbook

arguments for finite games. Recall that a correspondence with a closed
graph is upper hemi-continuous if the range is a compact Hausdorff
space.

Theorem B. For any game Γ satisfying the assumptions (1)-(3) above,

(1) Eq(Γ(u)) is a closed subset of ∆, and
(2) the equilibrium correspondence set {(u, p) : p ∈ Eq(u)} is closed.

Proof. Let pα be a net in Eq(Γ) and suppose that pα → p. Because
each pα is an equilibrium, for all α, for all i ∈ I, and all bi ∈ Ai,∫
ui(a) dp

α(a) ≥
∫
ui(a\bi) dpα(a). Since pα → p and each ui(·) is

bounded, ∫
ui(a) dp

α(a) →
∫
ui(a) dp(a) and (4)∫

ui(a\bi) dpα(a) →
∫
ui(a\bi) dp(a),

which implies that
∫
ui(a) dp(a) ≥

∫
ui(a\bi) dp(a).

For upper hemi-continuity, take arbitrary nets pα → p and uα → u
with pα ∈ Eq(uα). We must show that p ∈ Eq(u). Suppose, for the
purpose of establishing a contradiction, that p is not an equilibrium of
Γ(u). This requires that for some i ∈ I and some bi ∈ Ai, there exists
a strictly positive r such that

(‡)
∫
ui(a) dp =

∫
ui(a\bi)− r.
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From the triangle inequality,∣∣∫ uα
i dp

α −
∫
ui dp

∣∣ ≤ ∣∣∫ uα
i dp

α −
∫
ui dp

α
∣∣+∣∣∫ ui dp

α −
∫
ui dp

∣∣ . (5)

The first term on the right goes to 0 because ∥uα
i − ui∥ goes to 0 and

the second term goes to 0 because pα → p. By the same argument,∣∣∫ uα
i (a\bi) dpα(a)−

∫
ui(a\bi) dp(a)

∣∣ → 0. (6)

Thus, there exists an α such that for all β ≿ α, both differences are
smaller than r/2, a contradiction to (‡). □

4.2. Equilibria in Iteratively Undominated Strategies. In §3, we
replaced the action sets of the players by exhaustive hyperfinite sets
or by exhaustive nets of finite approximations. In each case, we found
unique equilibrium utilities after iterated deletion of weakly dominated
strategies. The next result, Theorem C, shows that this process always
delivers a non-empty, closed set of equilibria.

Our use of finitely supported probabilities in the definition of weakly
dominated strategies is neither usual nor without loss of generality.
However, it is appropriate for our exhaustive hyperfinite approach to
games.6

Definition 4.1. In a game Γ = (Ai, ui)i∈I , an action ci ∈ Ai is weakly
dominated for i if there is a finitely supported probability qi on Ai

such that for all a ∈ A, ui(a\qi) ≥ ui(a\ci) and the inequality is strict
for at least one a.

Iterated dominance is defined as usual.

Definition 4.2. For a game Γ0 = (A0
i , u

0
i )i∈I , for each i ∈ I, let D0

i de-
note the set of weakly dominated strategies in Γ0, let A1

i denote A
0
i \D0

i ,
and define Γ1 = (A1

i , u
1
i )i∈I by restricting each ui to ×j∈IA

1
j . Itera-

tively apply this: given a game Γn = (An
i , u

n
i )i∈I , let Dn

i denote i’s
weakly dominated strategies, let An+1

i = An
i \ Dn

i ; and define Γn+1 =
(An+1

i , un+1
i )i∈I by restricting each ui to ×j∈IA

1
j . Finally, let A∞

i =
∩n∈NA

n
i and define the game in iteratively undominated strate-

gies as Γ∞ = (A∞
i , u∞

i )i∈I by restricting each ui to ×j∈IA
∞
j .

A game is finite if the set of players is finite and each player’s set
of actions is finite. For finite games, iterative deletion of weakly dom-
inated strategies always leaves a non-empty set of strategies. We use
this to take limits of equilibria in weakly undominated strategies: since

6We would like to note that, except when we have gone looking for games with
such properties, we have not seen games where there is a distinction between strate-
gies weakly dominated by finitely supported strategies and those weakly dominated
by infinitely supported strategies.
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the nets of finite approximations are exhaustive, any iteratively weakly
dominated strategy is eventually excluded from every finite approxi-
mation to the game along the net.

Theorem C. For any finite player game Γ, the set of finitely addi-
tive equilibria that represent the limits of equilibria in iteratively un-
dominated strategies along exhaustive nets of finite approximations is
a closed non-empty subset of the equilibria of Γ that put zero mass on
the set of iteratively weakly dominated strategies.

The following Example is a variant on one in Simon and Stinchcombe
[1995]. It shows that situation is quite different for countably additive
equilibria in compact games with jointly continuous utility functions.

Example 4.1. With I = {1, 2} and Ai = [0, 1], suppose that the jointly
continuous utility functions ui(·, ·) take values in [0, 1], are symmet-
ric, u1(a1, a2) = u2(a2, a1), and have the following properties: if ei-
ther player plays 0, then both receive a utility of 0; for each a◦j > 0,

ai 7→ ui(ai, a
0
j) is strictly increasing on [0, a◦j/2], and strictly decreasing

on [a◦j/2, 1].

We give the analysis of Example 4.1 in four steps, the last of which
is a summary.

Step 1. The unique countably additive equilibrium. Whatever
countably additive strategy j plays, i’s best responses are a sub-
set of [0, 1/2] (and by symmetry, this is true for both players).
Given that player j puts puts mass 1 on [0, 1/2], player i’s best
responses are a subset of [0, 1/22]. By induction, for both play-
ers, best responses must put mass 1 on each set [0, 1/2n]. The
unique countably additive probability satisfying this is point
mass on 0, hence the unique equilibrium is for both to play the
weakly dominated strategy 0 with probability 1.

Step 2. An empty set of iteratively undominated strategies. For
both players, playing 0 is weakly dominated, and in the original
game, every ai in the interval (1/2, 1] is weakly dominated by
ai =

1
2
because for each aj ̸= 0, ui(·, aj) is strictly decreasing

on [1/2, 1]. The weakly undominated strategies for each player
are a subset of (0, 1/2]. After deleting the weakly dominated
strategies from the game, the weakly undominated strategies
are a subset of (0, 1/22]. By induction, the set of iteratively
weakly undominated strategies is ∩n∈N(0, 1/2

n] = ∅.
Step 3. The exhaustive hyperfinite analysis. With Hi an exhaus-

tive hyperfinite representation of Ai, i = 1, 2, the previous step
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implies that the only iteratively undominated strategies are the
hi that are strictly positive and smaller than any ϵ > 0, i.e. they
are infinitesimals. The finitely additive strategies correspond-
ing to this put mass 1 on each (0, ϵ).

Step 4. Summary. The game has an empty set of iteratively undom-
inated strategies because they must belong to each (0, 1

2n
], a

collection of sets with empty intersection. The finitely additive
equilibria put mass 1 on all sets of the form (0, ϵ), a related
collection of sets with empty intersection.

Note the difference between Theorems A and C, the first includes
the countably additive equilibria putting full mass on the weakly dom-
inated set of strategies, while the second excludes all equilibria putting
mass on that set.

We have arrived at a point where the mismatch between our ap-
proach and the literature on countably additive equilibrium existence
for infinite games with discontinuous payoffs is very apparent. The
finitely additive equilibria in Theorem C represent the limits of equi-
libria of arbitarily large finite approximations to the game that sur-
vive iterated deletion of weakly dominated strategies. These equilibria
encompass game theoretic concepts that countably additive equilibria
cannot capture, at least not in much generality: only one of the two-
person games in §3 has approximate countably additive equilibria, and
even that one has no countably additive equilibrium; in the Example
just given, there are iteratively undominated Z1’s, but no countably
additive equilibrium can play iteratively undominated strategies.

Still, there are connections with the study of equilibrium existence
for infinite games which has assiduously avoided the discontinuities
that preclude countably additive equilibrium existence. Though the
structure of the discontinuities are not a matter of concern for our the-
oretical analysis, it seems worth investigating aspects of the differences
in the approaches.

5. Special Discontinuities for Compact Games

For games compact sets of actions, arbitrary player sets, and jointly
continuous utility functions, the countably additive equilibria are prod-
uct probabilities defined on the product σ-field generated by the Borel
σ-fields on the players’ action sets. Every Borel probability has a com-
pact and convex set of finitely additive total extensions (e.g. Example
2.1). From Corollary A.1, the set of finitely additive equilibria and the
set of countably additive Borel equilibria are extensions or restrictions
of each other for compact and continuous games. In particular, they
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yield the same equilibrium payoffs to the players, and we take this
property as a starting point.

In this section, we investigate, for finite player games with compact
metric spaces of actions, the class of Borel measurable utility functions
with discontinuities special enough that the equilibrium utilities are the
same for finitely additive total equilibria and countably additive Borel
equilibria: Theorem D gives sufficient conditions for all of the finitely
additive continuous equivalents of a countably additive equilibrium to
be equilibria yielding the same payoffs; and Theorem E goes in the
other direction, providing conditions under which all of the continuous
equivalents of a finitely additive equilibrium are equilibria yielding the
same payoffs.

At a conceptual level, the difficulties arise from a peculiar mismatch:
this literature has used, and we will also use, the idea weak∗ topology
for countably additive probabilities. But the utility functions do not
integrate these probabilities continuously when we use this topology.
As a result, the sufficient, and nearly necessary, conditions for finitely
and countably additive continuously equivalent equilibria to yield the
same utilties include the requirement that the equilibria stay away from
the discontinuities.

5.1. Continuous Equivalence. The following is the central concept
used in this section.

Definition 5.1. Probabilities p and p′ on a metric space are continu-
ously equivalent, i.e. equivalent in the τCb

-topology, if they integrate
all bounded continuous functions to the same number.

It is a classic result that two countably additive Borel probabilities
on a metric space are continuously equivalent if and only if they are
equal. But this is far from true for total probabilities, and it is even
false for finitely additive Borel probabilities. Examples make this point.

Example 5.1. On the compact metric space [0, 1], a finitely additive
p is continuously equivalent to the countably additive point mass on
0, q = δ0 if and only if it puts mass 1 one every half-open set [0, ϵ).
But, for example, the equilibria in Example 4.1 involve finitely addi-
tive p’s that put mass 1 on each open set (0, ϵ). For the upper semi-
continuous function f(·) with f(0) = 1 and f(x) = 0 for x > 0, we
have

∫
f(x) dq(x) = 1 > 0 =

∫
f(x) dp(x).

Thinking of q in this Example as the equilibrium in a 1-person game,
we see that if an equilibrium q puts mass on the discontinuities of the
utility function, the continuously equivalent finitely additive p’s need
not be equilibria.

26



Continuous equivalence misses phenomena of game theoretic impor-
tance. In the following game, there are finitely additive equilibria that
Pareto dominate the non-empty set of countably additive equilibria.

Example 5.2. Player 1 picks an x ∈ [0, 1] and an action a in the two
point set {α, β}. Player 2 picks a y ∈ [0, 1]. The utilities are given by

u((x, α), y) = ((2− x)(2− y), (2− x)(2− y)) and (7)

u((x, β), y) =

{
(7(x+ 1)(y + 1), 7(x+ 1)(y + 1)) if (x, y) ̸= (1, 1)

(0, 0) if (x, y) = (1, 1).

Analysis. Play of ((0, α), 0) with probability 1 is the unique count-
ably additive equilibrium. It yields equilibrium utilities (4, 4). There
are finitely additive equilibria p∗ that involve player 2 putting mass 1
on each open interval of y’s of the form (1 − ϵ, 1) while player 1 puts
mass 1 on the (x, β) with x in the same class of intervals. The associ-
ated equilibrium utilities are the Pareto dominant vector (28, 28). The
countably additive q = ca(p∗) that is continuously equivalent to p∗ is
a point mass that yields utilities (0, 0), which are the minimal utilities
possible for the players in this game.

5.2. Continuous Equivalence for Equilibria. We are interested,
first, in the behavior of all of the finitely additive continuous equivalents
of a given countably additive equilibrium. We then turn to the question
of whether the countably additive Borel version of a finitely additive
equilibrium is necessarily an equilibrium giving the same payoffs.

5.2.1. Upper- and Lower-Semicontinuity. The arguments pass through
two Lemmas of independent interest. For perspective on the central
role that upper and lower semi-continuous functions will play, both
in the first Lemma and in the two results, it is worth noting that for
countably additive probabilities, qn →Cb

q if and only if for all bounded
upper semi-continuous functions f , lim supn

∫
f dqn ≤ lim supn

∫
f dq,

with the reverse inequality for lower semi-continuous functions.
We will use the first Lemma to compare the utilities of deviations

against finitely additive strategies and their countably additive contin-
uously equivalent versions.

Lemma 5.1. For X a compact metric space and f : X → R a bounded
upper semi-continuous function, if p is a total finitely additive prob-
ability on X and q = ca(p) is its countably additive version, then∫
f(x) dq(x) ≥

∫
f(x) dp(x), and the inequality reverses if f is lower

rather than upper semi-continuous.

27



5.2.2. The Continuous Mapping Theorem. The next Lemma is directly
analogous to the classical continuous mapping theorem for countably
additive probabilities. That result tells us that if a countably additive
q puts mass 0 on the discontinuities of a bounded function f and qn
is a sequence of countably additive probabilities with qn converging
to q in the weak∗ topology for countably additive probabilities, then∫
f dqn →

∫
f dq. We will use the Lemma to analyze the set of games

for which the finitely additive equilibria and their countably additive
versions deliver the same utilities to the agents.

Lemma 5.2. For X a compact metric space, f : X → R a bounded
Borel measurable function, and q a countably additive Borel probability,
if q puts mass 0 on the closure of the discontinuities of f , then

∫
f dq =∫

f dp for all finitely additive p that are continuously equivalent to q.

5.2.3. The Relations. We are now prepared for the result about the
finitely additive continuous equivalents of a countably additive equilib-
rium.

Theorem D. Suppose that q∗ is a countably additive equilibrium for
a finite player game with compact metric spaces of actions. If q∗ puts
mass 0 on the closure of the discontinuities of u : A → RI and for
all i ∈ I and all bi ∈ Ai, the mapping a 7→ ui(a\bi) is upper semi-
continuous, then every finitely additive p that is continuously equivalent
to q∗ is an equilibrium that gives the same expected utility payoffs as
q∗.

Proof. By Lemma 5.2, any continuously equivalent p satisfies
∫
u dq∗ =∫

u dp. Since we also know that q∗ is an equilibrium, for all i ∈ I and
all bi ∈ Ai, we have∫

ui(a) dp(a) =
∫
ui(a) dq

∗(a) ≥
∫
ui(a\bi) dq∗(a). (8)

Pick arbitrary i ∈ I and bi ∈ Ai. By assumption, a 7→ ui(a\bi) is upper
semi-continuous. By Lemma 5.1,

∫
ui(a\bi) dq∗(a) ≥

∫
ui(a\bi) dp(a).

Combining, for all i ∈ I and all bi ∈ Ai,
∫
ui(a) dp ≥

∫
ui(a\bi) dp so

that p is an equilibrium. □
We now give the result about the countably additive continuous

equivalents of a finitely additive equilibrium.

Theorem E. Suppose that p∗ is a finitely additive equilibrium for a
finite player game with compact metric spaces of actions and that q∗ =
ca(p∗) is the countably additive version of p∗. If q∗ puts mass 0 on the
closure of the discontinuities of u : A → RI and for all i ∈ I and all
bi ∈ Ai, the mapping a 7→ ui(a\bi) is lower semi-continuous, then q∗ is
an equilibrium that gives the same expected utility payoffs as p∗.
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The omitted proof is a mirror image of the proof for Theorem D
using the lower semi-continuous part of Lemma 5.2.

5.3. A Different Set of Discontinuities. The condition that the
countably additive strategy put mass 0 on the closure of the disconti-
nuity points is violated in all of the games in §3. Those are constant
sum, two-player games, and for such games, we know that if one player’s
payoff jumps up at a discontinuity, the other’s jumps down. The dis-
covery of the efficacy of this kind of reciprocality at the discontinuity
points utility functions in guaranteeing the existence of countably ad-
ditive equilibria was one of the early breakthroughs in the program to
identify well-behaved discontinuities (see Simon [1987]). Following the
masterful synthesis and extension of that literature in Reny [2020], we
have the following condition on the discontinuities of the payoffs for
countably additive mixed strategies.

Definition 5.2. For a finite player game Γ = (Ai, ui)i∈I where each Ai

is a compact metric space, the utility function u(·) has well-behaved
discontinuities if for all countably additive mixed strategies q = (qi)i∈I
that are not equilibria, there is an open neighborhood Gq and a weak∗-
continuous q 7→ φ(q) = (φi(q−i)i∈I) with the property that for all q′ ∈
Gq, there is at least one player j such that uj(q

′
−j, φj(q

′
−j)) > uj(q

′).

The argument that a finite player, compact metric space game with
well-behaved discontinuities has an equilibrium proceeds as follows: the
sets of countably additive probabilities ∆ca

i and ∆ca are both compact
in the weak∗ topology for countably additive probabilities, if there is
no equilibrium, an assumption made for the purpose of estabilishing a
contradiction, then we can take an open cover of ∆ca using the open
sets Gq; by compactness we can take a finite open subcover; using
partitions of unity, we can glue together the functions φ associated
with each element of the finite open cover into a single continuous
function; since the ∆i and ∆ are also convex, the generalization of
Brouwer’s fixed point theorem to compact and convex metric vector
spaces guarantees that this function must have a fixed point, q◦. But
this is absurd because it requires that at q◦, somebody can change
nothing and increase their payoff. This shows that for compact games
with well-behaved discontinuities, there is a non-empty, closed set of
countably additive equilibria.7

7One of the key advances in this literature replaced the continuous φ(·) by a
correspondence having the fixed point property as well as the same “someone does
strictly better” property.
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The genius of the work that has used this or a similar strategy of
proof for equilibrium existence lies in finding conditions that are easy
to verify, widely applicable, and yet are still sufficiently restrictive as to
preclude the sort of discontinuities on display in §3. Many but not all of
the applications that have used well-behaved discontinuities have equi-
libria that put mass 0 on the closure of the discontinuities of the utility
functions. To apply the results of the last two subsections to those
games requires a bit more, either an upper or a lower semi-continuity
condition. For some but not all of the applications, one or the other
of these additional assumptions are satisfied. But a characterization of
the compact games with well-behaved discontinuities for which one can
pass back and forth between finitely and countably additive equilibria
without changing the set of utilities seems likely to be quite elusive.

In any event, the contrast between our approach and the study of
games with well-behaved discontinuities is striking — we make no as-
sumptions on the utility function beyond boundedness.

6. Summary and Future Directions

There has always been a jarring cognitive gap between games with
finite sets of actions and games with compact sets of actions. Finite
games always have equilibria and finite sets of actions can approximate
compact sets both exhaustively and uniformly. But unless we can ap-
peal to special properties of the discontinuities in the utility functions,
the equilibria of the finite approximations seem to have no counterparts
in countably additive strategies for compact games.

This paper shows that the cognitive gap disappears if strategies are
understood as finitely additive mixtures, that the gap is an artifact
of the insistence on modeling the equilibria for games as countably
additive strategies. That being said, there are many context dependent
objections to the use finitely additive mixtures. From our point of view,
if the context dependent objections to finitely additive mixtures are to
have bite in game theory, they must provide a principled repudiation
of the validity of finite approximations to games.

Jackson and Swinkels [2005] argue that equilibrium phenomena that
depend on the fine structure of the approximations are “pathological.”
To at least partly avoid this issue, we include as equilibria all of the
possible limits along exhaustive nets of finite games. Exhaustiveness
dampens some of the variability by guaranteeing that all strategies are
considered possible, and the inclusion of all limits leads to a theory
that does not depend on the fine structure of the approximations.
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Further, Theorem B shows that in game theory, the extent to which
the finitely additive equilibria are “exotic,” “peculiar,” or “patholog-
ical” is somewhat limited. The closedness and upper hemi-continuity
structural results about the set of equilibria for finitely additive equi-
libria directly mirror the properties that hold for finite games, and for
the compact and continuous games with which Glicksberg [1952] be-
gan the systematic study of countably additive equilibrium existence
in infinite games.

We believe that finitely additive mixed strategies has the potential
to make many more contributions to to game theory. There are two
areas where the techniques developed here can provide some immediate
advances, extensive form games with infinite sets of actions, and infinite
population games.

6.1. Infinite Extensive Form Games. There are several well-studied
examples of extensive form games with infinite sets of actions where
early choices upper hemi-continuously determine the set of later equi-
librium payoffs in such a fashion as to preclude the existence of count-
ably additive equilibria. In mechanism design models with competing
principals, Myerson [1982] shows that: the set of incentive compatible
mechanisms can explode upper hemi-continuously; that it is possible
that early mover payoffs are strictly increasing as one nears the up-
per hemi-continuous explosion point; but any of the equilibrium ac-
tions taken in the larger sets necessarily force the early mover’s payoffs
to jump downwards. In a similar fashion, Manelli [1996] analyzes a
signaling game in which the follower’s best response correspondence
explodes upper hemi-continuously. In approaching the discontinuity,
the sender’s payoff is strictly increasing, but at the discontinuity, the
payoffs to later equilibrium play necessarily induce the payoffs to jump
downwards. In such examples, a finitely additive equilibrium can cap-
ture the earlier player avoiding the downward jump while suffering
the least possible utility consequences of avoiding the discontinuous
penalty.

Another issue for countably additive mixtures in extensive form
games is the “disappearance” of information in the limit. Myerson
and Reny [2020, p. 497] write that

. . . the difficulty is that the randomized signals upon
which players coordinate their actions along the sequence
can, in the limit, have distributions that degenerate to
a point, leaving the players without access to the neces-
sary coordination device.
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This kind of disappearance of information at a point is an artifact of
the insistence on countable additivity and the routine application of the
weak∗ topology for countably additive Borel probabilities. That topol-
ogy was developed for continuous problems and this is a discontinuous
problem. To put it slightly differently, the disappearance depends on
making a particular choice for what is meant by “in the limit.”

One can see the preservation of information in the limit in the largest
integer game analyzed in §3.3. There, the limit was an extreme point
in the set of probabilities, i.e. a Z1. And yet it retains the information
about the relative size of the players’ choices along the approximating
net. Stinchcombe [2023, Corollary 5.1] shows that the preservation of
information in the limit is far more general than this indicates. For
example, finitely additive probabilities that put unit mass on any in-
terval (0, ϵ) can encode any distribution on any Polish metric space.
The intuition is that there are uncountably many infinitesimals just to
the right of 0, and functions of a uniform distribution on a hyperfinite
subset of them provides the necessary variability.

All of that being said, there is still a large conceptual difficulty to be
overcome for infinite extensive form games. Consider a game model in
which players sequentially choose actions in, say, [0, 1], and the later
actions are chosen on the basis of signals that are continuous functions
of the early play. There are two very different options for finite ap-
proximations to this game. One could, (A), exhaustively replace each
space [0, 1] and analyze the resulting net of finite extensive form games,
or (B), one could start with the set of pure strategies as measurable
functions from signals to later choices and replace the set of measur-
able functions with an exhaustive net of finite sets. The choice mat-
ters. Stinchcombe [2005, Example 2.5, p. 340] gives a game for which
modeling strategy (A) gives a substantively different set of strategic
structures than modeling strategy (B).

Despite the extensive argumentation in Myerson and Reny [2020]
against (A) and in favor of a hybrid approach, it seems to us that to
develop a finitistic8 theory of extensive form games, a choice between
the (A) and (B) must be made. For us, there is an internal consistency
to exhaustively replacing the sets of actions by exhaustive hyperfinite
sets or exhaustive nets. And that internal consistency is of a piece with
the idea that models of infinite sets should reflect their finite origins.
For game theory at least, the set of so-called “real” numbers developed
by d’Alembert, Cauchy, Bolzano, Weierstrass and the mathematicians
that have followed is the wrong tool.

8Many thanks to Don Brown for this evocative word.
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6.2. Infinite Population Games. We know, from Theorem A, that
equilibria exist for games that use any infinite set to model the players.
We have several preliminary results but we do not have the full picture
of how that result relates to the equilibria of the continuum popula-
tion game models first studied by Schmeidler [1973]. An summary of
the extensive literature that followed on this can be found in Khan
and Sun [2002]. The analyses have (a) worked with a variety of count-
ably additive nonatomic probability structures for the space of players,
but crucially, (b), until very recently, that work has posited that the
agents can and do correctly observe the true population distribution of
actions.9

As to (a), extending the countably additive probability on a lim-
ited σ-field of sets of players to a larger one is always possible. A
central question is how sensitive the set of equilibria is to the choice
of extension. As background for such an investigation, we have used
the Mas-Colell [1984] distributional equilibrium approach to continuum
population games. In that approach, one defines an equilibrium as a
joint distribution of agent characteristics and actions having the mu-
tual best response property. Because one focuses on the induced joint
distribution on player characteristic-action pairs, the measure theoretic
differences in the population model play a much smaller role. In par-
ticular, this smaller role means that the entire issue of whether or not
an equilibrium in pure strategies exists is thoroughly submerged.

Putting aside the existence of pure strategy equilibria, in studying
distributional equilibria, the arguments behind Corollary A.2 on the
continuous equivalence of games on Polish spaces play a central role.
Provided that the distribution of agent characteristics is near-tight, one
can show that exact countably additive distributional equilibria exist,
and that a finitely additive joint distribution on characteristics and
actions is an equilibrium if and only if it is continuously equivalent to
the countably additive equilibrium. Going back to the issue of the many
finitely additive extensions, we strongly conjecture that the finitely
additive extensions of the continuuum population model give rise to
the different continuously equivalent equilibria as exact finitely additive
equilibria.

As to (b), the assumed correctness of how the population sees and
interprets what is happening in the world seems far too limiting for

9Recent advances include Cerreia-Vioglio et al. [2022], who model players as
correctly observing the true distribution of the actions taken by those in the player’s
peer or comparison group, and Frick et al. [2022], who model players as using the
biased sample of the people that they interact with is representative of the entire
population.
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present day phenomena, even when people use non-representative sam-
ples as in Cerreia-Vioglio et al. [2022] and Frick et al. [2022]. We have
begun the study of models in which each individual lives in their own
version of reality. In these models, evidence and data is selectively cu-
rated for each individual by the advanced pattern recognition software
currently deployed by profit maximizing social media firms that value
addiction of their customers over accuracy. There are still objective
consequences to population choices, and when they directly impinge
on the people in the model, in equilibrium, they cannot be ignored.
We have found it extremely convenient to start the analysis knowing
that equilibria exist, and that they can be both interpreted and ana-
lyzed as limits of equilibria for finite approximations to the strategic
situation being modeled.
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Appendix: Proofs Omitted from the Text

Throughout, our use of nonstandard analysis happens in a fully sat-
urated superstructure that contains the game Γ. For a textbook cov-
erage of this material, see Hurd and Loeb [1985], for a coverage that
builds closely on the sequence- and net-based intuitions that permeate
analysis, see Lindstrøm [1988].

For any probability P ∈ ∗∆, we define p = st(P ) as the standard part
in the compact Hausdorff τB-topology. This is equivalent to defining
p(B) as the standard part of the number P (∗B).
It is worth noting that we are not using the Loeb measure construc-

tion. We are instead going back to an older and more direct non-
standard representation of probabilities, see Stinchcombe [2023] for a
detailed coverage of this approach.

Proof of Theorem A. Let IF and JF be finite set of agents and for
i ∈ IF , let Bi be a finite subset of Ai and for j ∈ JF , let Cj be a finite
subset of Aj. Define a partial order by

(IF , (Bi)i∈IF ) ≻ (JF , (Cj)j∈JF ) (9)

if JF ⊂ IF and for all j ∈ JF ⊂ IF , Cj ⊂ Bj. By comprehensiveness,
there exists a hyperfinite (IH , (Hi)i∈IH ) that is larger in the partial
order than every finite (IF , (Bi)i∈IF ). Let H = ×i∈IHHi.

Pick an arbitrary z ∈ ∗A. For each b ∈ H = ×i∈IHHi, define vi(b; z) =
∗ui(z\b) where for j ̸∈ IH , (z\b)j = zj and for for i ∈ IH , (z\b)i = bi.
By transfer of Nash’s equilibrium existence theorem, the game ΓH(z) =
(Hi, vi(·; z))i∈IH has an equilibrium, (γ∗

i )i∈IH . For j ∈ ∗I \ IH , set γ∗
j

as point mass on zj. Let γ∗ be the product distribution induced by
(γ∗

i )i∈∗I on ∗A, define µ∗
i = st(γi) and µ∗ = st(γ∗).

It is immediate that µ∗ is a product extension of (µ∗
i )i∈I . And since

every i ∈ I belong to IH , and for every i ∈ I, every bi ∈ Ai belongs to
Hi, for all i ∈ I and all bi ∈ Ai, ui(µ

∗) ≥ ui(µ
∗\bi). □
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We now turn to the analysis of the symmetric hyperfinite version of
the Sion-Wolfe game.

Proof of Lemma 3.2. Every h1 ∈ H1∩ (1
2
, 1) is weakly dominated by

a1 = 1, and every h2 ∈ H2 ∩ [0, h′) is weakly dominated by h′. After
these strategies are eliminated from the game, every h1 ∈ (0, h′) ∩H1

is weakly dominated by a1 = 0, and 0.5 is weakly dominated by a1 =
1. When 1 is only using the strategies 0, h′, and 1, the only weakly
undominated strategies for player 2 are the strategies h′, 0.5, and 1.
The payoffs in the resultant 3× 3 game are given by

Player 2
h′ 0.5 1

0 (−1,+1) (0, 0) (+1,−1)
Player 1 h′ (0, 0) (−1,+1) (+1,−1)

1 (+1,−1) (+1,−1) (0, 0)

Direct examination shows that there is no pure strategy equilibrium,
and that the unique distribution for player 2’s actions that makes 1
indifferent is (1

5
, 1
5
, 3
5
) on (h′, 0.5, 1), and that the unique distribution

for player 1’s actions that makes 2 indifferent is (1
5
, 1
5
, 3
5
) on (0, h′, 1). □

The following is the analysis of the asymmetric version of the Sion-
Wolfe game described in the text.

Proof of Lemma 3.3. Verifying that µ∗ is an equilibrium was done in
the text. For the rest, let H1 and H2 be exhaustive hyperfinite subsets
of A1 and A2 respectively with the property that h′

1 < h′
2 < 0.5.

First round of deletion of weakly dominated strategies

First, observe that any h1 ∈ H1 ∩ (0.5, 1) is weakly dominated by 1
for player 1 because moving to a higher strategy in (0.5, 1] wins against
every h2 that a lower strategy beats, and either wins or ties against
every h2 that a lower strategy loses to.

Second, observe that any h2 ∈ [0, h′
2)∩H2 is weakly dominade by h′

2

for player 2 because moving to a higher strategy in [0, h′
2) wins against

every h1 that a lower strategy beats, and either wins or ties against
every h1 that a lower strategy loses to.

After deleting the weakly dominated strategies, the action sets for
the two players are (H1 ∩ [0, 0.5])∪{1} for player 1 and H2 ∩ [h′

2, 1] for
player 2.

Second round of deletion of weakly dominated strategies

37



Now consider the game with the weakly dominated strategies deleted.
For player 1, playing x = 0 weakly dominates 0 < h1 <

1
2
and playing

x = 1 weakly dominates 1
2
. For player 2, the only weakly undominated

strategies are y = h′
2 and y = 1.

With the weakly dominated strategies deleted, we have the 2 × 2
game given by

Player 2
y = h′

2 y = 1
Player 1 x = 0 (-1,+1) (+1,-1)

x = 1 (+1,-1) (0,0)

Direct verification shows that 1 playing (2
3
, 1
3
) on x = 0 and x = 1

and 2 playing (1
3
, 2
3
) on y = h′

2 and y = 1 is the unique equilibrium. □

The following proof is considerably simplified by the use of hyperfi-
nite sets and nonstandard analysis.

Proof of Theorem C. Let F = ×i∈IFi be a product of non-empty
finite subsets of ×i∈IAi. The class of hyperfinite products H = ×i∈IHi

containing F is internal. For each such H, the set of equilibria in
iteratively undominated strategies is internal. The union of these in-
ternal sets is itself an internal subste of ∗∆, and the standard part
of any internal set is closed in the weak∗ topology on finitely addi-
tive probabilities. Let Un(F ) denote that closed set in ∆. The class
{Un(F ) : F = ×i∈IFi} has the finite intersection property, hence has
non-empty, closed intersection, Un. By construction, any element of
Un puts mass 0 on the set of weakly undominated strategies, and it is
the standard part of an equilibrium for some hyperfinite version of the
game. □

The following concerns the integrals of semi-continuous functions
against continuously equivalent probabilities.

Proof of Lemma 5.1. It is sufficient to show that the inequality holds
for f(x) = 1F (x), F a closed subset of X (because every non-negative
upper semi-continuous function is a uniform limit of positive linear
combinations of indicators of closed sets). With F 1/n denoting the open
set of points y with d(y, F ) < 1/n, we have An := (F 1/n \ F ) ↓ ∅ so
q(An) ↓ 0, but since p is finitely additive, infn p(An) > 0 is possible. If
this happens,

∫
1F dq >

∫
1F dp. And since f is upper semi-continuous

iff −f is lower semi-continuous, the inequality reverses for lower semi-
continuous functions. □
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The following concerns the integrals finitely additive continuous equiv-
alents of a countably additive probability that avoids discontinuities.

Proof of Lemma 5.2. Rescaling if necessary, we can, without loss,
assume that f(x) ∈ [−1,+1]. Let F denote the closure of the set of
discontinuities of f , suppose that q = ca(p) is the countably additive
version of a finitely additive total probability p, and that q(F ) = 0.
Let G denote the open complement of F , and pick arbitrary ϵ > 0. We
will show that |

∫
f dp−

∫
f dq| < ϵ.

PickK ⊂ G such that q(K) > 1−ϵ/4. By the continuous equivalence
of p and q, for any δ > 0, p(Kδ) > 1 − ϵ/4. Pick δ > 0 such that
K2δ ⊂ G. Let g denote the restriction of f to the closure of Kδ. By
the usual results on the extension of continuous functions defined on
closed sets, g has a continuous extension, h, to all of X with ∥h∥ ≤ ∥g∥.
Since p and q are continuously equivalent,

∫
h dp =

∫
h dq. We have∣∣ ∫ f dp−

∫
f dq

∣∣ ≤ (10)∣∣ ∫ f dp−
∫
h dp

∣∣+ ∣∣ ∫ h dp−
∫
h dq

∣∣+ ∣∣ ∫ h dq −
∫
f dq

∣∣.
The middle term is equal to 0 by continuous equivalence. The first and
the third terms are less than ϵ/2 because the functions f and h agree
on Kδ, a set that both probabilities assign at least mass 1 − ϵ/4, and
the absolute value of the difference between f and h is bounded by 2
because both take values only in [−1,+1]. □
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