
Assignment #2 for Mathematics for Economists
Fall 2016

Due date: Wed. Oct. 5.

Readings: CSZ, Ch. 4.1 - 9, Ch. 5.1

Problems

A. From Chapter 4.3: 4.3.6 (p. 116), 4.3.11 (p. 118), and 4.3.15 (p. 120).
B. From Chapter 4.4: 4.4.3 (p. 120) 4.4.6 (p. 121), 4.4.12, and 13 (p. 123)
C. From Chapter 4.5: 4.5.2 (p. 124), 4.5.8, 9, 10, and 11 (p. 126)
D. From Chapter 4.6: 4.6.3 (p. 129)
E. From Chapter 4.7: 4.7.14 (p. 132), 4.7.3, 6 (p. 130)
F. From Chapter 4.8: 4.8.9 (p. 140), 4.8.10, changing “six” to “three” (p. 140)i,

and 4.8.13, pick two of the four (p. 141)
G. From Chapter 4.9: 4.9.2, (p. 143)
H. From Chapter 5.1: 5.1.14, 5.1.15 (p. 177), 5.1.18, 5.1.19 (p. 178), 5.1.28, and 29

(p. 180).
I. For i = 1, . . . , I, let ci : R+ → R+ be a convex, increasing cost function with ci(xi)

representing the cost of achieving pollution reduction of level xi ≥ 0 for source i.
We assume throughout that ci(0) = 0, that the sources are in the same geographical
region, and that ‘perfect’ mixing occurs, that is, if source i reduces by x◦i , then the
total regional reduction is

∑
i x
◦
i and every place in the region receives the same

benefit from this.
Let C(R) = minx1,...,xI

∑
i ci(xi) s.t.

∑
i xi ≥ R.

1. Suppose that each ci(·) is twice continuous differentiable, satisfies c′i(0) = 0 and
c′i(xi) > 0 for all xi > 0. Give the FOcs for C(R), show that C(·) is convex, and
characterize its derivative.

2. Now suppose that each ci(·) is continuously differentiable and convex but may
not satisfy the c′i(0) = 0 condition. Give the Kuhn-Tucker conditions for C(R),
show that C(·) is convex, and characterize its derivative.

3. Now suppose that each ci(·) is increasing and convex. Characterize C(R) as far
as possible.

4. Suppose now that each firm had to pay a price p per unit of the pollutant they
emit. Give, in as much generality as you can manage, properties of the price
p(R) that results in a reduction of size R.

J. [About the Neyman-Pearson Lemma] Suppose that X = (X1, . . . , Xn) is a sequence
of 0’s and 1’s that has the Bernoulli density f(x|θ), θ ∈ Θ = {θ0, θ1}. There is
a trade-off between α, the probability of a Type I error, and β, the probability
of a Type II error. Let us suppose that we dislike both types of errors, and in
particular that we are trying to devise a test, characterized by its rejection region,
Xr, to minimize

a · α(Xr) + b · β(Xr),
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where a, b > 0, α(Xr) = P (X ∈ Xr|θ0), and β(Xr) = P (X 6∈ Xr|θ1). The idea is
that the ratio of a to b specifies our trade-off between the two types of errors: the
higher a is relative to b, the lower we want α to be relative to β.

Let Xa,b = {x : af(x|θ0) < bf(x|θ1)} =
{

x : f(x|θ1)
f(x|θ0) >

a
b

}
.

This decision rule is based on the likelihood ratio, and likelihood ratio tests
appear regularly in statistics, often as part of calculating a uniformly most powerful
test.
1. Show that a test of the form Xa,b solves the minimization problem given above.

[Hint: Let φ(x) = 1 if x ∈ Xr and φ(x) = 0 otherwise. Note that a · α(Xr) +
b · β(Xr) = a

∫
φ(x)f(x|θ0) dx + b

∫
(1− φ(x))f(x|θ1) dx and that this is in turn

equal to b +
∫
φ(x)[af(x|θ0) − bf(x|θ1)] dx. The idea is to minimize the last

term in this expression by the choice of φ(x). Which x’s should have φ(x) = 1?]
2. As a function of a and b, find Xa,b when (X1, . . . , Xn) is iid Bern(θ), θ ∈ Θ =
{θ0, θ1} ⊂ (0, 1).

K. [Prices as coordination devices] Suppose that an organization has 4 subdivisions,
each subdivision has 3 possible projects, projects k = 1, . . . , 12. Project k, if run
at proportion α, 0 ≤ α ≤ 1, gives benefit αBk and costs αCk of a scarce resource.
The Bk and the Ck are as given in the following table.

Division Project Bk Ck Bk/Ck
I 1 600 100 6

2 1,400 200 7
3 1,000 200 5

II 4 500 50 10
5 750 250 3
6 1,000 200 5

III 7 900 100 9
8 3,500 500 7
9 1,600 400 4

IV 10 800 100 8
11 1,000 250 4
12 1,200 400 3

The company has a total of 1, 200 of the scarce resource.
1. Suppose first that each division is allocated 300 of the 1, 200 in resources, that

is, if each of the four is allocated 1
4

of the total. What is(are) the optimal plan(s)
for each division? What are the resulting total profits?

2. Suppose now that the company allocates the 1, 200 optimally among the 12
projects. What is(are) the optimal plan(s) for the firm? What are the resulting
total profits?

3. A simple rule for the center to announce to implement the best, coordinated
solution, without the central organizing office needing to know about
the benefits and costs of the different projects, is “Fund any project with
B/C > p, talk to us about projects with B/C = p, and forget projects with
B/C < p.” What is the p that works?
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4. Draw the parallel(s) between this solution and the solution to the Neyman-
Pearson problem just above.

5. Some commentary. An alternative formulation of the previous rule is “Value
the resource at a price p and pick projects to maximize profits, talk to us about
projects that break even.” One number, the price p to be paid for the resource,
plus the simple and decentralizable rule, “maximize profits,” achieves coordina-
tion on the scale of the firm. When the scarce resource is produced by another
division within the firm, the price to the divisions using that scarce resource
is called a transfer price. The general question is how to figure out the best
transfer price without needing to know all of the information from the various
divisions within the firm. For a lovely statement of the general ideas behind
prices as transmitters of information, see esp. Sections III-VI in the paper “The
Use of Knowledge in Society,” by F. A. Hayek, American Economic Review,
35(4), 1945, 519-530.
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