
Assignment #1 for Environmental and Resource Economics

Economics 359M, Spring 2017

Due date: Wednesday, February 7, 2017

Readings: Chapters 1, 2, and 18 in

Kolstad. Environmental Economics, 2’nd ed. OUP.

A. Sandmo. The early history of environmental economics. Review of

Environmental Economics and Policy, 9(2):1–21, 2015.

If you have already seen a good treatment of the mathematics of constrained opti-

mization, then you can go straight to the problems. If not, these notes, or some other

source (e.g. your calculus textbook, a calculus-based microeconomics textbook) are

part of your reading assignment.
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1. Unconstrained Optimization

For a microeconomist, the central assumption is that people, as decision makers, are

doing as well as they can with the knowledge and resources they have. The mathemat-

ics of optimization is the key to understanding the implications of this assumption.

1.1. The General Form. Throughout, x = (x1, . . . , xn) will represent the levels of n

different decision variables. When studying different situations, the interpretations of

the n variables will change. Examples include production levels for both private and

public goods, investment levels, pollution abatement levels, the amount of time spent

on projects, and many many others.

The unconstrained optimization problems will have the general form

max
x1,...,xn

f(x1, . . . , xn) or max
x1,...,xn≥0

f(x1, . . . , xn). (1)

f(·) is called the objective function. It represents what the decision maker is trying

to optimize. The second variant of the maximization problem represents situations in

which negative levels of the decision variables do not represent anything of interest.

Solutions to the problems in (1) are, by assumption, what the decision maker chooses

to do. They will be denoted x∗ = (x∗1, . . . , x
∗
n). They will have economic interpreta-

tions.

1.2. Solving Unconstrained Problems. Solving maxx1,...,xn f(x1, . . . , xn) for x∗,

will often be found by solving the system of n equations in n unknowns given by

∂f(x1,...,xn)
∂x1

= 0

∂f(x1,...,xn)
∂x2

= 0

... = 0

∂f(x1,...,xn)
∂xn

= 0.

Since these equations involve first order derivatives, they are called First Order

Conditions (FOCs).

Often, but not always, the FOCs just given can also be used solve the problem

maxx1,...,xn≥0 f(x1, . . . , xn). There will be important cases in which this is not true.

For those cases, we will need to modify the FOCs, and we will cover this modification

later.

1.3. Homework problems on unconstrained maximization.

A. Give the FOCs and the solutions to the following problems.

1. maxx f(x) when f(x) = 9 + 3x− 4x2.
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2. maxx f(x) when f(x) = −[2x2 + 4(100− x)2].

3. maxx f(x) when f(x) = 250 + 19x− ex.
4. maxx≥0 f(x) when f(x) = 50

√
x− 0.8 · x.

5. maxx≥0 f(x) when f(x) = 500
√
x− 0.01 · x2.

6. maxx≥0 f(x) when f(x) = 5 log(x)− 0.1 · x.

7. maxx≥0 f(x) when f(x) = 5 log(x) + 3 log(10− x).

8. maxx≥0 f(x) when f(x) = 5x− 0.01x2.

B. Give the FOCs and the solutions to the following problems.

1. maxx1,x2 f(x1, x2) when f(x1, x2) = 29 + 3x1 + 4x2 − (3x21 − 2x1x2 + 4x22).

2. maxx1,x2 f(x1, x2) when f(x1, x2) = −[x21 + 4x22 + 2(100− (x1 + x2))
2].

3. maxx1,x2≥0 f(x1, x2) when f(x1, x2) = 5 log(x1) + 30 log(x2)− 0.4 · x1 − x2.
4. maxx1,x2≥0 f(x1, x2) when f(x1, x2) = 15x1 + 30x2 − 0.4ex1 − 0.1ex2 .

C. A person has an original amount a of a good. By sacrificing x of it, they can

produce y = g(x) of another good. The person solves the utility maximization

problem maxx≥0 u(a−x, g(x)). Suppose that u(c, y) = log(c)+y and that g(x) = x.

1. Give the FOCs for the maximization problem maxx≥0 u(a− x, g(x)).

2. Solve for x∗.

D. Neonicotinoids are applied to roughly 170 · 106 acreas per year in the US, mostly

through the treatment of seeds, and they now account for approximately 1/4 of

worldwide pesticide sales and 4/5 of the seed treatment. The initial success, after

their introduction in the mid-1980’s was due to the lack of pesticide resistance in

the targets, a variety of advantages over previous generations of pesticides, and an

assumption of lower risk for those using the pesticide and those consuming trace

amounts. Since that time, they have become widespread in the environment and a

number of studies have demonstrated their synergistic and deadly effects with other

stressors on pollinating species, especially bees. Suppose that the opportunity and

other costs of reducing neonicotinoids by an amount of R is given by C(R) and the

benefits of their reduction by B(R).

1. If C(R) = 100R + 1
20,000

R2 and B(R) is given by 300R, what is the optimal

amount of reduction?

2. How does the answer change if C(R) is changed to 100R + 1
20,000

R2 + C?

3. How does the answer change if B(R) is changed to 100R + 1
20,000

R2 −B?

4. How does the answer change if C(R) is changed to α · (100R + 1
20,000

R2)?

5. How does the answer change if B(R) is changed to β · (300R)?

E. There are I firms currently emitting quantities qi of endocrine disruptors (chlori-

nated pesticides and herbicides, bis-phenolA, di-2-ethylhexyl phthalate, and various

surfacants) that are ending up in the local water table. This damages the local
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wildlife, especially the fish and amphibians, and it is getting into the local drinking

water, which damages the people who drink the water. Simplifying, if the total

quantity emitted is q =
∑

i qi, the damages are worth D(q). The cost to firm i of

reducing the emissions by an amount ri is Ci(ri). The social problem is

maxr1,r2,...,rI B −D(q −
∑

i ri)−
∑

iCi(ri).

Assume throughout this problem that all of the solutions in this problem are strictly

positive, that both the function D(·) and the functions Ci(·) have strictly positive

derivatives.

1. Give the I different first order conditions for the social problem.

2. Show that the optimal solution involves each firm reducing to a point where

their marginal costs are equal. Interpret the quantity that all of the marginal

costs are equal to at the optimum.

3. Suppose that there is a price p that the firms must pay to emit a quantity qi.

Profits are maxri [π − Ci(ri)− p(qi − ri)]. Give the first order conditions for

maxri [π − Ci(ri)− p(qi − ri)],

and show that they are the same as the first order conditions for

minri Ci(ri)− p · ri.

4. What p must be chosen in the previous problem to have the same answer as in

the second problem?

2. Parametrized Optimization Problems

The objective functions of interest are often of interest because they are parametrized,

f = f(x; θ). This changes the problems to

V (θ) = max
x1,...,xn

f(x1, . . . , xn; θ) or V (θ) = max
x1,...,xn≥0

f(x1, . . . , xn; θ). (2)

2.1. Three Aspects. There are three aspects to this.

• First, θ is not something that the decision maker can choose, it is something

outside of their control. When studying different situations, the interpreta-

tions of θ will change. Examples include resources, prices of outputs, prices of

inputs, pollution reduction targets, measures of benefits and costs included in

calculations. There are many others.

• Second, optimizing behavior now depends on the value of the parameter, and

we represent this by x∗(θ) = (x∗1(θ), . . . , x
∗
n(θ)). We care about how x∗(·)

depends on the parameter θ.
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• Third, we now include the parametrized value of the decision problem, V (θ).

To find V (θ) explicitly, we will solve the problem and “plug the solution back in,”

that is,

V (θ) = f(x∗1(θ), . . . , x
∗
n(θ); θ). (3)

2.2. Examples from Microeconomics.

• x is the production level for a firm, p is the market price for the good, c(x) is

the cost of producing x, and the problem is

V (p) = max
x

(px− c(x)),

that is, f(x; p) = px − c(x). Here: the price p is the parameter; x∗(p) is the

supply that the firm produces when the price is p; V (p) = px∗(p)− c(x∗(p)) is

the profit function.

• x is the production level for a firm, p is the market price for the good, c(x,w)

is the cost of producing x when the price of inputs is w, and the problem is

V (p, w) = max
x≥0

(px− c(x,w)),

that is, f(x; p, w) = px− c(x,w). Here: the parameter is the vector of prices,

(p, w); x∗(p, w) is the supply that the firm produces when the price of the

output is p and the price of the inputs is w; V (p, w) is the profit function. In

intermediate micro, x∗(·, ·) is the supply function expressed as a price of both

inputs and outputs. We are now explicitly including the dependence of profits

on the price of the output and the price of the inputs.

• x1, x2 are the production levels for two goods, p1, p2 are the market prices for

the two goods, c(x1, x2) is the cost of production, and the problem is

V (p1, p2) = max
x1,x2

[(p1x1 + p2x2)− c(x1, x2)].

that is, f(x1, x2; p1, p2) = (p1x1 + p2x2) − c(x1, x2). The solution vector,

x∗(p1, p2) = (x∗1(p1, p2), x
∗
2(p1, p2)) is the joint supply function for the function,

and V (p1, p2) = (p1x
∗
1 + p2x

∗
2)− c(x∗1, x∗2) is the profit function.

• x1, . . . , xn are the n inputs into the production of good y, the prices of inputs are

w1, . . . , wn, y = g(x1, . . . , xn) expresses output using the production function

g(·), output is sold at a price p. The parameter is now the price of the output

as well as the vector of the prices of the inputs,

V (p, w1, . . . , wn) = max
x1,...,xn

pg(x1, . . . , xn)− (w1x1 + · · ·+ wnxn),
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that is, f(x1, . . . , xn; p, w1, . . . , wn) = pg(x1, . . . , xn)−(w1x1+ · · ·+wnxn). The

solution vector x∗(p, w1, . . . , wn) is the vector of goods the firm produces when

the output price is p and the input prices are w1, . . . , wn. Plugging this vector

of solutions back into the objective function gives the profit function.

• When the firm in the previous example is large enough that their decisions

affect the price and the demand function is p(q), then we have the price as

a function of the decision variables, p = p(g(x1, . . . , xn)). In this case, the

problem is

V (w1, . . . , wn) = max
x1,...,xn

p(g(x1, . . . , xn)) · g(x1, . . . , xn)− (w1x1 + · · ·+ wnxn).

Here f(x1, . . . , xn;w1, . . . , wn) = p(g(x1, . . . , xn)) · g(x1, . . . , xn)− (w1x1 + · · ·+
wnxn) and the solution vector is the supply vector as function of the input

prices. In the previous example, the price p was a parameter, it was not under

the control of the decision maker. Here the decision maker does control p,

hence it is not a parameter.

2.3. Homework problems on parametrized maximization.

F. Give x∗(p) and V (p) = maxx≥0 (px− c(x)) when c(x) = 1
2
x2.

G. Give x∗(p, w) and V (p, w) = maxx≥0 (px− c(x,w)) when c(x,w) = w(ex − 1).

H. Give x∗(p1, p2) and V (p1, p2) = maxx1,x2(p1x1 + p2x2)− c(x1, x2) when c(x1, x2) =

x21x
3
2.

I. Give x∗(w1, . . . , wn) and V (p, w1, . . . , wn) = maxx1,...,xn pg(x1, . . . , xn) − (w1x1 +

· · ·+ wnxn) when g(x1, . . . , xn) = Πn
i=1x

αi
i where each αi > 0 and

∑
i αi < 1.

J. Give x∗(a, β) and V (a, β) = maxx≥0 [β log(a− x) + x]. Assume a > 0 and β > 0.

K. Give x∗((a1, a2), (β1, β2)) and the value function

V ((a1, a2), (β1, β2)) = max
x1,x2≥0

[(β1 log(a1 − x1) + x1) + (β2 log(a2 − x2) + x2].

3. Comparative Statics with Derivatives

We now turn to determining the dependence of behavior, x∗(θ), on θ. In particular,

we will often be interested in knowing whether or not the following kind of monotone

results hold:

if θ◦ > θ, then x∗(θ◦) > x∗(θ); or

if θ◦ > θ, then x∗(θ◦) < x∗(θ).

The key part of the answer is, “If the net marginal benefit of an activity increases as

θ increases, then x∗(θ◦) > x∗(θ), if the net marginal benefit decreases, then x∗(θ◦) <
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x∗(θ).” There are subtleties, especially when the parameter and the decision take

vector form, but this will be the essential intuition in many many contexts.

3.1. An Example: Geometry and Calculus. There are complicated routes to this

kind of result, and simple routes. The complicated route is to explicitly calculate

x∗(θ), then explicitly calculate ∂x∗/∂θ, and then check if it is positive or negative.

This is overkill. When it can be done, you will not only know how far above or below

0 the derivative ∂x∗/∂θ is, you will also be able to tell what the derivative depends

on.

We can often answer the simpler, less detailed, monotone questions without needing

to do all of the hard work. Consider, as a starting point, the one-input/one-output

profit maximization problem,

V (p) = max
x≥0

[px− c(x)]. (4)

In the last set of problems, you solved a version of this problem (with c(x) = 1
2
x2)

by finding and then solving the FOCs. We revisit these with notation that keeps the

parameter, p, more firmly in view. Let f(x; p) = px−c(x), the FOCs are ∂f(x, p)/∂x =

0, that is,

p− c′(x) = 0.

This is a “net marginal benefit equals 0” equation: the marginal benefit of a small

increase in x is p; the marginal cost is c′(x). Since c′(·) is (usually) an increasing

function, you can solve this problem by graphing the decreasing function p− c′(x) —

it crosses 0 from above at the point x∗(p). To answer the monotone questions, we are

interested in what happens to this intersection if p increases to p◦ > p.

• The geometry — if you shift a decreasing function upwards, e.g. shift from

the curve p− c′(x) to the everywhere higher curve p◦ − c′(x), the place where

it crosses 0 must move to the right. We therefore know that x∗(p◦) > x∗(p).

In this example, the economics interpretation of the result is that the supply

curve of a competitive firm is increasing in the price of the output.

• The calculus — suppose that x∗(p) is the function that satisfies the FOCs for

all p, that is, p − c′(x∗(p)) ≡ 0. Suppose also that x∗(·) has a derivative.

Taking the derivative of the FOCs along the curve x∗(p) with respect to the

parameter p involves finding

d
dp

(p− c′(x∗(p)),

and this yields (using the chair rule from calculus)

1− c′′(x∗(p))dx
∗(p)
dp

= 0, or dx∗(p)
dp

= 1
c′′(x∗(p))

. (5)
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The assumption that c′(·) is increasing is the assumption that c′′(x) > 0. The

detailed information is dx∗(p)
dp

= 1
c′′(x∗(p))

, the monotone information dx∗(p)
dp

> 0.

3.2. Adding Another Parameter. Now let us add a second detail to the problem

in (4) a bit, replacing it with

V (p, w) = max
x≥0

[px− w · c(x)]. (6)

The new question is how the optimal behavior depends on w, the price of the input

into the productive process. The FOCs are ∂f(x; p, w)/∂x = 0.

• Geometry — the net marginal benefit is the decreasing function p− wc′(x), if

w increases to w◦ > w, the decreasing function shifts down to p−w◦c′(x) and

the intersection, x∗(p, w), moves to the left.

• Calculus — if p − wc′(x∗(p, w)) ≡ 0, taking derivatives of both sides with

respect to the parameter w yields (using the product rule from calculus)

−c′(x∗(p, w))− wc′′(x∗(p, w))∂x
∗(p,w)
∂w

, or ∂x∗(p,w)
∂w

= − c′(x∗(p,w))
wc′′(x∗(p,w))

. (7)

The detailed information is the complicated expression for ∂x∗(p,w)
∂w

, the mono-

tone information is that ∂x∗(p,w)
∂w

< 0 because c′(x) > 0 and c′′(x) > 0.

3.3. Homework problems on comparative statics with derivatives. It will be

helpful for the course if, before you start doing the calculations, you ask yourself if net

marginal benefits are increasing or decreasing in the parameter in question.

L. Give the FOCs for V (p, w) = maxx≥0 (px − wc(x)) when c(x) = x2 + (ex − 1).

[If you can solve the FOCs for x∗(p, w) as a function of p and w in terms of

known functions, then you have made a mistake.] Show that ∂x∗(p, w)/∂p > 0 and

∂x∗(p, w)/∂w < 0 by checking the conditions discussed just above.

M. Give the FOCs for V (β) = maxx≥0 β log(a−x) + g(x) where g(x) =
√
x+ x1/3. Is

∂x∗(β)/∂β > 0? Or < 0?

N. Suppose that g(x) ≥ 0, that g′(x) > 0, and that g′′(x) < 0. Give the FOCs for

V (β) = maxx≥0 β · log(a− x) + g(x), β > 0. Is ∂x∗(β)/∂β > 0? Or < 0?

O. Suppose that g(x) ≥ 0, that g′(x) > 0, and that g′′(x) < 0. Give the FOCs for

V (β, γ) = maxx≥0 β log(a− x) + γg(x), β, γ > 0. Is ∂x∗(β, γ)/∂γ > 0? Or < 0?

4. Monotone Comparative Statics: Super- and Sub-modularity

Above, we took the derivatives of FOCs with respect to parameters to find the

monotone results. We are now going to replace the derivative-based analysis with

something that is simultaneously easier and more general. This is possible because it
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often happens that the more general approach is simpler — it lets you focus on the

essentials and ignore the complicated details.

There is an ‘entry cost’ for this kind of analysis, learning to manipulate inequalities.

This looks more difficult than it is. You should find that the derivative analysis above

often provides an easy guide.

4.1. The Supermodular Setting. We start with a set X ⊂ R, a set Θ ⊂ R, and a

function f : X ×Θ→ R. For any θ ∈ Θ, let x∗(θ) be the solution (or set of solutions)

to the stripped-down problem

max
x∈X

f(x, θ). (8)

We are interested in the comparison of x∗(θ◦) and x∗(θ) when θ◦ > θ.

For x ∈ X ⊂ R, θ ∈ Θ ⊂ R, a function f : X × Θ → R supermodular if for all

θ◦ > θ and all x◦ > x,

f(x◦, θ◦)− f(x, θ◦) ≥ f(x◦, θ)− f(x, θ), (9)

and it is strictly supermodular if the inequalities are strict.

Another name for supermodularity is increasing differences — the difference

f(x◦, θ) − f(x, θ) is higher at higher values of θ, that is, the difference increases as θ

increases.

The function is submodular if for all θ◦ > θ and all x◦ > x,

f(x◦, θ◦)− f(x, θ◦) ≤ f(x◦, θ)− f(x, θ), (10)

and it is strictly submodular if the inequalities are strict.

Another name for submodularity is decreasing differences.

With some qualifications (having to do with the possibility of multiple optima), the

essential result is the following.

Super-modularity and comparative statics. If f(·, ·) is supermodular and θ◦ > θ,

then x∗(θ◦) ≥ x∗(θ).

Proof. For now we limit ourselves to the case that there is only one optimal x at

any given θ. In other words, we are giving the argument for the super-modularity

and comparative statics result under the additional assumption that x∗(θ) contains at

most one element for each θ.

Suppose that f(·, ·) is supermodular that θ◦ > θ, that x∗ is optimal at the lower

value, θ, and that x is some point less that x∗. Because x∗ is optimal at θ, we know

that f(x∗, θ) > f(x, θ), that is,

f(x∗, θ)− f(x, θ) > 0.
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Because f(·, ·) is supermodular, equation (9) holds, i.e. f(x∗, θ◦)−f(x, θ◦) ≥ f(x∗, θ)−
f(x, θ). Therefore

f(x∗, θ◦)− f(x, θ◦) > 0.

This means that any x < x∗ cannot be optimal at θ◦. From this, we can conclude that

if there is an optimum at the higher value of the parameter, θ◦, then that optimum

must be greater than or equal to x∗. �

Sub-modularity and comparative statics. If f(·, ·) is submodular and θ◦ > θ,

then x∗(θ◦) ≤ x∗(θ).

The argument is almost the same.

4.2. Some Examples. We begin with a general observation that will make checking

super/submodularity easier.

4.2.1. On Cancellations. Return to the single-input/single output competitive firm,

the one that solves

max
x∈X

f(x, (p, w)) = px− wc(x)

where X ⊂ R+ is the set of possible production levels. We will show that f(·, ·) is

supermodular in x and p and submodular in x and w.

Supermodularity. Pick p◦ > p and x◦ > x. To show supermodularity we must show

that

f(x◦, (p◦, w))− f(x, (p◦, w)) ≥ f(x◦, (p, w))− f(x, (p, w)), that is

[p◦x◦ − wc(x◦)]− [p◦x− wc(x)] ≥ [px◦ − wc(x◦)]− [px− wc(x)].

The wc(x◦) and the wc(x) terms appear on both sides and cancel.

This kind of cancellation happens all the time. Pay attention to it.

After the cancellation, all that we need to check is

[p◦x◦ − p◦x] ≥ [px◦ − px], that is

p◦[x◦ − x] ≥ p[x◦ − x].

We know that [x◦−x] > 0 and we know that p◦ > p, so f(·, ·) is strictly supermodular

in x and p.

Submodularity. Pick w◦ > w and x◦ > x. To show submodularity we must show

that

f(x◦, (p, w◦))− f(x, (p, w◦)) ≤ f(x◦, (p, w))− f(x, (p, w)), that is

[px◦ − w◦c(x◦)]− [px− w◦c(x)] ≤ [px◦ − wc(x◦)]− [px− wc(x)].
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The px◦ and the px terms appear on both sides and cancel. The cancellation happened

again! All that we need to check that

[w◦c(x)− w◦c(x◦)] ≤ [wc(x)− wc(x◦)] that is

w◦[c(x)− c(x◦)] ≤ w[c(x)− c(x◦)].

Because x < x◦, c(x) ≤ c(x◦). If they are equal then we have the requisite inequality

holding as an equality, if they are unequal, then the requisite inequality holds strictly.

More generally, suppose that f(x, θ) = g(x, θ)+h(x)+m(θ) where h(·) and m(·) are

arbitrary functions. To check the inequalities for checking supermodularity of f(·, ·),
we can ignore the h(x) and the m(θ) terms — they will cancel.

The general lesson: you only need to pay attention to terms that include the action,

x, and the parameter θ. To see why, pick x◦ > x and θ◦ > θ. We have

f(x◦, θ◦)− f(x, θ◦) = [g(x◦, θ◦)− g(x, θ◦)]+

[h(x◦)− h(x)] + [m(θ◦)−m(θ◦)].

We also have

f(x◦, θ)− f(x, θ) = [g(x◦, θ)− g(x, θ)]+

[h(x◦)− h(x)] + [m(θ)−m(θ)].

To check that [f(x◦, θ◦)−f(x, θ◦)] ≥ [f(x◦, θ)−f(x, θ)], note that the [h(x◦)−h(x)]+

[m(θ◦)−m(θ◦)] and the [h(x◦)− h(x)] + [m(θ)−m(θ)] terms cancel.

Returning to the example above, to show that f = px − wc(x) is supermodular in

p and x, we only need check that g = px is supermodular. The inequality

[p◦x◦ − p◦x] > [px◦ − px]

is immediate because x◦ > x and p◦ > p. To check submodularity in w and x, we only

need check that g = −wc(x) is submodular. If you prefer, it is equivalent to check that

wc(x) is supermodular in w and x because multiplying the inequalities in (9), those

that define supermodularity, by −1 changes their direction, giving the inequalities that

define submodularity, (10). Anyhow, For w◦ > w and x◦ > x, this involves checking

[w◦c(x◦)− w◦c(x)] ≥ [wc(x◦)− wc(x)],

that is, w◦[c(x◦)− c(x)] ≥ w[c(x◦)− c(x)] which is immediate.

4.2.2. On Monopoly and Monopsony. When markets break down, it almost aways has

an inimical effect on society. When there is only one person/organization on the supply

side of the market, we have a monopoly, when there is only one person/organization

on the demand side of the market, we have a monopsony. Both forms of market
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breakdown have happend at different points in history, and the consequences have

varied from merely bad to outright evil. Let us give the bloodless analysis first, then

cite some examples.

Monopoly. The demand curve is p(q), the cost curve is C(q), the monopolist solves

the problem

maxq≥0 [qp(q)− C(q)]. (11)

When q′ is sold at the price p′ = p(q′), consumer surplus is

S(q) :=
∫ q
0

[p(q)− p′] dq.

Consumer surplus is an increasing function, for q◦ > q, S(q◦) > S(q).

Society’s problem is

maxq≥0 [(qp(q) + S(q))− C(q)]. (12)

The problems (11) and (12) can be put together by setting f(q, θ) = [(qp(q) +

θS(q))− C(q)] and setting Θ = {0, 1}.

• The problem (11) is maxq≥0 f(q, 0), while

• the problem (11) is maxq≥0 f(q, 1).

The function f(q, θ) is strictly supermodular in q and θ — to check, we need only

look at the term θS(q), pick q◦ > q and 1 = θ◦ > θ = 0, and check that

[1S(q◦)− 1S(q)] > [0S(q◦)− 0S(q)],

which holds because consumer surplus is an increasing function. This means that

the monopolist produces less than the amount that maximizes the sum of producer

and consumer surplus. By producing more, society is made better off, and in moving

to the higher quantity, that which maximizes society’s welfare, the winners i.e. the

consumers, can compensate the losers i.e. the owner(s) of the monopoly.

Examples. Lachlan Macquarie breaking the English army’s monopoly on the medium

of exchange in Australia, “rum,” meant that the economy could move from barter to

market-mediated exchange. In the late 19’th and early 20’th century, the Northern

Securities Co. had a railroad monopoly on freight from northern mid-west farms to

cities in the U.S. In the U.S. broadband is far slower and costs far more than in other

countries, a result of low levels of competition enforced by a number of Federal and

State laws. War profiteering in WWII and in the invasion of Iraq.

Monopsony. The labor supply curve is an increasing function w(q). Revenue for the

single firm buying labor in the local market is R(q). The easy case is R(q) = pf(q)

where f(·) is the production function, we expect f ′(·) to be a positive, decreasing
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function, and we expect R(·) to have the same properties. The monopsonist solves the

problem

maxq≥0 [R(q)− qw(q)]. (13)

When a quantity of labor q′ is hired at wages w′ = w(q′), the surplus of the workers is

S(q′) :=
∫ q′
0

[w′ − w(q)] dq, an increasing function. Society problem is

maxq≥0 [(R(q) + S(q))− qw(q)]. (14)

Set f(q, θ) = (R(q)+θS(q))−qw(q), for θ = 0 we have the monopsonist’s problem, for

θ = 1, we have society’s problem, check that f(·, ·) is strictly supermodular in q and

θ, which means that the monopsonist decreases wages relative to the social optimum,

and that it is possible to raise monopsony wages and have the winners compensate the

losers.

Examples. Company towns. Suppliers who only have one buyer.

4.3. The Relation to the Derivative Arguments. Though the argument for the

super-modularity and comparative statics result made no use of derivatives, and may

therefore feel unfamiliar, it is related to the “derivative of the FOCs” work you did

above.

• Let x◦ = x + dx for some small, positive dx. Dividing both sides of equation

(9) by dx yields

f(x+dx,θ◦)−f(x,θ◦)
dx

≥ f(x+dx,θ)−f(x,θ)
dx

. (15)

• Taking dx ↓ 0 (as you did in your calculus classes) yields

∂f(x,θ◦)
∂x

≥ ∂f(x,θ)
∂x

, (16)

that is, higher values of the parameter θ shift the marginal net benefit curve

upward, hence shift where it crosses 0 to the right.

• The previous can be re-written in terms of the cross-partial derivatives of f(·, ·).
Let θ◦ = θ+dθ for a small positive dθ and then send dθ ↓ 0 (as in your calculus

classes). This yields

∂f(x,θ+dθ)
∂x

− ∂f(x,θ)
∂x
≥ 0 (17)

∂f(x,θ+dθ)
∂x

− ∂f(x,θ)
∂x

dθ
≥ 0 (18)

∂2f(x,θ)
∂x∂θ

≥ 0. (19)

When the function f(·, ·) is differentiable, the following result often makes it easy

to check for supermodularity.
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Super-modularity for differentiable functions. If f(·, ·) is twice continuously

differentiable and for all (x, θ), ∂2f(x,θ)
∂x∂θ

≥ 0, then f(·, ·) is supermodular.

4.4. Homework Problems on Supermodular Comparative Statics.

P. Give the arguments for the following statement. If f(·, ·) is submodular and θ◦ > θ,

then x∗(θ◦) ≤ x∗(θ). Assume that there is at most one optimizing solution at any

θ.

Q. A pesticide firm spends x ≥ 0 researching a new pesticide. Its expected profits

are B(x), its expected costs are C(x), and both are increasing functions. There is

an additional social cost, Ca(x) that is not borne by the firm, also an increasing

function.

1. Show that the firm’s optimal x is larger than the one that society would choose.

2. Show that making the firm pay for more of the damages it causes decreases the

x that the firm chooses.

R. An oil company, i, owns the right to pump as high a flow of oil from their well

located over one part of an underground sea of oil. As a function of the flow

they choose, fi, this field make profits year of Πi(fi) = pfi − Ci(fi, f−i) where

f−i represents the pumping rates of the other oil companies that have rights to

pump from this field. The higher the total flow chosen by other companies, the

higher are the costs of pumping oil in the future (if you pump too hard, the small

openings in the underground rock through which the oil flows begin to collapse).

Oil fields often operate under what are called unitization agreements that involve

voluntary limitations of pumping rates. Show that without a unitization agreement,

or something similar, the flow chosen by i is inefficiently high.

S. One part of the business model of a consulting company is to hire bright young

men and women who have finished their undergraduate degrees and to work them

long hours for pay that is low relative to the profits they generate for the company.

The youngsters are willing to put up with this because the consulting company

provides them with a great deal of training and experience, all acquired over the

course of the, say, three to five years that it takes for them to burn out, to start to

look for a job allowing a better balance of the personal and professional. The value

of the training that the consulting company provides is at least partly recouped by

the youngsters in the form of higher compensation at their new jobs. Show that the

consulting company is probably providing an inefficiently low degree of training.

T. For x, t ∈ [1200, 1900], let f(x, t) = xt. Since ∂2f/∂x∂t = 1, this function has

strictly increasing differences, and since ∂f(x, t)/∂x > 0 for all x, t, x∗(t) ≡ {1900}.
Let g(x, t) = log(f(x, t)) = log(x) + log(y) and note that ∂2g/∂x∂t = 0, strictly in-

creasing differences have disappeared, but ∂g(x, t)/∂t > 0 for all x, t. Let h(x, t) =
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log(g(x, t)), and ∂2h/∂x∂t < 0, strictly increasing differences have become decreas-

ing differences, but ∂h(x, t)/∂x > 0 for all x, t. The problem maxx∈[1200,1900] h(x, t)

provide an example of strictly submodular function with a constant x∗(·).
U. A function f : X × Θ → R, X,Θ ⊂ R, is said to be quasi-supermodular if for

all θ◦ > θ in Θ and all x◦ > x in X, we have

f(x◦, θ)− f(x, θ) > 0 implies f(x◦, θ◦)− f(x, θ◦) > 0, and

f(x◦, θ)− f(x, θ) ≥ 0 implies f(x◦, θ◦)− f(x, θ◦) ≥ 0.

1. Show that a supermodular function is quasi-supermodular.

2. Give a quasi-supermodular function that is not supermodular.

3. Show that if f(·, ·) is quasi-supermodular and θ◦ > θ, then x∗(θ◦) ≥ x∗(θ).

Assume that there is at most one optimizing solution at any θ.

5. Constrained Maximization and Lagrangeans

For a microeconomist, the central assumption is that people, as decision makers,

are doing as well as they can with the knowledge and resources they have. We now

turn to incorporating the constrainst on resources. The constraints on knowledge we

will discuss toward the end of the semester.

5.1. The General Forms. The constrained optimization problems will come in one

of four forms:

• one constraint,

V (b) = max
x1,...,xn

f(x1, . . . , xn) subject to g(x1, . . . , xn) ≤ b, (20)

• m constraints,

V (b1, . . . , bm) = max
x1,...,xn

f(x1, . . . , xn) subject to (21)

g1(x1, . . . , xn) ≤ b1 (22)

...

gm(x1, . . . , xn) ≤ bm (23)

• one constraint plus non-negativity,

V (b) = max
x1,...,xn

f(x1, . . . , xn) subject to g(x1, . . . , xn) ≤ b and x1, . . . , xn ≥ 0, (24)
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• m constraints plus non-negativity,

V (b1, . . . , bm) = max
x1,...,xn

f(x1, . . . , xn) subject to (25)

g1(x1, . . . , xn) ≤ b1 (26)

...

gm(x1, . . . , xn) ≤ bm (27)

x1, . . . , xn ≥ 0. (28)

5.2. Solving Unconstrained Problems. Solving maxx1,...,xn f(x1, . . . , xn) subject

g(x1, . . . , xn) ≤ b for x∗, will often be found in two steps. First, one writes out the

Lagrangean function,

L(x1, . . . , xn;λ) = f(x1, . . . , xn) + λ(b− g(x1, . . . , xn)). (29)

Then one solves the system of n+ 1 equations in n+ 1 unknowns given by

∂L(x1,...,xn;λ)
∂x1

= 0 (30)

∂L(x1,...,xn;λ)
∂x2

= 0 (31)

... = 0 (32)

∂L(x1,...,xn;λ)
∂xn

= 0 (33)

∂L(x1,...,xn;λ)
∂λ

= 0. (34)

Since these equations involve first order derivatives, they are called First Order

Conditions (FOCs).

When there are m constraints, this becomes n + m equations in n + m unknowns.

Incorporating the non-negativity constraints will be covered later.

We will mostly work with functions f and g for which the following is true: if (x∗, λ∗)

solves the FOCs, then g(x∗) ≤ b, f(x∗) ≥ f(x′) for any x′ satisfying g(x′) ≤ b, and

λ∗ = ∂V (b)/∂b.

5.3. Homework Problems Using Lagrangeans.

V. Let f(x1, x2) = 1, 500 − [(x1 − 100)2 + (x2 − 100)2], let g(x1, x2) = x1 + x2 and

b = 40.

1. Write out the Lagrangean for the problem max f(x1, x2) subject to g(x1, x2) ≤ b.

2. Write out the FOCs for the Lagrangean.

3. Solve the FOCs for x∗ and ∂V (b)/∂b at b = 40.

W. Let f(x, y) = 210 · y − 0.01x subject to g(x, y) ≤ 0 where g(x, y) = y −
√
x.

1. Write out the Lagrangean for the problem max f(x, y) subject to g(x, y) ≤ 0.

16



2. Write out the FOCs for the Lagrangean.

3. Solve the FOCs for (x∗, y∗) and ∂V (b)/∂b at b = 0.

X. This problem is about optimal emission reduction. At present, each of I different

firms produces a quantity q◦i of NOx as a by-product of their operations, so that

the total quantity produced is Q◦ =
∑

i q
◦
i . At a cost ci(ai), c

′
i > 0 and c′′i > 0, firm

i can abate to q◦i − ai. Total abatement is A =
∑

i ai. We wish to reduce emissions

from Q◦ to Q∗, i.e. to abate by an amount A∗ = Q◦−Q∗ in a cost efficient fashion,

that is, to solve

mina1,...,aI
∑

i ci(ai) subject to
∑

i ai ≥ A∗, ai ≥ 0 for i = 1, . . . , I.

The first problems ask you to work this with specific functions, the second set

of problems asks you to work in more generality. Specifically, for the first set of

problems, suppose that ci(ai) = 1
2
βi(ai)

2 where β1 < β2 < · · · < βI .

1. Give the Lagrangean for the efficient cost of abatement problem, then take its

derivatives and set them equal to 0.

2. Show that the solution is a∗i = A∗ 1
βi

1∑
j 1/βj

.

3. Suppose now that the NOx levels, ai, can be accurately measured and are taxed

at a rate τ . Let aτi denote firm i’s profit maximizing amount of abatement when

the tax is τ . Show that aτi = τ 1
βi

.

4. Find the tax rate τ(A∗) that achieves total abatement A∗ in an efficient manner.

Explain why τ(·) should be an increasing function. [If you did the algebra

correctly, you will have found an increasing function. I want you to explain why

you should have expected the function to be increasing.]

5. Suppose that the NOx is perfectly mixed, i.e. that the social costs/damage of

the total output level Q is given by C(Q) = 1
2
γQ2. Characterize the optimal

tax rate, τ ∗, and the optimal abatement, A∗.

For the next set of problems, assume only that c′i > 0 and c′′i > 0.

6. Give the Lagrangean for this problem.

7. Assuming that the solution involves each a∗i > 0, show that at the solution,

c′i(a
∗
i ) = c′j(a

∗
j) for each i, j pair.

8. Suppose now that ai can be accurately measured and the tax for it is τ . Let aτi
denote firm i’s profit maximizing amount of abatement when the tax is τ . Show

that profit maximization by the firms will lead to c′i(a
τ
i ) = c′j(a

τ
i ) for each i, j

pair.

9. Let τ(A∗) be the tax rate that achieves total abatementA∗ in an efficient manner.

Show that τ(·) is increasing.
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10. Suppose that the NOx is perfectly mixed, i.e. that the social costs/damage of

the total output level Q is given by C(Q), and that marginal social cost/damage

is increasing. Characterize the optimal tax rate, τ , and the optimal abatement

A∗.

11. Explain how a market in tradeable permits can achieve A∗ at the same total

cost.

Y. Kolstad, Ch. 18, problems 1 and 2.

Z. Kolstad, Ch. 18, problem 4.

18


