An Introduction to Mathematical Analysis in Economics: Some Advanced Math from an Elementary Point of View

Dean Corbae, Max Stinchcombe, and Juraj Zeman

Still Preliminary. Not to be photocopied or distributed without permission of the authors.

Contents

Dedications	11
Preface	13
Road Map	13
Uses of the book	15
List of notation	16
Chapter 1. Logic	17
1.1. Examples of Implication	17
1.2. Sets, Subsets, and Implication	18
1.3. The Formation of Statements and Their Truth Values	19
1.3.a. Ands/Ors/Nots as Intersections/Unions/Complements	19
1.3.b. Implies/Equivalence as Subset/Equality	20
1.3.c. Proofs, a First Look	21
1.3.d. Quantifiers	23
1.4. Taxonomy of Proofs	25
1.5. Bibliography for Chapter 1	27
Chapter 2. Set Theory	29
2.1. Some Simple Questions	29
2.2. Notation and Other Basics	30
2.3. Products, Relations, Correspondences, and Functions	33
2.4. Optimal Choice for Finite Sets	36
2.5. Direct and Inverse Images, Compositions	41
2.5.a. Direct Images	41
2.5.b. Inverse Relations	42
2.5.c. Injections, Surjections, and Bijections	43
2.5.d. Compositions of Functions	44
2.6. Weak and Partial Orders, Lattices	45
2.7. Monotonic Changes in Optima: Supermodularity, and Lattices	48
2.7.a. The implicit function approach	49
2.7.b. The simple supermodularity approach	50
2.7.c. Monotone comparative statics	51
2.8. Tarski's Lattice Fixed Point Theorem and Stable Matchings	52
2.9. Equivalence relations	57
2.10. Finite and Infinite Sets	58
2.11. The Axiom of Choice and Some Equivalent Results	64
2.12. Revealed Preference and Rationalizability	65

2.13. Superstructures	68
2.14. Bibliography for Chapter 2	70
2.15. End of Chapter Problems.	71
Chapter 3. The Space of Real Numbers	73
3.1. Why We Want More than the Rationals	73
3.2. Basic Properties of Rationals	74
3.3. Distance, Cauchy Sequences, and the Real Numbers	75
3.4. The Completeness of the Real Numbers	80
3.5. Newton's Bisection Method	83
3.6. Supremum and Infimum	86
3.7. Summability	87
3.7.a. The Fishery Model	88
3.7.b. Summability	88
3.7.c. Optimality, Euler Equations, and Steady States	92
3.7.d. Monotone Sequences	93
3.8. Patience, Liminf, and Limsup	94
3.8.a. Liminf and Limsup	95
3.8.b. Patience	96
3.8.c. Discount Factors Close to One	97
Chapter 4. Metric Spaces	99
4.1. The Basics Definitions for Metric Spaces	99
4.2. Discrete Spaces	103
4.3. \mathbb{R}^{ℓ} , the ℓ -fold Product of \mathbb{R}	104
4.3.a. The Normed Vector Space Structure of \mathbb{R}^{ℓ}	105
4.3.b. Dot Products and the Cauchy-Schwarz Inequality	106
4.3.c. The p-Norms, $p \neq 1, 2, \infty$	107
4.3.d. Completeness	108
4.3.e. Closure and Convergence	110
4.3.f. Separability	113
4.3.g. Compactness in \mathbb{R}^{ℓ}	113
4.3.g.1. Context Matters	113
4.3.g.2. The Definition Redux	114
4.3.g.3. Boundedness and Total Boundedness	114
4.3.g.4. The Finite Intersection Property	115
4.3.g.5. Characterizations of Compactness	115
4.3.g.6. Some Applications	116
4.3.h. Continuous Functions on \mathbb{R}^{ℓ}	117
4.3.i. Uniform Continuity	121
4.3.j. Connectedness	122
4.3.k. Banach's Contraction Mapping Theorem	126
4.3.1. Finite State Markov Chains	128
4.3.m. Finite State Markovian Dynamic Programming	130
4.3.m.1. The Stage-Coach Problem	131

4.3.m.2. Generalizing the Stage-Coach Problem	132
4.3.m.3. Adding Stochastic Structure and an Infinite Horizon	133
4.3.n. Perturbed Markov Chains	135
4.4. The Space of Compact Sets and the Theorem of the Maximum	138
4.4.a. Examples	138
4.4.b. The Metric Space of Compact Sets	141
4.4.c. *Completeness, Separability, and Compactness	142
4.4.d. Upper and Lower Hemicontinuity	144
4.4.e. The Theorem of the Maximum	146
4.4.f. Applications	147
4.4.g. A Warning	148
4.5. $C_b(M)$, the Continuous, Bounded Functions	148
4.5.a. Examples: Isometries, Cdf's and Stochastic Processes	149
4.5.b. Completeness	153
4.5.c. Dimensionality, Finite and Infinite	154
4.5.d. The Levy Distance on Cdf's	155
4.5.e. Compactness in $C(M)$ when M is Compact	156
4.6. $\mathcal{D}(\mathbb{R})$, the Space of Cumulative Distribution Functions	160
4.6.a. Tightness in $\mathcal{D}(\mathbb{R})$	160
4.6.b. Weak Convergence of Cumulative Distribution Functions	160
4.6.c. The Denseness of Finitely Supported Probabilities	162
4.7. Approximation in $C(M)$ when M is Compact	162
4.7.a. The Lattice Version of Stone-Weierstrass	163
4.7.b. The Algebraic Version of Stone-Weierstrass	165
4.7.c. Applications of Stone-Weierstrass	166
4.7.d. Separability of $C(M)$, M Compact	169
4.8. Regression Analysis as Approximation Theory	169
4.8.a. Orthogonal Projections	170
4.8.b. Linear Regression	172
4.8.c. Nonlinear Regression	172
4.8.c.1. The Span-of-a-Finite-Set Case	172
4.8.c.2. Degrees of Complexity	173
4.8.c.3. The Span-of-a-Compact-Set Case	174
4.8.d. Testing for Neglected Nonlinearity	174
4.9. Countable Product Spaces and Sequence Spaces	175
4.9.a. Examples	175
4.9.b. The Product Metric on $\times_{a \in A} M_a$	179
4.9.c. Cylinder Sets	180
4.9.d. Compactness, Completeness, and Separability in $\times_{a \in A} M_a$	181
4.9.e. The Universal Separable Metric Space	182
4.9.f. Deterministic Dynamic Programming	183
4.10. Defining Functions Implicitly and by Extension	183
4.10.a. The Implicit Function Theorem	183
4.10.b. The Extension Theorem for Dense Sets	188

4.10.c. The Extension Theorem for Closed Sets	189
4.11. The Metric Completion Theorem	190
4.12. The Lebesgue Measure Space	192
4.12.a. The Space (M_s, d_1)	192
4.12.b. The Basic Properties of (M_s, d_1)	194
4.12.c. A Special Subset of (M_s, d_1)	196
4.12.d. Stochastic Independence	196
4.12.e. The Weak and the Strong Law of Large Numbers	198
4.13. A First Look at Banach Spaces	200
4.14. Bibilography for Chapter 4	203
4.15. End of Chapter Problems	204
Chapter 5. Convex Analysis, Fixed Points, and Equilibria in \mathbb{R}^{ℓ}	209
5.1. The Basic Geometry of Convexity	209
5.1.a. Examples of Convex Sets	209
5.1.b. Half-Spaces	210
5.1.c. Vector Subspaces	211
5.1.d. Interiors and Boundaries	212
5.1.e. Sums of Sets	213
5.2. The Dual Space of \mathbb{R}^{ℓ}	214
5.3. Separation Theorems in \mathbb{R}^{ℓ}	215
5.3.a. Degrees of Separation	215
5.3.b. Separating Points from Closed Convex Sets in \mathbb{R}^{ℓ}	216
5.3.c. Convex Hulls	217
5.3.d. Neoclassical Duality	218
5.3.e. Support Hyperplanes and Support Functions	221
5.3.f. The Two Fundamental Theorems of Welfare Economics	222
5.4. Concave and Convex Functions	223
5.4.a. Convex Preferences and Quasi-Concave Utility Functions	224
5.4.b. Maximization and Derivative Conditions	224
5.4.c. Convexity, Minkowski's Inequality, and p-norms	226
5.4.d. The Continuity of Concave Functions	227
5.5. The Kuhn-Tucker Theorem	227
5.5.a. Examples	228
5.5.b. Saddle Points, or Why Does it Work?	236
5.5.c. The Implicit Function Theorem	238
5.5.d. The Envelope Theorem	239
5.6. Fixed Points	240
5.6.a. Some Applications of Brouwer's Theorem	240
5.6.b. Some Applications of Kakutani's Theorem	242
5.6.c. Fixed points of functions	244
5.6.d. Fixed points of correspondences	246
5.7. Existence of General Equilibrium with Preferences that Depend on	
Others' Consumption	249
5.8. Perfect, Proper, and Stable Equilibria	249

CONTENTS	7
----------	---

5.9. Appendix - Some Proofs Looking for a Home	250
5.10. Differentiability and Concavity	260
5.10.a. The two results	260
5.10.b. The one dimensional case, $f: \mathbb{R}^1 \to \mathbb{R}$	261
5.10.c. The multi-dimensional case, $f: \mathbb{R}^n \to \mathbb{R}$	261
5.10.d. A fair amount of matrix algebra background	261
5.10.e. The Alternating Signs Determinant Test for Concavity	264
5.11. End of Chapter Problems	265
Chapter 6. Measure Theory and Probability	267
6.1. The Basics Definitions for Measure Theory	268
6.1.a. Measurable Sets	268
6.1.b. Measurable Functions	270
6.1.c. Countably Additive Probabilities	272
6.1.d. Integrals of Measurable Functions on Probability Spaces	272
6.1.e. Vector Spaces of Integrable Functions	275
6.1.f. Riemann and Lebesgue Integrals	276
6.2. Some Examples	277
6.2.a. Basic Statistics	277
6.2.b. Limit Theorems	279
6.2.c. Measure Space Exchange Economies and Games	280
6.3. A Simple Case of Parametric Estimation	283
6.3.a. The Classical Statistical Model	283
6.3.b. Independence	284
6.3.c. Distributions Induced by Random Variables	284
6.3.d. Conditional Probabilities and Causal Evidence	285
6.3.e. Selection Issues	287
6.3.f. Maximum Likelihood Estimators	288
6.3.g. Unbiased Estimators and Linear Estimators	289
6.3.h. Variance	290
6.3.i. Best Linear Unbiased Estimators	291
6.3.j. Consistent Estimators	293
6.3.k. Consistency and Convergence	294
6.3.1. Efficiency, BLUE's and BUE's	294
6.3.m. Cramer-Rao Lower Bound	294
6.3.n. Neyman-Pearson	294
6.4. Integrating to the Limit	294
6.4.a. Types of Convergence	295
6.4.b. Fields as Metric Spaces	295
6.4.c. Infinitely Often and Almost Always	295
6.4.d. Borel-Cantelli and a Strong Law of Large Numbers	296
6.4.e. The Set Theoretic Monotone Class Theorem	296
6.4.f. Independence, Tail σ -Fields, and Some 0-1 Laws	297
6.4.g. Herds	297
6.5. The Basic Extension Theorem	297

	6.6. The Central Limit Theorem	299
	6.6.a. With Independent Identically Distributed Terms	299
	6.6.b. With Independent Terms	299
	6.6.c. With Dependence	299
	6.7. A Seriouser Introduction to Stochastic Processes	299
	6.7.a. Some Implications of Tightness	300
	6.7.b. Cumulative Distribution Functions and Probabilities on \mathbb{R}	300
	6.7.c. The Tightness of Measures	301
	6.7.d. The Prohorov Metric	303
	6.7.e. The Continuous Mapping Theorem	303
	6.7.f. Discrete Time Stochastic Processes	303
	6.7.g. Continuous Time Stochastic Processes	303
	6.8. The $L^p(\Omega, \mathcal{F}, P)$ Spaces	303
	6.9. Measure Space Exchange Economies	304
	6.9.a. The Model	304
	6.9.b. Joint Measurability	305
	6.9.c. Core Equivalence	305
	6.9.d. Lyapunov's Convexity Theorem	306
	6.9.e. Fair Division	306
	6.9.f. The basics of σ -fields	308
	6.9.g. Properties of the Domain of P	310
	6.9.h. Convex sets	311
	6.9.i. A finite dimensional vector space: \mathbb{R}^n	312
	6.10. Projection in Hilbert Spaces	318
	6.10.a. Conditional Expectation as a Special Kind of Projection	318
	6.10.b. Doob's Theorem for Sub- σ -fields and Nonparametric Regression	318
	6.10.c. Modeling Information as Sub- σ -fields	319
	6.11. Martingales and Conditional Expectation	320
	6.11.a. In Finance	320
	6.11.b. Hysteresis	320
	6.11.c. Convergence	320
	6.12. Operators and Stochastic Dynamic Programming	320
	6.13. Bibilography for Chapter 3	320
	6.14. End of Chapter Problems	321
	6.15. Some Problems Looking for a Home	321
	Shorton 7 Convey Analysis Fixed Doints and Equilibria in Vector Change	202
C	Chapter 7. Convex Analysis, Fixed Points, and Equilibria in Vector Spaces	$\frac{323}{222}$
	7.1. The Basic Geometry of Convexity 7.1.a. Examples of Convex Sets	$\frac{323}{323}$
	*	$\frac{323}{324}$
	•	
	7.1.c. Vector Subspaces 7.1.d. Sums and Differences of Sets	$\frac{324}{326}$
	7.1.d. Sums and Differences of Sets 7.2. The Dual Space of V	320
	7.2. The Dual Space of V 7.2.a. Continuous Linear Functions on Hilbert Spaces	320
	7.2.a. Continuous Linear Functions on Hilbert Spaces 7.2.b. Strong Norms and Weak Metrics	$\frac{320}{327}$
	1.4.D. Dulong holing and weak wellics	ე∠ (

9

7.2.c. Discontinuous Linear Functions on Normed Spaces	328
7.2.d. Probabilities as Linear Functionals	329
7.3. Separation Theorems in V	331
7.3.a. Degrees of Separation	332
7.3.b. Separating Points from Closed Convex Sets in \mathbb{R}^{ℓ}	332
7.3.c. Convex Hulls	333
7.3.d. Revisiting Probabilities as Linear Functions	335
7.3.e. Neoclassical Duality	335
7.4. Support Hyperplanes and Support Functions	338
7.4.a. The Two Fundamental Theorems of Welfare Economics	339
7.5. Concave and Convex Functions	341
7.5.a. Convex Preferences and Quasi-Concave Utility Functions	341
7.5.b. Maximization and Derivative Conditions	342
7.5.c. Convexity, Minkowski's Inequality, and p-norms	343
7.5.d. The Continuity of Concave Functions	344
7.6. Fixed Points	344
Chapter 8. Topological Spaces	345
8.1. Continuous Functions and Homeomorphisms	347
8.2. Separation Axioms	348
8.3. Convergence and Completeness	350