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Abstract

Normal form games are nearly compact and continuous (NCC) if they can be understood as games
played on strategy spaces that are dense subsets of the strategy spaces of larger compact games with
jointly continuous payoffs. There are intrinsic algebraic, measure theoretic, functional analysis, and
finite approximability characterizations of NCC games. NCC games have finitely additive equilibria,
and all their finitely adiive equilibria are equivalent to couadtly additive eqilibria on metric
compactifications. The equilibrium set of arCI8 game depends upper hemicontinuously on the
specification of the game and contains only the limits of approximate equilibria of approximate
games.
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1. Introduction

This paper answer the questions, “What is there that is intrinsic in a garapecified
only by the player seti, the strategy sets;, and the boundedility functions,u; : S — R,
S =[1;e; Si, that leads to equilibrium existence, upgimicontinuity of the equilibrium
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correspondence, and continuity of the appmate equilibrium correspondence?” and
“What topological and measure theoretic structures are entailed?”

When eachsS; is finite, Nash (1950) defined the nostandard equilibrium concept
for non-cooperative game theory and showhdt tequilibria in mixed strategies exist.

To generalize Nash’s existence result to games with infinite strategy spaces, Fan (1952)
and Glicksberg (1952) make two inter-relatdwires: for finiteness they substitute jointly
continuous tilities on compact metric strategy spacés mixed strategies, they employ

the dual of the space of continuous functiomg tountably additiv@orel probabilities.
These choices lead to three properties critical to the interpretations of game theoretic
models: existence, upper hemicontinuity of #quilibrium correspondence, and continuity

of the approximate equilibrium correspondence.

Existence guarantees that the models make predictions. Upper hemicontinuity of the
equilibrium set guarantees that small misspecification of the utilities or the strategy sets of
a game do not lead to equilibria that are too far from the true set of equilibria. This is crucial
to the Fan and Glicksberg existence pswiich proceed by approximating the compact
strategy spaces by sequences of large finite sets. Fudenberg and Levine (1983) prove
that the approximate equilibrium-approximateategy set correspondence is continuous,
thereby providing a clean interpretation of games with infinite sets of strategies.

A game " = (S;,u;)ie; IS nearly compact and continuous (NCC) if each strategy
set S; can be imbedded as a dense subset of a corrﬁ;aiclt such a fashion that each
u; can be extended to a jointly continuous function[dn., Si. Any such larger game,

r= (§,~, ui)ier, is called acontinuous compact imbeddingr cci, of I". Normal form

games that fail to be NCC include the normal forms of most non-trivial extensive form

games. These other normal form games agaterd in the companion piece, Stinchcombe

(2001), which develops the requisite theory of integration for non-measurable functions.
The following are the essential results for NCC games.

(1) The equivalence of five intrinsic characterizations of games:
(a) nearly compact and continuous—the game can be understood as one being played
on dense subsets of the strategy spaces of a compact and continuous game;
(b) algebraic—the uniform approxirbdity of the utility functions by polynomials
in extended sections;
(c) measure theoretic—the integrability of utility functions with respect to all
products of finitely additive mixed strategiés;
(d) functional analysis—sup norm precompactness of the sections of the utility
functions;
(e) finite approximability—the strategy sets of the players can be uniformly approx-
imated in the “most difference it can make to anyone” metric.
(2) If a game has one cci, then it has many. The maximal and minimal cci’s can be
characterized, and all cci's of a given gaare equivalent in the following senses:
(a) their equilibrium sets amreon-empty and payoff equivalent;

1 The failure of the utility function to be integrable is what necessitates the development of a theory of
integration for non-measurable funatiitn non-NCC games in Stinchcombe (2001).
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(b) the equilibrium set of a smaller cci is the set of restrictions of equilibrium
strategies in any larger cci;
(c) the equilibrium set of a larger cci is the set of extensions of equilibrium strategies
in any smaller cci.
(3) The play of finitely additive mixed strategies corresponds to a particular class of cci’s,
a class that contains the minimal and the maximal cci’s.
(4) Identifying equivalent strategies leads to the minimal cci, which is metric. From this,
existence, upper hemicontinuity and continuity follow.

The next section contains the results, the following contains examples demonstrating
the reach and limitations of the results, the last concludes.

2. Results
This section begins with the definitions and equivalence of five conditions:

(a) I''=(S;,u;)ier being NCC,
(b) eachu; being nearly polynomial in the extended sections ofithek € I,
(c) the utility functons being integrable against all products of finitely additive strategies,
(d) the sections of the utility functions being precompact, and
(e) the strategy sets of the players can be unifg approximated in the “most difference
it can make to anyone” metric.

An examination of the various compact imbeddings follows. The metrizability of the
minimal compact imbedding leads to equiliim existence, the upper hemicontinuity
of the equilibrium correspondence, and thentinuity of the approximate equilibrium
correspondence. A treatment of finitelglditive equilibria ends the section.

2.1. Definitions and equivalence

2.1.1. Nearly compact and continuous games

Let X be a non-empty set. eompactlmbeddlnng |sapa|r((X 7), ¢), where(X 7)
is a compact Hausdorff space (cHs), gnd{ — X imbedsX in X so thatp(X) is T-dense
in X. Note thaty may be many-to-one.

For any cHsX, C(X) denotes the set of continuous functions¥ri_et f be a bounded,
real-valued function orX. A compact imbedding(X, 7), ¢) continuously extendg if
there existg? € C()A() such that for alk € X, f(<p(x)) = f(x). A necessary condition for
a compact imbedding to extentis thaty must separate any points separated’by

Let F be a set of bounded, real-valued functions XnAn F-imbedding ofX is
a compact imbedding that continuously extends every F. The denseness @f(X)
in X has two implications: first,f is unique if it exists; second, iff exists, then
SUp.ex 1 ()] = ma>gceX|f(x)|. F-imbeddings exist for every, and any compact
imbedding is homeomorphic to afi-imbedding for someF, details and references are
below in Section 2.2.1.
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Definition 1. A gamel” = (8}, &i;)ic; is acontinuous compact imbeddirfgci) of I" =
(Si,ui)ies if for eachi e I there exists a compact Hausdorff topologyfor S; and a
functiong; : S; — S; such that

0} each((f?}, 7;), ¢i) is a compact imbedding &, i € I, and

) ((S,%), 9) is a{u1,....u;}-imbedding ofs, whereS :=[];.; Si, 7 is the product
topology onS, ¢(s1,...,s7) := (p1(s1), ..., ¢r(sr)), and thex; are the continuous
extensions of the; .

A crucial aspect of this definition is that tlig must bgointly continuous orf.

Definition 2. A game!” is nearly compact and continuo@slCC) if it has a continuous
compact imbedding.

Intuitively, a gamel” is NCC if it can be understood as a game played on dense subsets
of the strategy spaces of a compact and continuous game.

2.1.2. Nearly polynomial in extended sections games

Fors € S ands; € §;, the two game theoretic notations ¢, and(z;, s—;) will be used
interchangeably as dated by convenience.

If f; is a function onS;, then itsproduct extensionf,, is the function onS defined
by f¢(si,s—i) = fi(s;) forall (s;,s—;) € S. Ff denotes the set of product extensions of a
classF; of function onsS;. Given a gamd™ = (S;, u;);cy, i'S Utility sectionss the class of
functionslf; = {s; — ur(s \ s;): k € I, s € S}. A crucial implication of [ being a cci of
I is that eaci(S;, %)), ¢;) is al;-imbedding ofS;.

Of particular interest will be polynomig in the set of utility section product
extensionsi/{. Given a clasg{ of functions onS, P(H) denotes the set gfolynomials
in H, that is, the set of finite linear combinations of functions of the form

g(s) = (h1(5)) ™ (h2())*? ... (hp ()™,

whereM e Nanda,, e (O UN,m=1,..., M.

Definition 3. A gamer” is nearly polynomial in its extended sectigfiNPES if eachu ;,
Jj €1, is in the sup norm closure of the pobmials in the utility section product
extensions, thatisy; € cl P({Uf: i € I}).

Intuitively, a game is NPES if information about thectionsof the utility functions is
enough to reconstruct thehmle utility function wsing only polynomiboperations.

2.1.3. Integrable games
Let X denote a field (not necessarilyafield) of subsets of a set. A simple, real-
valuedX’-measurable function oK is a finite linear combination of indicator functions of
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sets inX’.2 B(X) denotes the set of uniform limits of simple, real-valuaimeasurable
functions. Anyf € B(X) is integrable against any finitely additive probability &n

If X; is a field of subsets of; for eachi € I, then[[; ., ¥; denotes the product field
generated by the;, that is, the smallest field containing all sets of the fdrfn.; E;,
E; € X;. B([1;c; ) is the set of functions that can be integrated against any product of
finitely additive probabilities on th&;’s. 25 denotes the set of all subsets$f

Definition 4. A gamer is integrableif eachu, j € I, belongs toB([ |;, 251,

Intuitively, the integrable games are the ones for which an expected utility can be
assigned to independent play of any profile of finitely additive strategies.

2.1.4. Utility precompact games

Let d be a metric on a spacé. A setT C X is d-precompactf for every e > 0, there
exists a finitec-net, that is, a finite seft. such thatforalk € T, d(z, T¢) < €. The sup horm
metric on the set of bounded, real-valued functionsois denotedp; .

Definition 5. A gamelr” is utility precompac{UPC) if for all i € I, U; is p;-precompact.
Intuitively, a game is UPC if its sets of utility sections are not too large.

2.1.5. Finitely approximable games

For any uniformly bounded set of functios on a setX, and anyx, y € X, define
the pseudo-metridg(x, y) by dp(x,y) = SUPrep |f(x) — F(I. The following is an
interesting reformulation of the pseudo-metugg(-, ) on thes;:

dy, (s, 1) = SUp |wi(si) — w; ()| = maxsupluk (s \ si) — u(s \ 1;)|.
w; €U; kel segs

This is Fudenberg and Levine’s (1983) “niagility difference it can make to anyone”
pseudo-metric. Note thaj, (s;, ;) = 0 if and only ifs; andy; are strategically equivalent.
dy, is a metric on equivalence classes of strategies.

Definition 6. A gamer isfinitely approximabl€FA) if for all i € I, S; is dy;,-precompact.

2.1.6. Equivalence
It is now time to prove

Theorem 1. The following five conditions are equivalent:
(@) I'isNCC.

(b) I' is NPES.
(c) I isintegrable.

2 Specifically, if it is a function of the forny (x) = Zn"f:l rml1g,, (x), whereM e N, ry, € R, Ey € X, and
1g,, (x) is the function equal to 1 if € E;; and equal to O otherwise.



C.J. Harris et al. / Games and Economic Behavior 50 (2005) 208-224 213

(d) I is UPC.
(e) I'is FA.

Proof. The structure of the proof is NCE> NPES= integrable=> UPC = NCC, and
UPC < FA.

NCC = NPES. Suppose thaS,, i;)ier is acciofl. _For eachi € I, let ¢; denote
the imbedding ofS; in S, By definition, eachiy € C(S) We must show that each
up € cl’P{U;: i € I}). Becausep(S) is dense in eacl, and because eaély contains
the sections of all of they, proving the following lemma will complete the proof.

Lemma 1. If (X, ) is the product of cHs'Y{X;, 7;) with the product topology, and if
feCX), thenf eclP({Sf: i e I}), whereS; = {x; = f(x\x;): x € X}.

Proof. For eachi, let 77 C 7; denote the weakest topology o making eachf; € S;
continuous. Definer; ~; y; if for all G; € t?, x; € G; if and only if y; € G;. Denote
by X! the quotient space of; divided by~ Denote byz; the identification topology
on X;, so that eachX;, z/) is a cHs. Denote by; the projection ofX; onto X/ (i.e.,
pi(x;) is the equivalence class of). Denote byp the corresponding projection af onto
X" =[1;¢; X; with the product topology.

It is immediate thatfp~? is single-valued. Sincg € C(X), this is sufficient condition
for f = fp~1 e C(X’) (Dugundji, 1966, Theorem VI.4.2(3), p. 125). Since the collection
of functions{C*(X}): i € I} separate points ii’, the Stone-Weierstrass theorem implies
thatC(X') = CIP({C"(X’) iel}).

Eachg; € S; belongs toC(X;) andg; p;” Lis single-valued so tha;; :=g; p -1 belongs
to C(X;). By construction, the collect|or$ = {g;i: g € S;} separates pomts X
Therefore, by the Stone-Weierstrass theoréwy;) = cIP(S)). Since polynomials in
polynomials are again polynomials, this implies thiat cIP({gf’: i € I}), which directly
impliesthatf e clP({Sf: i el}). O

NPES = integrable. Suppose thal is NPES. Pick arbitrarye > 0 and j € I.
We will show that there exists a simpl§];., 25%-measurable functiony, such that
SURcs luj(s) — v5(s)] <e. '

Let [a, b] be a compact interval such that for &le 7 and alls € S, a < ug(s) <
Becausd” is NPES, there exwfn&;6 inP{U;: i e I}) such that sup.g |u;(s) — wS (s)| <
€/2. Thefunctloruﬁ isa polynomlal inM elements ofl(;: i € I} for someM e N Thus,
there arevf functlons,hl, coohyin{Ufiel}and apolynom|alpj [a,b]M — R, such
that for alls € S,

ws(s) = pj (h1(s), ..., ha(s)).
Being continuous;y; is uniformly continuous on the compact $et b]™. Therefore it is
possible to picks > 0 such that for allv, y € [a, bIM, if |xy — yul <8, m=1,..., M,
then| p§ (x) = p§()] < €/2.

For eachm, h,, is of the formh,,(s) = fj‘;ﬂ (8}, S5—j,) for some j, € I and some
fin €U,,. For eachn, pick a simple, £in-measurable functiog;,, such that
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Sup |fjm (sjln) - gjm (s]m)| < 8

S jm €S jm

Definehy, (s) = g, (s, 5—j,) SO that

SUpAm(s) — S, (s)] < 8.

seS

Eachh?, is a simple[];., 2% -measurable function. Because the class of sinjfle, 25 -
measurable functions is an algebra, the function

v5() = P (HAGs). ... iy ()

is also a simple] [;, 2% -measurable function. Further, SURlws(s) — v5(s)] <€/2.

By the triangle inequality,
Suyuj(s) - v;(s)| < Sug‘uj(s) — w;(s)‘ + ‘w;(s) - vi(s)‘).
se NS

This last term is in turn less than or equal to

Suduj (s) — w;(s)| +Sudw;(s)
seS seS

and each of these last two terms is less thgh

Integrable= UPC. Suppose thdt is integrable. Pick an arbitrary> 0 andi € 1. We
will show that there is a finite s of bounded functions of; such that for allf; € i4;,
pi(fi, TF) <e.

Becausel" is integrable, for eact € I, there exists a simplg][;, 25i-measurable
functionv; such that

SUduk(s) — v,i(s)| <e.

seS
Sincev; is a simple, product field measurable function, it has only finitely many distinct
sections. Therefore, there is a finite collectidif, = {fkﬁl, e f,iMk}, such that{s; —
ve(s\si): s €S} CFy.

To complete the proof, st = J, ., F-

UPC= NCC. Suppose that is not NCC. We will show thaf" is not UPC.

For eachi €I, let ((E, 7;), ;) be alf;-imbedding ofS;. For eachj € I, the function
uj is well defined onp(S) by i (5) = u,(<p—1(s) Sincerl is not NCC, at least onee I,
uk does not have a jointly continuous extension fres) to s. Becausep(S) is dense
in S, there exist > 0 and two nets® and:# in @(S) converging to somg® e S, such that
liminf, ux(9(s*)) > limsupg ux (91 (F)) + 2¢. Becausd is finite, this means that for
at least ong € I, the mappings; — ux(¢~1(s*) \ s;) ands; > ur(p~1(t#) \'s;) in Y,
are infinitely often at sup norm distance at leagtom each other. This means ttidf is
not p;-precompact.

UPC < FA. Suppose first thal” is UPC and pick an arbitrary > 0. Let 7 be an
e-net forUf; in the p; metric. For alls;, t; € S;, |dre (i, ti) — dy; (si, 1i)] < €. Therefore
proof that/” is FA will be complete if we show the existence of a finite 4¢tsuch that
de (A5, S;) <e.
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Pick a < b in R such that for allw; € I/; and alls; € S;, a < w;(s;) < b. For integer
k < (b —a)/e, let R, be the half-open intervdk + (k — 1), a + ke). Let P;  be the
finite partition of S; generated by finite cove{rflfl(Rk): fieTf, k< (b—a)/e}. For
eachk; € P, pick a pointa; g, € E; and letA{ be the finite sefa; £, E; € Pi.}. For
all s; € S;, there existsy; € A such that for allf; € T, | fi(a;) — fi(si)| < €, that is,
dT.e (a,', S,’) <E€.

ISuppose now thak’ is FA and pick an arbitrary > 0. Let A; be a finitee-net for §;
in thedy,, metric. The proof thal™ is UPC will be complete if we show that there exists a
finite T,° C U; such thao; (T, U;) < 2e.

For eachw; € U;, definex = x(w;) as the point irR4: havinga;th component equal to
w;(a;),a; € A;. LetE be the sek (4;). Since clE is compact, there is a finit* C ¢; such
thatx(7) is ane-net for E in the metric generated by the nofm|| = max; 4, |yq; |- By
the definition ofdy,,, for all s; € S;, there exists; € A; such that for alw; € i;, |w; (a;) —
w; (s;)| < €. Therefore, for alw; € U;, there isf; e T such thatp; (f;, w;) <2¢. O

2.2. On the continuous compact imbeddings of a game

2.2.1. Basics of continuous compact imbeddings
Let X be a non-empty set anfl a class of bounded, real-valued functionsXnThe
following sketches the construction of thanonical F-imbedding,((X r, Tr), ¢F).

(1) Foreachf e F, let[ay, bs] be a compact interval satisfying < f(X) <by,

(2 imbed.eacbc € X aspp(x) € X i= [I/erlay. byl wherepp(x) as the vector defined
by projrpr (x) = f(x),

3) give)_(tAhe compact product topology, and

(4) defineXr as the closure opr(X) in X and letzr denote the relative topology on
Xp3

or(x) # ¢r(y) in the canonicalF-imbedding if and only ifF separates, y € X.
Since the product topology is defined by the continuity of the projection mappings,
(()A(F, 7r), o) is indeed anF-imbedding ofX. Since projections separate pointsﬁm,
the Stone—Weierstrass theorem implies that the sup norm closed algeﬁna), is the
closure of the algebrR({proj,: f € F}). This means that every function in®e(F) has a
continuous extension t& .

Let Bx denote the set of bounded functions ¥nDefine a partial order on subsets of
Bx by F - G iff cl P(F) D clP(G). Let (()?p, TFr), ¢r) be the canonicak-imbedding
of X, and Iet(()?(;, 76), ¢c) be the canonicali-imbedding. The next results follow from
Dugundji (1966, Theorems XI.8.2 and XIII.6.5, pp. 243 and 289).

3 Some examples: taking' to be the set of continuous functions ah= [0, co) having limits asx 1 co
means tha’()A(F, 7F) is homeomorphic to the classical 1-point compactificatioilpbo); taking F to be the
set of bounded, continuous functions onampletely regular topological spac&’, ) means tha(?p, TF)is
homeomorphic to the Ston€ech compactification afX, t); taking F to be the bounded measurable functions
on a measure spac&, X) gives the Stone space fbf°. Compact imbeddings are, essentially, compactifications
of X that do not involve a topology on the spak€eand may be many-to-one.
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(1) If F = G, then there is a continuous surjectign; X — X¢ such that for alk € X,
Y (pr(x)) = ¢ (x),

(2) if F ~ G, theny is a homeomorphism, and K = G, theny is many-to-one,

Q) if (()?, 7), @) is a compact imbedding of, then it is homeomorphic to the canonical
F-imbedding for someF—for eachg < g()A(), define a bounded function aXi by
fo(x) = g(p(x)), and setr’ = { fg: g € C(X)}.

These last three results imply that for aRyc By, there is a maximakF-imbedding,
namely theBx-imbedding, and a minimal one, homeomorphic to e ')-imbedding.
The last point implies that the partial ordering B can identified with a partial ordering
on spaces homeomorphic to the canonical compact imbeddings.

2.2.2. The maximal, minimal, and intermediate cci’'s

Fix a gamel” = (S;, u;);c; and partially order the compact imbedding@, 7;), ¢;) of
S; by ~; as above. If eachy, is jointly continuous orf, then for eachi € I, each section
fi € U; must have a continuous extensionSio In other words, if(S;, 7i;)ic; is a cci of
(Si,ui)icr, then eacls; must be at least as large as theimbedding. All such imbeddings
give rise to a cci wher™ is NCC. Let((S;, 7;), ¢;) denote the canonica;-imbedding.

Theorem 2. If I" is NCC and for alli € I ((E, 7;), ;) is an imbedding beAtween the-
imbedding and theBs;-imbedding, then for alf € /, there existsi; € C(S) such that
(Si, I/At,'),'el is a cciofr.

Proof. Suppose first that for alle 1, ((E, %), @i) ~i ((Si, T, @i). Becausd™ is NPES,
eachuy is the uniform limit of a sequence; of functions inP({i//: i € 1}). Because
polynomials in continuous futions are continuous and eagh € U{; has a continuous
extension fromy; (§;) to S;, eachu} has a continuous extensiaif, from ¢(S) to S. Since
the sup norm distance between any pgirand u;j/ is the same as the sup norm distance
betweeni; andﬁz/, the sequencé; is Cauchy, hence has a limit € C(S). The function

iy extendsyy from ¢(S) to S. This means the(@,-, ij)ier iISacciofrl.

Now suppose tha((§,~, ), ¢) =i ((Si,T),@:). Let y; denote the continuous sur-
jection of §, onto S; such that for alls; € S;, ¥i(gi(si) = @;(s;). Define ¥ (5) =
(Y¥1(51), ..., ¥1(51)). For eachk € I, defineiy by i (5) = ug (v (5)). Being the composi-
tion of continuous functiongi, is continuous. Furthefi;, extends:; so that(§,-, Uj)ier 1S
acciofl". O

Recall that for any uniformly bounded set of functidf®n a setX, and anyx, y € X,
the pseudo-metrigr (x, y) is defined byir (x, y) = SUPrep If () = f(WI- The following
implies that the cHs's(S;, 7;), in the minimal cci’s can be metrized ly; (-, -). In words,
NCC games require only metrizable cci's, and the “most utility difference it makes to
anyone” metric is the relevant one.

Lemma 2. Suppose thatX, t) is a cHs.t is metrizable if and only if there exists a sup
norm compac¥ C C(X) that separates points. Further, for any suEht can be metrized
by dF( 5 )
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Proof. Suppose that is metrized by the metrié. For eachc” in a countable dense subset
of X, definef” (x) = d(x, x")/n. The collectior{ f/": n € N} separates points, and because
f" — 0inthe sup norm, it is sup horm precompact.

Suppose that" separates points and is sup norm precompact. Becglise) is a
cHs, it is normal (i.e.,T4), and for any normal space, a net —; x iff Vf € C(X),
f(x%) — f(x). Since F separates points;(X) = clP(F) by the Stone—Weierstrass
theorem. Thusy® —; x iff Vf eclF, f(x*) — f(x). Defineg*(-) andg(:) on clF by
g(f) = f(x*) andg(f) = f(x). Rewriting the previous “iff” statement gives' —; x
iff g% converges pointwise tg. Sinceg®, g € C(cl F) and clF is compact, pointwise
convergence of the* to g is equivalent to uniform convergence. Rewriting once again,
x% = x iff dp(x®, x) :=maXseelF | f(x¥) — f(x)| — 0. Note thadp =dr. O

2.2.3. Implications of metrizability

The next result shows that, after identifying the strategically equivalent strategies of an
NCC game and adding somag, -limit points, what is left is a Fan—Glicksberg game. In
the presence of jointly continuous payoffsetgenerality gained in moving from compact
metric to compact Hausdorff spaces of actions is illusory—it disappears after equivalent
strategies are identified. This implies that Fan (1952) and Glicksberg (1952) achieved as
much topological generality as possible.

Corollary 3. If for eachsS; there is a topology; such that(s;, ;) is a cHs and eachi_is
jointly continuous orf, then for eachi € I, ¢; (s;) is a continuous surjection ¢ ontosS;,
andg; (s;) = ¢; (t;) if and only ifs; andz; are strategically equivalent.

Proof. Taking:; as the identity mapping makées;, t;), ¢;) a compact imbedding leading
to a cci. Sincd(S;, 1;), t;) is alf;-imbedding, the rest follows. O

If v is a continuous surjection of a ckiX’, /) onto a compact metric spac¥, 7), and
w is a countably additive probability on the Borelfield generated by, theny—1(u) :=
{(v: VG e vy ~XG)) =n(G)]}. If Eisa weal% closed set of Borel probabilities on
o (1), theny~1(E) is weak closed. Recall that |¢(S,, ), 00 = ((S,, 1), @), then there
is a continuous surjectio; : S — §;, and fors € S, Y(s) = (I//l(S]_) L Ur(sp)).

Corollary 4. If I |s NCC and(S,,u )ies is a cci of I', then the closed, non-empty
equilibrium set forl" is w~1(E), whereE is the non-empty, closed set of equilibria for
(Sl ) M )lEI

Proof. E is non-empty and closed by the proofs in Fan (1952) or Glicksberg (1952) Since
the utilities are constant o~ 1(5) for anys € S, for any profile of strateglee),),el in T,

[z d)ier = [5 ik (i (vi))ier. Thus,(v;)ie; is an equilibrium profile in” if and only

if (¢ (v;))ies is an equilibrium profile in”. O

The last result shows the strong sense in which cci’s larger($ag;) are redundantly
large for NCC games. The only significantfdifence between the minimal and a larger cci
is that the larger cci may contain more representations of strategically equivalent points.
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This conclusion fails rather dramatically for games that fail to be NCC—no compact
imbeddings containreugh points, though larger spacesnfroon-standard analysis do,
see Stinchcombe (2001).

For any NCC game, the metrizability of each compadtnplies there are sequences,
A?, of finite subsets of;, such thatdy, (A7, S;) — 0, providing a second proof that all
NCC games are finitely approximable. The next corollary treats the upper hemicontinuity
of the equilibrium correspondea. The routine proof is omitted.

Corollary 5. If I' = (S;, éi1)ier is accifor I, dy, (A7, S;) — 0, and(ul");e; is a sequence
of €”-equilibria for the finite games$A”, u;);c;, €" > 0, €" — 0, then any accumulation
point of y~1((!)ier) is an equilibrium for(S;, i;)ier .

The continuity of the approximate equilibrn correspondence follows directly from
the corresponding result for Fan—Glicksberg games and the fact that/gastan open

mapping.

Corollary 6. If T’ = (S, 4;)ies is a cci for I and (v;)ie; is an equilibrium profile
for T, then for any wedakopen neighborhood; of (v;);c; and anye > 0, there exists
a finite game(A;, u;);c; such thatdy, (A;, S;) < € and ane-equilibrium profile (14;);¢s
for (Ai, u;)ier such thaty =1 ((1i)ier) N G # 0.

2.2.4. Finitely additive equilibria

The cci approach compactifies before randomizing, and this leads to a compact set of
countably additive mixed strategies. Directly compactifying the set of finitely supported
mixed strategies leads to the wéatompact set of finitely additive strategies. Because
the finitely supported stragiies includeprobabilitiesi such that for all measurablEg,

w(E) =0 or u(E) = 1, this approach implicitly compactifies the pure strategies (see the
finitely additive analysis of Example 1 below). Finitely additive randomization has two
distinct roles in normal form games: first, it convexifies; second, it represents limits of
approximate best responses. Because the ithpbmpactification is typically much larger
than the minimal compactificationthere are many representations of equivalent strategies.
Finitely additive game theory contains many redundant strategies.

A field X; of subsets ofS; is adequate forl™ if U; ¢ B(X;). If X; is adequate, then
any B(Z;)-imbedding must be &;-imbedding. For a given adequat, S5' = §5'(x;)
denotes the canonic#@(X;)-imbedding. It is known as the Stone space. To any finitely
additive probability,u;, on X;, there corresponds a unique, countably additive, regular
probability,uiSt, on the Boreb -field of (any space homeomorphic t@?t. The probability
1St satisfies, for eachf; € B(%;), [ fidui = [ f; du, where f; is the continuous
extension off;.

Let A = Al3(x;) denote the finitely additive probabilities afy. If I" is NCC, then
for all k € I and all profilesv = (v;)ier € [1;¢; Aﬁa, [suxdv is well defined (Dunford
and Schwartz, 1957, Lemma 111.2.16, p. 111). Therefore, equilibria in finitely additive
probabilities are well defined.
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Theorem 3. If I" is NCC and(X;);c; is an adequate collection, then the vectoe
(Vi)iel € ]‘[iE,AEa is a finitely additive equilibrium forl" if and only if the vector
vSt= (1Y, ¢/ is an equilibrium for the(Stone gamel™ St = (53, i%Y,¢;. In particular,
the set of finitely additive equilibria is weaklosed, non-empty, and payoff equivalent to
the equilibria of any cci of".#

3. Examples

NCC games fail to be compact metric space games with jointly continuous payoffs
either by having strategy spaces with many espntations of equivalent strategies, or by
having strategy spaces that fail to containitipoints in the intrinsically defined pseudo-
metric dy,. The examples in this section demtmase the reach and the limitation of the
results leading to this conclusion.

First to be studied are singfplayer games, all of which are NCC. Some simple two
player games follow. These show that mgiNCC rules out diagonal discontinuities.
Special types of diagonal discontinuitiegme exploited by Dasgupta and Maskin (1986)
and Simon (1987) in their studies of the dduium existence question for games with
compact metric spac§;’s and discontinuous payoffs. The last example in this section
shows that™ being NCC rules ouf” being the normal form of most extensive form games.

3.1. Single player normal form games are NCC
The starting point is
Lemma?7.If I = {1}, i.e., contains only one agent, théhis NCC.
Proof. U1 = {u1}, and one point sets are precompact, so thig UPC. O
Finitely additive and continuous compact imbedding analyses are informative.
3.1.1. The finitely additive analysis of single player games
Suppose that’; is adequate for thbounded tility function u;:51 — R, i.e.,Uy =

{u1} € B(X1). 1's equilibrium problem is to solve

max/ul(sl) dvi(sy).

vleAfla
N

Setu] = supu1(S1). Then, to solve the problem it is sufficient to fing such that

fslul(sl) dvi(s1) = uj. BecauseX; is adequate, for eveny € N, there is a simpleX; -

measurable functiom’(-) uniformly within 1/(2n) of ui(-). SetE, = {s1: u}(s1) >

4 While the first version of this paper was beingjtten, Marinacci (1993, 1997) independently showed that
equilibria in finitely additive probabilities exist whef is integrable.
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u; — 1/n} gives a sequence of sets iy satisfyingﬂkgn EX £ @ forallneN. If vl is
any finitely additive probability assigning mass 1 to e&¢h thenfs1 u1(sy) dvi(s1) = uj.

The adequacy of’; means that finitely additive solutions to one person optimization
problems exist. In many person games, the adequacy; eheans that for any € S, i’s
maximization problem,

max [ (s \ 1) i 1),
V,‘EA;a

always has a solution. Adequacy guarantees that there are finitely additive best responses to
all pure strategies. Being NCC, equivalently, being integrable, means that this is sufficient

for the existence of an equilibrium.

3.1.2. The cci analysis of single player games

In a single player gamely, (s1, t1) = |u1(s1) — u1(t1)]. This is a pseudo-metric afy
that identifies indifferent strategies. Compactifying the pseudo-metric $5ace#,, ) gives
Si=cl u1(S1) C R with the usual topology, and givés (s1) = 51. Thus,dy, (A%, S1) — 0
if and only if u1 (A7) — clu1(S1) in the usual Hausdorff sense. After compact imbedding,
1's equilibrium problem is (withA$? being the countably adtile Borel probabilities
on S1)

max [ fa(5r) o).

vieA

S1

and the solution, which is unique in these minimal cci’s of single player games, is point
mass onij € §1.

Being alf;-imbedding in a one person game means that solutions to optimization
problems exist in the larger spaﬁg In many person games, beingaimbedding means
that for anys € S, i's maximization problem,

maxii; (¢(s) \ §i),

fiESi
always has a non-empty set of solutions, i.e., appropriate imbedding guarantees that there
are best responses to all pure strategies. Being NCC means that this is sufficient for the
existence of an equilibrium.

3.2. Some two person normal form games

The first game is NCC, having only a ‘vertical’ discontinuity. The minimal cci adds just
onedy-limit point at the discontinuity. The second game has a ‘diagonal’ discontinuity
and is therefore not NCC though it does have a continuum of pure strategy equilibria. No
compact imbedding will make the game tiomous, and the expected utility associated
with play of profiles of finitely additive strategies are not generally well defined. The third
game also has a diagonal discontinuity, and has equilibria for anye < 1.
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3.2.1. A vertical discontinuity
The utilitiesu; (s;, s;) fail to be continuous a; = 1 in the following NCC game.

Example 1. The gamel is specified byl = {1, 2}, S; = [0, 1], and the symmetric utility
functions,

Si +8i8;j if s; <1,

1
-1 if s, =1. @)

ui(Si,Sj)={

Without imbedding (or somethg equivalent), this game has no equilibrium—no matter
what j plays,i can do better by moving closer to, but not quite reachipg; 1. Each
S; = [0, 1] can be viewed as a dense subset of the compact §pae@0, 171U {2} after
the imbedding

r ifr<1
(r) = ’ 2
vitr) {2 if r = 1. @)
Note thaty; ([0, 1]) = [0,17) U {2}, a dense suk§et off, Eachu,i-,-) pas a unique
continuous extensior;, from v; (S;) x ¥;(S;) C S; x §; to all of §; x §;. It is given
by
§i+§i§j if 5; <1°,
-1 if §; =2,

where, for numerical purposes; 1s treated as 1. The unique equilibrium(iis™, 17).

Finitely additive strategies that put mass 1 on all intervals of the fdrm ¢, 1) are
equilibria. Because finitelydtitive game theory corresponds to redundantly large cci’s,
there are many such finitely aitide equilibria. They correspond to mixed strategies that
put mass 1 on the strategic equivalents of 1

A final observation about this game is that sequences of finite approximations are
dy;-dense if and only if they Hausdorff approximd@ 1) and eventually contain the
point 1.

B Gis)) = { 3)

3.2.2. Adiagonal discontinuity and many equilibria
The utilitiesu; (s;, s;) fail to be continuous a; = s; in the following non-NCC game.

Example 2. The gamels is specified byl = {1, 2}, S; = [0, 1], and the symmetric utility
functions,

Si if Si =Sj,

0 ifsi7ESj. (4)

ui(Si,Sj)={

For everyr € [0, 1], play of (r, r) is a pure strategy equilibrium.

The diagonal discontinuity means that thidlities sections ar@ot sup horm precom-
pact. The section&; are of the form{s; — r - 1(,)(s;): r € [0, 1]}. For everye € (0, 1)
there is a continuum (of size-1 €) of functions in4; at sup norm distance at leasfrom
each other.
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Polynomials in the extensions of the utilisections are constant on a set of full
Lebesgue measure kthat can be expressed as a finite union of rectangles. Such functions
cannot uniformly approximate the diagonally discontinumus

The failure of integrability is also clear. For any- 0, joint play of any finitely additive
v; satisfyingv; (E;) € {0, 1} andv; (r — 1/n, r) = 1 does not give a well defined expected
utility.

3.2.3. Adiagonal discontinuity with no equilibria
The utilitiesu; (s;, s;) again fail to be continuous at = s; in the following non-NCC
game.

Example 3. The gamels is specified byl = {1, 2}, S; = (0, 1], and the symmetric utility
functions,

1 if Si <Sj,
0 ifs; = 5.

ui(Si,Sj)={ 5)

Again, the diagonal nature dfi¢ discontinuity makes the utility sections fail to be sup
norm precompact so the game is not NCC. For ary(0, 1), the game fails to have an
e-equilibrium.

3.2.4. An extensive form game
The following extensive form example is taken from Aumann’s (1964) treatment of the
game theoretic problem of picking random functions on infinite sets.

Exampled4. Attime ¢t = 1, player 1 picks an action iy = [0, 1]. Player 2 observeg and
att = 2, picksaz € A2 = [0, 1]. The utility difference between =, # a; is at least 1.

Player 2’s set of strategies,, is a set of functions frorf0, 1] to [0, 1]. If S, separates
points in Sy, then for allsy # 11 andsa # 12, dyy, (s1, 1) > 1 anddyy, (s2, 12) > 1, so the
game is not NCC.

The failure of measurability is quitergting. Aumann (1961) showed thats$} is the set
of Borel measurable functions, then there isntield of subsetssS,, such that the product
o-field, S1 ® S makes independent, countably additrandomization by the two players
integrable.

4. Conclusions
The intrinsic specification of a game involves only the pure strategies available to
the players and thetilities. This paper has shown thdtet following five conditions are

equivalent:

(1) the game can be regarded as a dense subgame of a compact and continuous game,
(2) the utilities are the uniform limits of polynomigin their extended sections,
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(3) the game is integrable for all profiles of finitely additive strategies,
(4) the sections have compact sup norm closure, and
(5) the strategy sets are finitely approximable.

A game is nearly compact and continuous (NCC) if any of these conditions hold. For
NCC games, there is a natural and minimal topological and measure theoretic structure,
given by Fudenberg and Levine's “moditlity difference it can make to anyone” pseudo-
metricdy,, and the corresponding BoreHield. These structures lead to existence, upper
hemicontinuity of the equilibrium corrpsndence, and continuity of the approximate
equilibrium correspondence. The use of fitgpological structuresas typically happens
with finitely additive strategies, leads to the unnecessary complication of having many
equivalent strategies.

After identifying strategically equivalent strategies, the minimal structure is that of a
game with compact metric sets of strategaesl jointly continuousitilities. In this sense,

Fan (1952) and Glicksberg (1952) had found thight' structures and conditions for
equilibrium existence for games with infinite normal forms. Rather than imposing these
structures and conditions as part of the specification of a game, the work here identifies
these structures and conditions in the intrinsic specification of the game.

Normal form games fail to be NCC when thbagve diagonal discontinuities. Special
types of diagonal discontinuities wergpdoited by Dasgupta and Maskin (1986) and
Simon (1987) to prove equilibrium existem The tightness of the NCC condition can
be seen in Example 3 in which: equilibrido not exist, which implies that upper
hemicontinuity fails; approximate equilibria do not exist; and large finite approximations
to the game entirely misrepresent the infinite game. The treatment of non-NCC games in
Stinchcombe (2001) indicates that this misrepresentation can be interpreted as a failure of
the usual model of the continuum. It also presents an alternative model of infinite sets that
does not misrepresent the limits of finite approximations.

There is a second set of questions that flow from the answers to the first set. They are:
“Do continuous compactifications, finite approximations, and finitely additive mixtures
‘work’ for games that are not NCC?” At one level, the answer is clearly not—continuous
compactimbeddings exist if and only if the game is NCQ lis not NCC, then for at least
one playet, there will exist no continuous; onS thatis equal tar; when restricted tc.

Thus, the second set of questions reduces to whether or not continuity can be dispensed
with in compact games.

For a gamd™ = (S;, u;);e; With compact metricS, Simon and Zame (1990) show that
equilibria exist for the related gamés;, v;);<;. The utility functionst; are measurable
selections from the pointwise convex hull of the closure of the graph afthe S x R.

The measurable selection approach is meant to dispense with continuity. As detailed in
Stinchcombe (2001), the selection approach has two major weaknesses: the first is related
to taking selections from the convex hull, or indeed, from the closure of the graph without
convexification; the second has to do with the existence of profitable deviations. For non-
NCC games, alternate, non-standard models of infinite sets are much better. For NCC
games, the present work shows that the usual models are quite sufficient.
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