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Abstract

Normal form games are nearly compact and continuous (NCC) if they can be understood as
played on strategy spaces that are dense subsets of the strategy spaces of larger compact g
jointly continuous payoffs. There are intrinsic algebraic, measure theoretic, functional analys
finite approximability characterizations of NCC games. NCC games have finitely additive equ
and all their finitely additive equilibria are equivalent to countably additive equilibria on metric
compactifications. The equilibrium set of an NCC game depends upper hemicontinuously on
specification of the game and contains only the limits of approximate equilibria of approx
games.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

This paper answer the questions, “What is there that is intrinsic in a gameΓ , specified
only by the player set,I , the strategy sets,Si , and the bounded utility functions,ui :S → R,
S = ∏

i∈I Si , that leads to equilibrium existence, upper-hemicontinuity of the equilibrium
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“What topological and measure theoretic structures are entailed?”

When eachSi is finite, Nash (1950) defined the nowstandard equilibrium concep
for non-cooperative game theory and showed that equilibria in mixed strategies exis
To generalize Nash’s existence result to games with infinite strategy spaces, Fan
and Glicksberg (1952) make two inter-related choices: for finiteness they substitute join
continuous utilities on compact metric strategy spaces; for mixed strategies, they emplo
the dual of the space of continuous functions, the countably additiveBorel probabilities.
These choices lead to three properties critical to the interpretations of game th
models: existence, upper hemicontinuity of the equilibrium correspondence, and continu
of the approximate equilibrium correspondence.

Existence guarantees that the models make predictions. Upper hemicontinuity
equilibrium set guarantees that small misspecification of the utilities or the strategy s
a game do not lead to equilibria that are too far from the true set of equilibria. This is c
to the Fan and Glicksberg existence proofs which proceed by approximating the comp
strategy spaces by sequences of large finite sets. Fudenberg and Levine (1983
that the approximate equilibrium-approximatestrategy set correspondence is continuo
thereby providing a clean interpretation of games with infinite sets of strategies.

A gameΓ = (Si , ui)i∈I is nearly compact and continuous (NCC) if each strat
set Si can be imbedded as a dense subset of a compactŜi in such a fashion that eac
uj can be extended to a jointly continuous function on

∏
i∈I Ŝi . Any such larger game

Γ̂ = (Ŝi , ûi)i∈I , is called acontinuous compact imbedding, or cci, of Γ . Normal form
games that fail to be NCC include the normal forms of most non-trivial extensive
games. These other normal form games are treated in the companion piece, Stinchcom
(2001), which develops the requisite theory of integration for non-measurable functi

The following are the essential results for NCC games.

(1) The equivalence of five intrinsic characterizations of games:
(a) nearly compact and continuous—the game can be understood as one being

on dense subsets of the strategy spaces of a compact and continuous gam
(b) algebraic—the uniform approximability of the utility functions by polynomials

in extended sections;
(c) measure theoretic—the integrability of utility functions with respect to

products of finitely additive mixed strategies;1

(d) functional analysis—sup norm precompactness of the sections of the
functions;

(e) finite approximability—the strategy sets of the players can be uniformly ap
imated in the “most difference it can make to anyone” metric.

(2) If a game has one cci, then it has many. The maximal and minimal cci’s ca
characterized, and all cci’s of a given gameare equivalent in the following senses:
(a) their equilibrium sets arenon-empty and payoff equivalent;

1 The failure of the utility function to be integrable is what necessitates the development of a the
integration for non-measurable function in non-NCC games in Stinchcombe (2001).
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(b) the equilibrium set of a smaller cci is the set of restrictions of equilibr
strategies in any larger cci;

(c) the equilibrium set of a larger cci is the set of extensions of equilibrium strat
in any smaller cci.

(3) The play of finitely additive mixed strategies corresponds to a particular class of
a class that contains the minimal and the maximal cci’s.

(4) Identifying equivalent strategies leads to the minimal cci, which is metric. From
existence, upper hemicontinuity and continuity follow.

The next section contains the results, the following contains examples demons
the reach and limitations of the results, the last concludes.

2. Results

This section begins with the definitions and equivalence of five conditions:

(a) Γ = (Si , ui)i∈I being NCC,
(b) eachui being nearly polynomial in the extended sections of theuk , k ∈ I ,
(c) the utility functions being integrable against all products of finitely additive strate
(d) the sections of the utility functions being precompact, and
(e) the strategy sets of the players can be uniformly approximated in the “most differenc

it can make to anyone” metric.

An examination of the various compact imbeddings follows. The metrizability o
minimal compact imbedding leads to equilibrium existence, the upper hemicontinu
of the equilibrium correspondence, and the continuity of the approximate equilibrium
correspondence. A treatment of finitelyadditive equilibria ends the section.

2.1. Definitions and equivalence

2.1.1. Nearly compact and continuous games
LetX be a non-empty set. Acompact imbeddingof X is a pair((X̂, τ̂ ), ϕ), where(X̂, τ̂ )

is a compact Hausdorff space (cHs), andϕ :X → X̂ imbedsX in X̂ so thatϕ(X) is τ̂ -dense
in X̂. Note thatϕ may be many-to-one.

For any cHŝX, C(X̂) denotes the set of continuous functions onX̂. Letf be a bounded
real-valued function onX. A compact imbedding((X̂, τ̂ ), ϕ) continuously extendsf if
there existsf̂ ∈ C(X̂) such that for allx ∈ X, f̂ (ϕ(x)) = f (x). A necessary condition fo
a compact imbedding to extendf is thatϕ must separate any points separated byf .

Let F be a set of bounded, real-valued functions onX. An F -imbedding ofX is
a compact imbedding that continuously extends everyf ∈ F . The denseness ofϕ(X)

in X̂ has two implications: first,f̂ is unique if it exists; second, iff̂ exists, then
supx∈X |f (x)| = maxx̂∈X̂ |f̂ (x)|. F -imbeddings exist for everyF , and any compac
imbedding is homeomorphic to anF -imbedding for someF , details and references a
below in Section 2.2.1.
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Definition 1. A gameΓ̂ = (Ŝi , ûi)i∈I is a continuous compact imbedding(cci) of Γ =
(Si , ui)i∈I if for each i ∈ I there exists a compact Hausdorff topologyτ̂i for Ŝi and a
functionϕi :Si → Ŝi such that

(1) each((Ŝi , τ̂i), ϕi) is a compact imbedding ofSi , i ∈ I , and
(2) ((Ŝ, τ̂ ), ϕ) is a {u1, . . . , uI }-imbedding ofS, whereŜ := ∏

i∈I Ŝi , τ̂ is the product
topology onŜ, ϕ(s1, . . . , sI ) := (ϕ1(s1), . . . , ϕI (sI )), and theûi are the continuou
extensions of theui .

A crucial aspect of this definition is that theûi must bejointly continuous on̂S.

Definition 2. A gameΓ is nearly compact and continuous(NCC) if it has a continuous
compact imbedding.

Intuitively, a gameΓ is NCC if it can be understood as a game played on dense su
of the strategy spaces of a compact and continuous game.

2.1.2. Nearly polynomial in extended sections games
For s ∈ S andti ∈ Si , the two game theoretic notationss \ ti and(ti , s−i ) will be used

interchangeably as dictated by convenience.
If fi is a function onSi , then itsproduct extension, f e

i , is the function onS defined
by f e

i (si, s−i ) = fi(si) for all (si, s−i ) ∈ S. Fe
i denotes the set of product extensions o

classFi of function onSi . Given a gameΓ = (Si , ui)i∈I , i ’s utility sectionsis the class of
functionsUi = {si �→ uk(s \ si): k ∈ I, s ∈ S}. A crucial implication ofΓ̂ being a cci of
Γ is that each((Ŝi , τ̂i), ϕi) is aUi -imbedding ofSi .

Of particular interest will be polynomials in the set of utility section produc
extensions,Ue

i . Given a classH of functions onS, P(H) denotes the set ofpolynomials
in H , that is, the set of finite linear combinations of functions of the form

g(s) = (
h1(s)

)α1
(
h2(s)

)α2 . . .
(
hM(s)

)αM ,

whereM ∈ N andαm ∈ {0} ∪ N, m = 1, . . . ,M.

Definition 3. A gameΓ is nearly polynomial in its extended sections(NPES) if eachuj ,
j ∈ I , is in the sup norm closure of the polynomials in the utility section produc
extensions, that is,uj ∈ clP({Ue

i : i ∈ I }).

Intuitively, a game is NPES if information about thesectionsof the utility functions is
enough to reconstruct the whole utility function using only polynomial operations.

2.1.3. Integrable games
Let X denote a field (not necessarily aσ -field) of subsets of a setX. A simple, real-

valuedX -measurable function onX is a finite linear combination of indicator functions
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sets inX .2 B(X ) denotes the set of uniform limits of simple, real-valued,X -measurable
functions. Anyf ∈ B(X ) is integrable against any finitely additive probability onX .

If Σi is a field of subsets ofSi for eachi ∈ I , then
∏

i∈I Σi denotes the product fiel
generated by theΣi , that is, the smallest field containing all sets of the form

∏
i∈I Ei ,

Ei ∈ Σi . B(
∏

i∈I Σi) is the set of functions that can be integrated against any produ
finitely additive probabilities on theΣi ’s. 2Si denotes the set of all subsets ofSi .

Definition 4. A gameΓ is integrableif eachuj , j ∈ I , belongs toB(
∏

i∈I 2Si ).

Intuitively, the integrable games are the ones for which an expected utility ca
assigned to independent play of any profile of finitely additive strategies.

2.1.4. Utility precompact games
Let d be a metric on a spaceX. A setT ⊂ X is d-precompactif for every ε > 0, there

exists a finiteε-net, that is, a finite setTε such that for allt ∈ T , d(t, Tε) < ε. The sup norm
metric on the set of bounded, real-valued functions onSi is denotedρi .

Definition 5. A gameΓ is utility precompact(UPC) if for all i ∈ I , Ui is ρi -precompact.

Intuitively, a game is UPC if its sets of utility sections are not too large.

2.1.5. Finitely approximable games
For any uniformly bounded set of functionsF on a setX, and anyx, y ∈ X, define

the pseudo-metricdF (x, y) by dF (x, y) = supf∈F |f (x) − f (y)|. The following is an
interesting reformulation of the pseudo-metricsdUi

(· , ·) on theSi :

dUi
(si , ti) = sup

wi∈Ui

∣∣wi(si) − wi(ti )
∣∣ = max

k∈I
sup
s∈S

∣∣uk(s \ si ) − uk(s \ ti)
∣∣.

This is Fudenberg and Levine’s (1983) “most utility difference it can make to anyone
pseudo-metric. Note thatdUi

(si , ti) = 0 if and only if si andti are strategically equivalen
dUi

is a metric on equivalence classes of strategies.

Definition 6. A gameΓ is finitely approximable(FA) if for all i ∈ I , Si is dUi
-precompact

2.1.6. Equivalence
It is now time to prove

Theorem 1. The following five conditions are equivalent:

(a) Γ is NCC.
(b) Γ is NPES.
(c) Γ is integrable.

2 Specifically, if it is a function of the formf (x) = ∑M
m=1 rm1Em(x), whereM ∈ N, rm ∈ R, Em ∈ X , and

1Em(x) is the function equal to 1 ifx ∈ Em and equal to 0 otherwise.
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(d) Γ is UPC.
(e) Γ is FA.

Proof. The structure of the proof is NCC⇒ NPES⇒ integrable⇒ UPC⇒ NCC, and
UPC⇔ FA.

NCC ⇒ NPES. Suppose that(Ŝi , ûi)i∈I is a cci ofΓ . For eachi ∈ I , let ϕi denote
the imbedding ofSi in Ŝi . By definition, eachûk ∈ C(Ŝ). We must show that eac
uk ∈ clP({Ue

i : i ∈ I }). Becauseϕ(S) is dense in eacĥS, and because eachUi contains
the sections of all of theuk , proving the following lemma will complete the proof.

Lemma 1. If (X, τ) is the product of cHs’s(Xi, τi) with the product topology, and
f ∈ C(X), thenf ∈ clP({Se

i : i ∈ I }), whereSi = {xi �→ f (x \ xi): x ∈ X}.

Proof. For eachi, let τ ◦
i ⊂ τi denote the weakest topology onXi making eachfi ∈ Si

continuous. Definexi ∼i yi if for all Gi ∈ τ ◦
i , xi ∈ Gi if and only if yi ∈ Gi . Denote

by X′
i the quotient space ofXi divided by∼i . Denote byτ ′

i the identification topology
on X′

i , so that each(X′
i , τ

′
i ) is a cHs. Denote bypi the projection ofXi onto X′

i (i.e.,
pi(xi) is the equivalence class ofxi). Denote byp the corresponding projection ofX onto
X′ = ∏

i∈I X′
i with the product topology.

It is immediate thatfp−1 is single-valued. Sincef ∈ C(X), this is sufficient condition
for f̂ := fp−1 ∈ C(X′) (Dugundji, 1966, Theorem VI.4.2(3), p. 125). Since the collec
of functions{Ce(X′

i ): i ∈ I } separate points inX′, the Stone–Weierstrass theorem impl
thatC(X′) = clP({Ce(X′

i ): i ∈ I }).
Eachgi ∈ Si belongs toC(Xi) andgip

−1
i is single-valued so that̂gi := gip

−1
i belongs

to C(X′
i ). By construction, the collection̂Si = {ĝi : gi ∈ Si} separates points inX′

i .
Therefore, by the Stone–Weierstrass theorem,C(X′

i ) = clP(Ŝi ). Since polynomials in

polynomials are again polynomials, this implies thatf̂ ∈ clP({Ŝe
i : i ∈ I }), which directly

implies thatf ∈ clP({Se
i : i ∈ I }). �

NPES ⇒ integrable. Suppose thatΓ is NPES. Pick arbitraryε > 0 and j ∈ I .
We will show that there exists a simple,

∏
i∈I 2Si -measurable function,vε

j , such that
sups∈S |uj(s) − vε

j (s)| < ε.
Let [a, b] be a compact interval such that for allk ∈ I and all s ∈ S, a � uk(s) � b.

BecauseΓ is NPES, there existswε
j in P({Ue

i : i ∈ I }) such that sups∈S |uj (s) − wε
j (s)| <

ε/2. The functionwε
j is a polynomial inM elements of{Ue

i : i ∈ I } for someM ∈ N. Thus,

there areM functions,h1, . . . , hM in {Ue
i : i ∈ I } and a polynomial,pε

j : [a, b]M → R, such
that for alls ∈ S,

wε
j (s) = pε

j

(
h1(s), . . . , hM(s)

)
.

Being continuous,pε
j is uniformly continuous on the compact set[a, b]M . Therefore it is

possible to pickδ > 0 such that for allx, y ∈ [a, b]M , if |xm − ym| < δ, m = 1, . . . ,M,
then|pε

j (x) − pε
j (y)| < ε/2.

For eachm, hm is of the formhm(s) = f e
jm

(sjm, s−jm) for somejm ∈ I and some

fjm ∈ Ujm . For eachm, pick a simple, 2Sjm -measurable functiongjm such that
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sup
sjm∈Sjm

∣∣fjm(sjm) − gjm(sjm)
∣∣ < δ.

Definehδ
m(s) = ge

jm
(sjm, s−jm) so that

sup
s∈S

∣∣hm(s) − hδ
m(s)

∣∣ < δ.

Eachhδ
m is a simple,

∏
i∈I 2Si -measurable function. Because the class of simple,

∏
i∈I 2Si -

measurable functions is an algebra, the function

vε
j (s) = pε

j

(
hδ

1(s), . . . , h
δ
M(s)

)
is also a simple,

∏
i∈I 2Si -measurable function. Further, sups∈S |wε

j (s) − vε
j (s)| < ε/2.

By the triangle inequality,

sup
s∈S

∣∣uj (s) − vε
j (s)

∣∣ � sup
s∈S

(∣∣uj (s) − wε
j (s)

∣∣ + ∣∣wε
j (s) − vε

j (s)
∣∣).

This last term is in turn less than or equal to

sup
s∈S

∣∣uj (s) − wε
j (s)

∣∣ + sup
s∈S

∣∣wε
j (s) − vε

j (s)
∣∣,

and each of these last two terms is less thanε/2.
Integrable⇒ UPC. Suppose thatΓ is integrable. Pick an arbitraryε > 0 andi ∈ I . We

will show that there is a finite setT ε
i of bounded functions onSi such that for allfi ∈ Ui ,

ρi(fi, T
ε
i ) < ε.

BecauseΓ is integrable, for eachk ∈ I , there exists a simple
∏

j∈I 2Sj -measurable
functionvε

k such that

sup
s∈S

∣∣uk(s) − vε
k (s)

∣∣ < ε.

Sincevε
k is a simple, product field measurable function, it has only finitely many dis

sections. Therefore, there is a finite collection,Fε
k = {f ε

k,1, . . . , f
ε
k,Mk

}, such that{si �→
vε
k (s \ si): s ∈ S} ⊂ Fε

k .
To complete the proof, setT ε

i = ⋃
k∈I F ε

k .
UPC⇒ NCC. Suppose thatΓ is not NCC. We will show thatΓ is not UPC.
For eachi ∈ I , let ((Ŝi, τ̂i ), ϕi) be aUi -imbedding ofSi . For eachj ∈ I , the function

ûj is well defined onϕ(S) by ûj (ŝ) = uj (ϕ
−1(ŝ). SinceΓ is not NCC, at least onek ∈ I ,

ûk does not have a jointly continuous extension fromϕ(S) to Ŝ. Becauseϕ(S) is dense
in Ŝ, there existε > 0 and two netssα andtβ in ϕ(S) converging to somês◦ ∈ Ŝ, such that
lim infα uk(ϕ

−1(sα)) � lim supβ uk(ϕ
−1(tβ )) + 2ε. BecauseI is finite, this means that fo

at least onej ∈ I , the mappingssj �→ uk(ϕ
−1(sα) \ sj ) andsj �→ uk(ϕ

−1(tβ ) \ sj ) in Uj

are infinitely often at sup norm distance at leastε from each other. This means thatUj is
notρj -precompact.

UPC ⇔ FA. Suppose first thatΓ is UPC and pick an arbitraryε > 0. Let T ε
i be an

ε-net forUI in the ρi metric. For allsi , ti ∈ Si , |dT ε
i
(si, ti ) − dUi

(si, ti )| < ε. Therefore
proof thatΓ is FA will be complete if we show the existence of a finite setAε

i such that
dT ε (Aε, Si) < ε.
i i



C.J. Harris et al. / Games and Economic Behavior 50 (2005) 208–224 215

s a

o

d

n

ings,

of

ns
ons
Pick a < b in R such that for allwi ∈ Ui and allsi ∈ Si , a � wi(si) � b. For integer
k � (b − a)/ε, let Rk be the half-open interval[a + (k − 1)ε, a + kε). Let Pi,ε be the
finite partition ofSi generated by finite cover{f −1

i (Rk): fi ∈ T ε
i , k � (b − a)/ε}. For

eachEi ∈ Pi,ε , pick a pointai,Ei ∈ Ei and letAε
i be the finite set{ai,Ei : Ei ∈ Pi,ε}. For

all si ∈ Si , there existsai ∈ Aε
i such that for allfi ∈ T ε

i , |fi(ai) − fi(si )| < ε, that is,
dT ε

i
(ai, si ) < ε.
Suppose now thatΓ is FA and pick an arbitraryε > 0. Let Ai be a finiteε-net forSi

in thedUi
metric. The proof thatΓ is UPC will be complete if we show that there exist

finite T ε
i ⊂ Ui such thatρi(T

ε
i ,Ui ) < 2ε.

For eachwi ∈ Ui , definex = x(wi) as the point inRAi havingai th component equal t
wi(ai), ai ∈ Ai . LetE be the setx(Ui ). Since clE is compact, there is a finiteT ε

i ⊂ Ui such
thatx(T ε

i ) is anε-net forE in the metric generated by the norm‖y‖ = maxai∈Ai |yai |. By
the definition ofdUi

, for all si ∈ Si , there existsai ∈ Ai such that for allwi ∈ Ui , |wi(ai) −
wi(si)| < ε. Therefore, for allwi ∈ Ui , there isfi ∈ T ε

i such thatρi(fi ,wi) < 2ε. �
2.2. On the continuous compact imbeddings of a game

2.2.1. Basics of continuous compact imbeddings
Let X be a non-empty set andF a class of bounded, real-valued functions onX. The

following sketches the construction of thecanonicalF -imbedding,((X̂F , τ̂F ), ϕF ).

(1) For eachf ∈ F , let [af , bf ] be a compact interval satisfyingaf � f (X) � bf ,
(2) imbed eachx ∈ X asϕF (x) ∈ X := ∏

f∈F [af , bf ], whereϕF (x) as the vector define
by projf ϕF (x) = f (x),

(3) giveX the compact product topology, and
(4) defineX̂F as the closure ofϕF (X) in X and let τ̂F denote the relative topology o

X̂F .3

ϕF (x) 
= ϕF (y) in the canonicalF -imbedding if and only ifF separatesx, y ∈ X.
Since the product topology is defined by the continuity of the projection mapp
((X̂F , τ̂F ), ϕF ) is indeed anF -imbedding ofX. Since projections separate points in̂XF ,
the Stone–Weierstrass theorem implies that the sup norm closed algebra,C(X̂F ), is the
closure of the algebraP({projf : f ∈ F }). This means that every function in clP(F ) has a
continuous extension tôXF .

Let BX denote the set of bounded functions onX. Define a partial order on subsets
BX by F � G iff cl P(F ) ⊃ clP(G). Let ((X̂F , τ̂F ), ϕF ) be the canonicalF -imbedding
of X, and let((X̂G, τ̂G),ϕG) be the canonicalG-imbedding. The next results follow from
Dugundji (1966, Theorems XI.8.2 and XIII.6.5, pp. 243 and 289).

3 Some examples: takingF to be the set of continuous functions onX = [0,∞) having limits asx ↑ ∞
means that(X̂F , τ̂F ) is homeomorphic to the classical 1-point compactification of[0,∞); taking F to be the
set of bounded, continuous functions on a completely regular topological space(X, τ ) means that(X̂F , τ̂F ) is
homeomorphic to the Stone–Čech compactification of(X, τ ); takingF to be the bounded measurable functio
on a measure space(X,X ) gives the Stone space forL∞. Compact imbeddings are, essentially, compactificati
of X that do not involve a topology on the spaceX and may be many-to-one.
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(1) If F � G, then there is a continuous surjection,ψ : X̂F → X̂G such that for allx ∈ X,
ψ(ϕF (x)) = ϕG(x),

(2) if F ∼ G, thenψ is a homeomorphism, and ifF � G, thenψ is many-to-one,
(3) if ((X̂, τ̂ ), ϕ) is a compact imbedding ofX, then it is homeomorphic to the canonic

F -imbedding for someF—for eachg ∈ C(X̂), define a bounded function onX by
fg(x) = g(ϕ(x)), and setF = {fg: g ∈ C(X̂)}.

These last three results imply that for anyF ⊂ BX , there is a maximalF -imbedding,
namely theBX-imbedding, and a minimal one, homeomorphic to theP(F )-imbedding.
The last point implies that the partial ordering onBX can identified with a partial orderin
on spaces homeomorphic to the canonical compact imbeddings.

2.2.2. The maximal, minimal, and intermediate cci’s
Fix a gameΓ = (Si , ui)i∈I and partially order the compact imbeddings,((Ŝi , τ̂i), ϕi) of

Si by �i as above. If eachuk is jointly continuous on̂S, then for eachi ∈ I , each section
fi ∈ Ui must have a continuous extension toŜi . In other words, if(Ŝi , ûi)i∈I is a cci of
(Si , ui)i∈I , then eacĥSi must be at least as large as theUi -imbedding. All such imbedding
give rise to a cci whenΓ is NCC. Let((S̄i , τ̄i), ϕ̄i) denote the canonicalUi -imbedding.

Theorem 2. If Γ is NCC and for alli ∈ I ((Ŝi , τ̂i), ϕi) is an imbedding between theUi -
imbedding and theBSi -imbedding, then for alli ∈ I , there existsûi ∈ C(Ŝ) such that
(Ŝi , ûi)i∈I is a cci ofΓ .

Proof. Suppose first that for alli ∈ I , ((Ŝi , τ̂i), ϕi) ∼i ((S̄i , τ̄i ), ϕ̄i). BecauseΓ is NPES,
eachuk is the uniform limit of a sequenceun

k of functions inP({Ue
i : i ∈ I }). Because

polynomials in continuous functions are continuous and eachfi ∈ Ui has a continuou
extension fromϕi(Si) to Si , eachun

k has a continuous extension,ûn
k from ϕ(S) to S. Since

the sup norm distance between any pairun
k andun′

k is the same as the sup norm distan

betweenûn
k andûn′

k , the sequencêun
k is Cauchy, hence has a limitūk ∈ C(Ŝ). The function

ūk extendsuk from ϕ(S) to S. This means that(Ŝi , ūi)i∈I is a cci ofΓ .
Now suppose that((Ŝi, τ̂i ), ϕi) �i ((S̄i , τ̄i ), ϕ̄i). Let ψi denote the continuous su

jection of Ŝi onto S̄i such that for allsi ∈ Si , ψi(ϕi(si)) = ϕ̄i(si ). Define ψ(ŝ) =
(ψ1(ŝ1), . . . ,ψI (ŝI )). For eachk ∈ I , defineûk by ûk(ŝ) = ūk(ψ(ŝ)). Being the composi
tion of continuous functions,̂uk is continuous. Further,̂uk extendsuk so that(Ŝi , ûi)i∈I is
a cci ofΓ . �

Recall that for any uniformly bounded set of functionsF on a setX, and anyx, y ∈ X,
the pseudo-metricdF (x, y) is defined bydF (x, y) = supf∈F |f (x)−f (y)|. The following
implies that the cHs’s,(S̄i , τ̄i ), in the minimal cci’s can be metrized bydUi

(· , ·). In words,
NCC games require only metrizable cci’s, and the “most utility difference it make
anyone” metric is the relevant one.

Lemma 2. Suppose that(X, τ) is a cHs.τ is metrizable if and only if there exists a s
norm compactF ⊂ C(X) that separates points. Further, for any suchF , τ can be metrized
bydF (· , ·).
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Proof. Suppose thatτ is metrized by the metricd . For eachxn in a countable dense subs
of X, definef n(x) = d(x, xn)/n. The collection{f n: n ∈ N} separates points, and becau
f n → 0 in the sup norm, it is sup norm precompact.

Suppose thatF separates points and is sup norm precompact. Because(X, τ) is a
cHs, it is normal (i.e.,T4), and for any normal space, a netxα →τ x iff ∀f ∈ C(X),
f (xα) → f (x). SinceF separates points,C(X) = clP(F ) by the Stone–Weierstras
theorem. Thus,xα →τ x iff ∀f ∈ clF , f (xα) → f (x). Definegα(·) andg(·) on clF by
gα(f ) = f (xα) andg(f ) = f (x). Rewriting the previous “iff” statement givesxα →τ x

iff gα converges pointwise tog. Sincegα, g ∈ C(clF) and clF is compact, pointwise
convergence of thegα to g is equivalent to uniform convergence. Rewriting once ag
xα →τ x iff d̄F (xα, x) := maxf ∈clF |f (xα) − f (x)| → 0. Note thatd̄F = dF . �
2.2.3. Implications of metrizability

The next result shows that, after identifying the strategically equivalent strategies
NCC game and adding somedUi

-limit points, what is left is a Fan–Glicksberg game.
the presence of jointly continuous payoffs, the generality gained in moving from compa
metric to compact Hausdorff spaces of actions is illusory—it disappears after equi
strategies are identified. This implies that Fan (1952) and Glicksberg (1952) achie
much topological generality as possible.

Corollary 3. If for eachSi there is a topologyτi such that(Si , τi) is a cHs and eachui is
jointly continuous onS, then for eachi ∈ I , ϕ̄i(si ) is a continuous surjection ofSi ontoS̄i ,
andϕ̄i(si ) = ϕ̄i(ti) if and only ifsi andti are strategically equivalent.

Proof. Takingιi as the identity mapping makes((Si , τi), ιi ) a compact imbedding leadin
to a cci. Since((Si , τi), ιi ) is aUi -imbedding, the rest follows. �

If ψ is a continuous surjection of a cHs(X′, τ ′) onto a compact metric space(X, τ), and
µ is a countably additive probability on the Borelσ -field generated byτ , thenψ−1(µ) :=
{ν: (∀G ∈ τ )[ν(ψ−1(G)) = µ(G)]}. If E is a weak∗ closed set of Borel probabilities o
σ(τ), thenψ−1(E) is weak∗ closed. Recall that if((Ŝi, τ̂i ), ϕi) �i ((S̄i , τ̄i), ϕ̄i), then there
is a continuous surjectionψi : Ŝi → S̄i , and forŝ ∈ Ŝ, ψ(s) := (ψ1(ŝ1), . . . ,ψI (ŝI )).

Corollary 4. If Γ is NCC and(Ŝi , ûi)i∈I is a cci of Γ , then the closed, non-emp
equilibrium set forΓ̂ is ψ−1(Ē), whereĒ is the non-empty, closed set of equilibria f
(S̄i , ūi)i∈I .

Proof. Ē is non-empty and closed by the proofs in Fan (1952) or Glicksberg (1952).
the utilities are constant onψ−1(s̄) for any s̄ ∈ S̄, for any profile of strategies(νi)i∈I in Γ̂ ,∫
Ŝ
ûk d(νi)i∈I = ∫

S̄
ūk d(ψi(νi))i∈I . Thus,(νi)i∈I is an equilibrium profile in̂Γ if and only

if (ψi(νi))i∈I is an equilibrium profile inΓ̄ . �
The last result shows the strong sense in which cci’s larger than(S̄i , ϕ̄i) are redundantly

large for NCC games. The only significant difference between the minimal and a larger
is that the larger cci may contain more representations of strategically equivalent p
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This conclusion fails rather dramatically for games that fail to be NCC—no com
imbeddings contain enough points, though larger spaces from non-standard analysis d
see Stinchcombe (2001).

For any NCC game, the metrizability of each compactτ̄i implies there are sequence
An

i , of finite subsets ofSi , such thatdUi
(An

i , Si) → 0, providing a second proof that a
NCC games are finitely approximable. The next corollary treats the upper hemicon
of the equilibrium correspondence. The routine proof is omitted.

Corollary 5. If Γ̂ = (Ŝi, ûi )i∈I is a cci forΓ , dUi
(An

i , Si) → 0, and(µn
i )i∈I is a sequence

of εn-equilibria for the finite games(An
i , ui)i∈I , εn � 0, εn → 0, then any accumulatio

point ofψ−1((µn
i )i∈I ) is an equilibrium for(Ŝi , ûi)i∈I .

The continuity of the approximate equilibrium correspondence follows directly fro
the corresponding result for Fan–Glicksberg games and the fact that eachψi is an open
mapping.

Corollary 6. If Γ̂ = (Ŝi , ûi )i∈I is a cci for Γ and (νi)i∈I is an equilibrium profile
for Γ̂ , then for any weak∗ open neighborhoodG of (νi)i∈I and anyε > 0, there exists
a finite game(Ai, ui)i∈I such thatdUi

(Ai, Si) < ε and anε-equilibrium profile(µi)i∈I

for (Ai, ui)i∈I such thatψ−1((µi)i∈I ) ∩ G 
= ∅.

2.2.4. Finitely additive equilibria
The cci approach compactifies before randomizing, and this leads to a compac

countably additive mixed strategies. Directly compactifying the set of finitely supp
mixed strategies leads to the weak∗ compact set of finitely additive strategies. Beca
the finitely supported strategies includeprobabilitiesµ such that for all measurableE,
µ(E) = 0 or µ(E) = 1, this approach implicitly compactifies the pure strategies (se
finitely additive analysis of Example 1 below). Finitely additive randomization has
distinct roles in normal form games: first, it convexifies; second, it represents lim
approximate best responses. Because the implicit compactification is typically much large
than the minimal compactifications, there are many representations of equivalent strate
Finitely additive game theory contains many redundant strategies.

A field Σi of subsets ofSi is adequate forΓ if Ui ⊂ B(Σi). If Σi is adequate, the
anyB(Σi)-imbedding must be aUi -imbedding. For a given adequateΣi , Ŝ St

i = Ŝ St
i (Σi)

denotes the canonicalB(Σi)-imbedding. It is known as the Stone space. To any fini
additive probability,µi , on Σi , there corresponds a unique, countably additive, reg
probability,µSt

i , on the Borelσ -field of (any space homeomorphic to)Ŝ St
i . The probability

µSt
i satisfies, for eachfi ∈ B(Σi),

∫
fi dµi = ∫

f̂i dµSt
i , where f̂i is the continuous

extension offi .
Let ∆fa

i = ∆fa
i (Σi) denote the finitely additive probabilities onΣi . If Γ is NCC, then

for all k ∈ I and all profilesν = (νi)i∈I ∈ ∏
i∈I ∆fa

i ,
∫
S
uk dν is well defined (Dunford

and Schwartz, 1957, Lemma III.2.16, p. 111). Therefore, equilibria in finitely add
probabilities are well defined.
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Theorem 3. If Γ is NCC and(Σi)i∈I is an adequate collection, then the vectorν =
(νi)i∈I ∈ ∏

i∈I ∆fa
i is a finitely additive equilibrium forΓ if and only if the vector

νSt = (νSt
i )i∈I is an equilibrium for the(Stone) gameΓ̂ St = (Ŝ St

i , ûSt
i )i∈I . In particular,

the set of finitely additive equilibria is weak∗ closed, non-empty, and payoff equivalen
the equilibria of any cci ofΓ .4

3. Examples

NCC games fail to be compact metric space games with jointly continuous pa
either by having strategy spaces with many representations of equivalent strategies, or
having strategy spaces that fail to contain limit points in the intrinsically defined pseud
metric dUi

. The examples in this section demonstrate the reach and the limitation of th
results leading to this conclusion.

First to be studied are single-player games, all of which are NCC. Some simple
player games follow. These show that being NCC rules out diagonal discontinuitie
Special types of diagonal discontinuities were exploited by Dasgupta and Maskin (198
and Simon (1987) in their studies of the equilibrium existence question for games wi
compact metric spaceSi ’s and discontinuous payoffs. The last example in this sec
shows thatΓ being NCC rules outΓ being the normal form of most extensive form gam

3.1. Single player normal form games are NCC

The starting point is

Lemma 7. If I = {1}, i.e., contains only one agent, thenΓ is NCC.

Proof. U1 = {u1}, and one point sets are precompact, so thatΓ is UPC. �
Finitely additive and continuous compact imbedding analyses are informative.

3.1.1. The finitely additive analysis of single player games
Suppose thatΣ1 is adequate for thebounded utility function u1 :S1 → R, i.e.,U1 =

{u1} ⊂ B(Σ1). 1’s equilibrium problem is to solve

max
ν1∈∆fa

1

∫
S1

u1(s1)dν1(s1).

Set u∗
1 = supu1(S1). Then, to solve the problem it is sufficient to findν∗

1 such that∫
S1

u1(s1)dν∗
1(s1) = u∗

1. BecauseΣ1 is adequate, for everyn ∈ N, there is a simpleΣ1-
measurable functionun

1(·) uniformly within 1/(2n) of u1(·). Set En = {s1: un
1(s1) �

4 While the first version of this paper was being written, Marinacci (1993, 1997) independently showed t
equilibria in finitely additive probabilities exist whenΓ is integrable.
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1 − 1/n} gives a sequence of sets inΣ1 satisfying

⋂
k�n Ek 
= ∅ for all n ∈ N. If ν∗

1 is
any finitely additive probability assigning mass 1 to eachEn, then

∫
S1

u1(s1)dν∗
1(s1) = u∗

1.
The adequacy ofΣ1 means that finitely additive solutions to one person optimiza

problems exist. In many person games, the adequacy ofΣi means that for anys ∈ S, i ’s
maximization problem,

max
νi∈∆fa

i

∫
Si

ui(s \ ti )dνi(ti ),

always has a solution. Adequacy guarantees that there are finitely additive best respo
all pure strategies. Being NCC, equivalently, being integrable, means that this is suf
for the existence of an equilibrium.

3.1.2. The cci analysis of single player games
In a single player game,dU1(s1, t1) = |u1(s1) − u1(t1)|. This is a pseudo-metric onS1

that identifies indifferent strategies. Compactifying the pseudo-metric space(S1, dU1) gives
Ŝ1 = clu1(S1) ⊂ R with the usual topology, and givesû1(ŝ1) = ŝ1. Thus,dU1(A

n
1, S1) → 0

if and only if u1(A
n
1) → clu1(S1) in the usual Hausdorff sense. After compact imbedd

1’s equilibrium problem is (with∆ca
1 being the countably additive Borel probabilities

on Ŝ1)

max
ν1∈∆ca

1

∫
Ŝ1

û1(ŝ1)dν1(ŝ1),

and the solution, which is unique in these minimal cci’s of single player games, is
mass onu∗

1 ∈ Ŝ1.
Being aU1-imbedding in a one person game means that solutions to optimiz

problems exist in the larger spacêS1. In many person games, being aUi -imbedding means
that for anys ∈ S, i ’s maximization problem,

max
ŝi∈Ŝi

ûi

(
ϕ(s) \ ŝi

)
,

always has a non-empty set of solutions, i.e., appropriate imbedding guarantees th
are best responses to all pure strategies. Being NCC means that this is sufficient
existence of an equilibrium.

3.2. Some two person normal form games

The first game is NCC, having only a ‘vertical’ discontinuity. The minimal cci adds
onedUi

-limit point at the discontinuity. The second game has a ‘diagonal’ discontin
and is therefore not NCC though it does have a continuum of pure strategy equilibr
compact imbedding will make the game continuous, and the expected utility associa
with play of profiles of finitely additive strategies are not generally well defined. The
game also has a diagonal discontinuity, and has noε equilibria for anyε < 1.
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3.2.1. A vertical discontinuity
The utilitiesui(si , sj ) fail to be continuous atsi = 1 in the following NCC game.

Example 1. The gameΓ1 is specified byI = {1,2}, Si = [0,1], and the symmetric utility
functions,

ui(si , sj ) =
{

si + sisj if si < 1,

−1 if si = 1.
(1)

Without imbedding (or something equivalent), this game has no equilibrium—no ma
what j plays, i can do better by moving closer to, but not quite reaching,si = 1. Each
Si = [0,1] can be viewed as a dense subset of the compact spaceŜi = [0,1−] ∪ {2} after
the imbedding

ψi(r) =
{

r if r < 1,

2 if r = 1.
(2)

Note thatψi([0,1]) = [0,1−) ∪ {2}, a dense subset of̂Si . Eachui(· , ·) has a unique
continuous extension,̂ui , from ψi(Si) × ψj (Sj ) ⊂ Ŝi × Ŝj to all of Ŝi × Ŝj . It is given
by

ûi(ŝi , ŝj ) =
{

ŝi + ŝi ŝj if ŝi � 1−,

−1 if ŝi = 2,
(3)

where, for numerical purposes, 1− is treated as 1. The unique equilibrium is(1−,1−).
Finitely additive strategies that put mass 1 on all intervals of the form(1 − ε,1) are

equilibria. Because finitely additive game theory corresponds to redundantly large c
there are many such finitely additive equilibria. They correspond to mixed strategies t
put mass 1 on the strategic equivalents of 1−.

A final observation about this game is that sequences of finite approximation
dUi

-dense if and only if they Hausdorff approximate[0,1) and eventually contain th
point 1.

3.2.2. A diagonal discontinuity and many equilibria
The utilitiesui(si , sj ) fail to be continuous atsi = sj in the following non-NCC game

Example 2. The gameΓ2 is specified byI = {1,2}, Si = [0,1], and the symmetric utility
functions,

ui(si , sj ) =
{

si if si = sj ,

0 if si 
= sj .
(4)

For everyr ∈ [0,1], play of (r, r) is a pure strategy equilibrium.
The diagonal discontinuity means that theutilities sections arenot sup norm precom

pact. The sectionsUi are of the form{si �→ r · 1{r}(si ): r ∈ [0,1]}. For everyε ∈ (0,1)

there is a continuum (of size 1− ε) of functions inUi at sup norm distance at leastε from
each other.
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Polynomials in the extensions of the utilitysections are constant on a set of f
Lebesgue measure inS that can be expressed as a finite union of rectangles. Such fun
cannot uniformly approximate the diagonally discontinuousui .

The failure of integrability is also clear. For anyr > 0, joint play of any finitely additive
νi satisfyingνi(Ei) ∈ {0,1} andνi(r − 1/n, r) ≡ 1 does not give a well defined expect
utility.

3.2.3. A diagonal discontinuity with no equilibria
The utilitiesui(si, sj ) again fail to be continuous atsi = sj in the following non-NCC

game.

Example 3. The gameΓ3 is specified byI = {1,2}, Si = (0,1], and the symmetric utility
functions,

ui(si , sj ) =
{

1 if si < sj ,

0 if si � sj .
(5)

Again, the diagonal nature of the discontinuity makes the utility sections fail to be s
norm precompact so the game is not NCC. For anyε ∈ (0,1), the game fails to have a
ε-equilibrium.

3.2.4. An extensive form game
The following extensive form example is taken from Aumann’s (1964) treatment o

game theoretic problem of picking random functions on infinite sets.

Example 4. At time t = 1, player 1 picks an action inS1 = [0,1]. Player 2 observess1 and
at t = 2, picksa2 ∈ A2 = [0,1]. The utility difference betweens1 =, 
= a2 is at least 1.

Player 2’s set of strategies,S2, is a set of functions from[0,1] to [0,1]. If S2 separates
points inS1, then for alls1 
= t1 and s2 
= t2, dU1(s1, t1) � 1 anddU2(s2, t2) � 1, so the
game is not NCC.

The failure of measurability is quite striking. Aumann (1961) showed that ifS2 is the set
of Borel measurable functions, then there is noσ -field of subsets,S2, such that the produc
σ -field,S1 ⊗ S2 makes independent, countably additive randomization by the two playe
integrable.

4. Conclusions

The intrinsic specification of a game involves only the pure strategies availab
the players and the utilities. This paper has shown that the following five conditions are
equivalent:

(1) the game can be regarded as a dense subgame of a compact and continuous g
(2) the utilities are the uniform limits of polynomials in their extended sections,
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(3) the game is integrable for all profiles of finitely additive strategies,
(4) the sections have compact sup norm closure, and
(5) the strategy sets are finitely approximable.

A game is nearly compact and continuous (NCC) if any of these conditions hold
NCC games, there is a natural and minimal topological and measure theoretic str
given by Fudenberg and Levine’s “most utility difference it can make to anyone” pseud
metricdUi

and the corresponding Borelσ -field. These structures lead to existence, up
hemicontinuity of the equilibrium correspondence, and continuity of the approxima
equilibrium correspondence. The use of finertopological structures, as typically happen
with finitely additive strategies, leads to the unnecessary complication of having
equivalent strategies.

After identifying strategically equivalent strategies, the minimal structure is that
game with compact metric sets of strategiesand jointly continuousutilities. In this sense
Fan (1952) and Glicksberg (1952) had found the‘right’ structures and conditions fo
equilibrium existence for games with infinite normal forms. Rather than imposing
structures and conditions as part of the specification of a game, the work here ide
these structures and conditions in the intrinsic specification of the game.

Normal form games fail to be NCC when theyhave diagonal discontinuities. Spec
types of diagonal discontinuities were exploited by Dasgupta and Maskin (1986) a
Simon (1987) to prove equilibrium existence. The tightness of the NCC condition c
be seen in Example 3 in which: equilibria do not exist, which implies that upp
hemicontinuity fails; approximate equilibria do not exist; and large finite approxima
to the game entirely misrepresent the infinite game. The treatment of non-NCC ga
Stinchcombe (2001) indicates that this misrepresentation can be interpreted as a fa
the usual model of the continuum. It also presents an alternative model of infinite se
does not misrepresent the limits of finite approximations.

There is a second set of questions that flow from the answers to the first set. Th
“Do continuous compactifications, finite approximations, and finitely additive mixt
‘work’ for games that are not NCC?” At one level, the answer is clearly not—contin
compact imbeddings exist if and only if the game is NCC. IfΓ is not NCC, then for at leas
one playeri, there will exist no continuouŝui on Ŝ that is equal toui when restricted toS.
Thus, the second set of questions reduces to whether or not continuity can be dis
with in compact games.

For a gameΓ = (Si , ui)i∈I with compact metricS, Simon and Zame (1990) show th
equilibria exist for the related games(Si , v̂i )i∈I . The utility functionsv̂i are measurabl
selections from the pointwise convex hull of the closure of the graph of theui in S × R

I .
The measurable selection approach is meant to dispense with continuity. As deta
Stinchcombe (2001), the selection approach has two major weaknesses: the first is
to taking selections from the convex hull, or indeed, from the closure of the graph w
convexification; the second has to do with the existence of profitable deviations. Fo
NCC games, alternate, non-standard models of infinite sets are much better. Fo
games, the present work shows that the usual models are quite sufficient.
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