Homework Assignment #1 Prob-Stats, Fall 2018 Due date: Monday, September 24

- A. C&B §1.7, exercise 1.9.
- B. C&B §1.7, exercise 1.12.
- C. C&B §1.7, exercise 1.24.
- D. C&B §1.7, exercise 1.35.
- E. HB §1.11, exercise 7 and CSZ Exercise 7.3.5.
- F. CSZ Exercise 7.3.10.
- G. HB §1.11, exercise 12.
- H. HB $\S1.11$, exercise 13.
- I. Suppose that $x, y \in \Omega$ and a class of subsets of Ω , \mathcal{E} , has the property that for all $E \in \mathcal{E}$, $1_E(x) = 1_E(y)$. Show that for every $A \in \sigma(\mathcal{E})$, $1_A(x) = 1_A(y)$.
- J. Borel-Cantelli says that if $\sum_{n} P(A_n) < \infty$, then $P([A_n \text{ i.o.}]) = 0$. This problems gives conditions (stronger than absolutely necessary) to show that if $\sum_{n} P(A_n) = \infty$, then $P([A_n \text{ i.o.}]) = 1$.

Dfn: the events A_1, A_2, \ldots are **independent** if for any finite set of indexes, n_1, \ldots, n_k , $k \in \mathbb{N}, P(\bigcap_{j=1}^k A_{n_k}) = P(A_{n_1}) \cdot P(A_{n_2}) \cdots P(A_{n_k}).$

Suppose that the $(A_n)_{n=1}^{\infty}$ are independent and that $\sum_n P(A_n) = \infty$. Complete the following steps to show that $P([A_n \text{ i.o.}]) = 1$.

- 1. Show that $([A_n \text{ i.o.}])^c = [A_n^c \text{ a.a.}]$, that is, show that $(\bigcap_n \bigcup_{i \ge n} A_i)^c = (\bigcup_n \bigcap_{i \ge n} A_i^c)$.
- 2. Show that if for all n, $P(\cap_{i\geq n}A_i^c) = 0$, then $P(A_n^c \text{ a.a.}) = 0$.
- 3. Show that $1 x \le e^{-x}$. [Ask the math-for-econ professor about convex functions and tangents.]
- 4. Show that the events $(A_n^c)_{n=1}^{\infty}$ are independent.
- 5. Show that for $n \leq m$, $P(\bigcap_{i=n}^{m} A_i^c) = \prod_{i=n}^{m} (1 P(A_i)).$
- 6. Show that for $n \le m$, $\prod_{i=n}^{m} (1 P(A_i)) \le e^{-\sum_{i=n}^{m} P(A_i)}$.
- 7. Show that for each n, $P(\bigcap_{i=n}^{\infty} A_i^c) = 0$.
- K. Let X_n be a sequence of Borel measurable functions from (Ω, \mathcal{F}) to [0, 1].
 - 1. Show that $\{\limsup_n X_n > r\} = \bigcup_{q \in \mathbb{Q}, q > r} \cap_{m \in \mathbb{N}} \bigcup_{i \ge m} \{X_i > q\}.$
 - 2. Show that the function $X(\omega) := \limsup_n X_n(\omega)$ is measurable.
 - 3. Let $\Phi : [0,1] \leftrightarrow [-\infty, +\infty]$ be a strictly increasing continuous function. Show that if Y_n is a sequence of Borel measurable, \mathbb{R} -valued functions, then $Y(\omega) := \limsup_n Y_n(\omega)$ is a measurable function from Ω to $[-\infty, +\infty]$.
 - 4. In the previous part of this problem, what do we know about the behavior of $Y_n(\omega)$ if $Y(\omega) = -\infty$? And what do we know about the behavior of $Y_n(\omega)$ if $Y(\omega) = +\infty$?
- L. A $S \subset \mathbb{R}$ is a **Lebesgue null set** if for all $\epsilon > 0$, there exists a countable collection of sets (a_n, b_n) , $n \in \mathbb{N}$, such that $S \subset \bigcup_n (a_n, b_n)$ and $\sum_n (b_n a_n) < \epsilon$. If S is a Lebesgue null set, then it seems that S has to be "small." This problem ask you to show that there is a Lebesgue null set that is uncountable, that is, that has exactly the same cardinality as \mathbb{R} itself.
 - 1. Any countable S is a Lebesgue null set.
 - 2. Any countable union of Lebesgue null sets is a Lebesgue null set.
 - 3. For each sequence $\vec{a} = (a_n)_{n \in \mathbb{N}} \in \{0, 2\}^{\mathbb{N}}$, define $r(\vec{a}) = \sum_n \frac{a_n}{3^n}$. a. Show that all of the sequences $n \mapsto \frac{a_n}{3^n}$ are summable.
 - b. Show that $\{0,2\}^{\mathbb{N}}$ is uncountable.
 - c. Show that $\vec{a} \mapsto r(\vec{a})$ is one-to-one.

d. Show that $S := r(\{0, 2\}^{\mathbb{N}})$ is an uncountable Lebesgue null set.

M. The random variable X takes values in the two point space $\mathbb{X} = \{x_1, x_2\}$. Before learning the value of X, the decision maker must choose a point in $A = \{a_1, a_2, a_3\}$. Their utilities, $u : A \times \mathbb{X} \to \mathbb{R}$ are given by

	x_1	x_2
a_1	10	2
a_2	7	7
a_3	2	10

- 1. Give, as a function of $\beta \in \Delta(\mathbb{X})$, $a^*(\beta) := \arg \max_{a_i \in A} \sum_{x_n \in \mathbb{X}} u(a_i, x_n) \beta(x_n)$.
- 2. Give, as a function of $\beta \in \Delta(\{x_1, x_2\}), V(\beta) := \max_{a_i \in A} \sum_{n=1}^n u(a_i, x_n) \beta(x_n).$
- 3. The epigraph of the function $V(\cdot)$ is the set $\{(\beta, r) \in \Delta(\mathbb{X}) \times \mathbb{R} : V(\beta) \ge r\}$. A function is convex if its epigraph is a convex set. Show that the epigraph of $V(\cdot)$ is a convex set.
- 4. The prior distribution of X is the point $\beta^{\circ} \in \Delta(\mathbb{X})$ defined by $\beta^{\circ}(X = x_1) = \beta^{\circ}(X = x_2) = \frac{1}{2}$. Before choosing $a \in A$, the decision maker observes the random signal $S \in \mathbb{S} := \{s_1, s_2, s_2\}$ where the conditional distribution of S are given by

$x\downarrow$	$P(S=s_1 x)$	$P(S=s_2 x)$	$P(S=s_3 x)$
x_1	0.1	0.2	0.7
x_2	0.6	0.2	0.2

- a. Give the conditional beliefs, $\beta(\cdot|s_i)$, i = 1, 2, 3.
- b. Give the marginal distribution of S, $P(S = s_i)$, i = 1, 2, 3.
- c. Show that $\sum_{s\in\mathbb{S}}\beta(\cdot|s)\,P(S=s)=\beta^\circ(\cdot).$
- d. Give $a^*(\beta(\cdot|s_i)), i = 1, 2, 3$.
- e. Give $V(\beta(\cdot|s_i)), i = 1, 2, 3.$
- f. Give the value of S, $\mathbb{V}(S) := \sum_{s \in \mathbb{S}} V(\beta(\cdot|s)) P(S = s)$.
- 5. A randomized strategy for S is a function $\sigma : \mathbb{S} \to \Delta(A)$. A randomized strategy for S induces a joint distribution on $\mathbb{X} \times A$ defined by $\mu_{\sigma}(x, a) = \beta^{\circ}(x) \cdot \sum_{s \in \mathbb{S}} \sigma_s(a) P(S = s|x)$. The set of inducible joint distributions for S is

 $D(S) := \{\mu_{\sigma} : \sigma \text{ is a randomized strategy for } S\}.$

Give D(S) and show that it is a convex set.

6. Now suppose that T is the Markov scramble of S with $P(T = t_j | S = s_i)$ given in the matrix M

	t_1	t_2	t_3
s_1	1/3	0	2/3
s_2	1/2	1/2	0
s_3	0	1/4	3/4

- a. Give the conditional beliefs, $\beta(\cdot|t_i), i = 1, 2, 3$
- b. Give the marginal distribution of T, $P(S = t_i)$, i = 1, 2, 3.
- c. Show that $\sum_{t \in \mathbb{S}} \beta(\cdot|t) P(T = t) = \beta^{\circ}(\cdot)$.
- d. Give $a^*(\beta(\cdot|t_i))$, i = 1, 2, 3.
- e. Give $V(\beta(\cdot|t_i)), i = 1, 2, 3.$
- f. Give the value of T, $\mathbb{V}(T) := \sum_{t \in \mathbb{S}} V(\beta(\cdot|t)) P(T = t)$. Check your calculations by showing that $\mathbb{V}(T) \leq \mathbb{V}(S)$.

- 7. The set of inducible joint distributions for T is D(T) defined in a fashion directly paralleling the definition of D(S) above. Give D(T), show that it is convex, and show that $D(T) \subset D(S)$. Use this to give an alternative argument that $\mathbb{V}(T) \leq \mathbb{V}(S)$.
- 8. Refer to Theorem 4.11.9 (and the surrounding material) in Corbae et al. for the following. Suppose that the Markov scramble given by the matrix M above is applied repeatedly. Show that is the number of applied scrambles becomes large, the information structure becomes worthless, that is, it converges to $V(\beta^{\circ})$.
- N. Let A, \mathbb{X} , and \mathbb{S} be finite sets of actions, possible realizations of X, and possible realizations of signals, let $\beta^{\circ} \in \Delta(\mathbb{X})$ be a prior distribution for X, and let $u : A \times \mathbb{X} \to \mathbb{R}$ be a utility function. For each $x \in \mathbb{X}$, suppose that the signal S has the conditional distribution $P(\cdot|X = x) \in \Delta(\mathbb{S})$, let $P(s) = \sum_{x} P(s|X = x)\beta^{\circ}(x)$ be the marginal distribution of S, and for each s with P(s) > 0, let $\beta(\cdot|S = s) \in \Delta(\mathbb{X})$ be the conditional distribution of X given that S = s. Let $a^*(\beta) = \arg \max_{a \in A} \sum_{x} u(a, x)\beta(x)$ and let $V(\beta) = \sum_{x} u(a^*(\beta), x)\beta(x)$. Define $\mathbb{V}(S) = \sum_{s} V(\beta(\cdot|s))P(s)$ and let $D(S) \in \Delta(\mathbb{X} \times A)$ be the set of inducible joint distributions.

Now suppose that the observations S are independently repeated, that is, suppose that (S, S') is observed and $P(S = s, S' = s' | X = x) = P(S = s | X = x) \cdot P(S' = s' | X = x)$. Show that $D(S) \subset D(S, S')$ and that for every utility function u, the decision maker with that utility function at least weakly prefers (S, S') to S.

- O. [Doob's Theorem] Let (Ω, \mathcal{F}) and let (Y, \mathcal{Y}) be non-empty sets and σ -fields of subsets. The most frequent class of sub- σ -fields, $\mathcal{G} \subset \mathcal{F}$, that we will encounter arise from a measurable $g: \Omega \to Y$, they are of the form $\mathcal{G} = g^{-1}(\mathcal{Y})$. Let \mathcal{B} denote the Borel σ -field on \mathbb{R} , that is, the smallest σ -field of subsets of \mathbb{R} containing the open subsets of \mathbb{R} . This problem shows that if $f: \Omega \to [0, 1]$ has the property that $f^{-1}(\mathcal{B}) \subset \mathcal{G}$, then there exists a measurable $h: Y \to \mathbb{R}$ such that $f(\omega) = h(g(\omega))$. Thus, the only \mathcal{G} -measurable functions are in fact functions of g, the function g contains everything (measurable) that one could ever get from \mathcal{G} .
 - 1. Give an elementary proof of the assertion if $g(\Omega)$ is a finite set $G = \{y_1, \ldots, y_N\}$ and $\{y_n\} \in \mathcal{Y}$ for each n.
 - 2. Show that \mathcal{G} is a σ -field.
 - 3. Show that $A_{i,n} := \{\omega : f(\omega) \in [i/2^n, (i+1)/2^n)\}$ is of the form $g^{-1}(B_{i,n})$ for some $B_{i,n} \in \mathcal{Y}$.
 - 4. Define the functions $f_n: \Omega \to [0,1]$ and $h_n: Y \to [0,1]$ by

$$f_n = \sum_{i=1}^{2^n} \frac{i}{2^n} \mathbf{1}_{A_{i,n}}$$
 and $h_n = \sum_{i=1}^{2^n} \frac{i}{2^n} \mathbf{1}_{B_{i,n}}$.

Show that for all ω , $f_n(\omega) = h_n(g(\omega))$.

- 5. Define $h(y) = \limsup_n h_n(y)$. Show that for all ω , $f(\omega) = h(g(\omega))$.
- 6. In the previous step, why couldn't we define $h(y) = \lim_{n \to \infty} h_n(y)$?