
Homework Assignment #1
Prob-Stats, Fall 2018

Due date: Monday, September 24

A. C&B §1.7, exercise 1.9.
B. C&B §1.7, exercise 1.12.
C. C&B §1.7, exercise 1.24.
D. C&B §1.7, exercise 1.35.
E. HB §1.11, exercise 7 and CSZ Exercise 7.3.5.
F. CSZ Exercise 7.3.10.
G. HB §1.11, exercise 12.
H. HB §1.11, exercise 13.
I. Suppose that x, y ∈ Ω and a class of subsets of Ω, E , has the property that for all E ∈ E ,

1E(x) = 1E(y). Show that for every A ∈ σ(E), 1A(x) = 1A(y).
J. Borel-Cantelli says that if

∑
n P (An) < ∞, then P ([An i.o.]) = 0. This problems gives

conditions (stronger than absolutely necessary) to show that if
∑

n P (An) = ∞, then
P ([An i.o.]) = 1.

Dfn: the events A1, A2, . . . are independent if for any finite set of indexes, n1, . . . , nk,
k ∈ N, P (∩kj=1Ank

) = P (An1) · P (An2) · · ·P (Ank
).

Suppose that the (An)∞n=1 are independent and that
∑

n P (An) = ∞. Complete the
following steps to show that P ([An i.o.]) = 1.
1. Show that ([An i.o.])c = [Acn a.a.], that is, show that (∩n ∪i≥n Ai)c = (∪n ∩i≥n Aci ).
2. Show that if for all n, P (∩i≥nAci ) = 0, then P (Acn a.a.) = 0.
3. Show that 1− x ≤ e−x. [Ask the math-for-econ professor about convex functions and

tangents.]
4. Show that the events (Acn)∞n=1 are independent.
5. Show that for n ≤ m, P (∩mi=nAci ) = Πm

i=n(1− P (Ai)).

6. Show that for n ≤ m, Πm
i=n(1− P (Ai)) ≤ e−

∑m
i=n P (Ai).

7. Show that for each n, P (∩∞i=nAci ) = 0.
K. Let Xn be a sequence of Borel measurable functions from (Ω,F) to [0, 1].

1. Show that {lim supnXn > r} = ∪q∈Q,q>r ∩m∈N ∪i≥m{Xi > q}.
2. Show that the function X(ω) := lim supnXn(ω) is measurable.
3. Let Φ : [0, 1] ↔ [−∞,+∞] be a strictly increasing continuous function. Show that if
Yn is a sequence of Borel measurable, R-valued functions, then Y (ω) := lim supn Yn(ω)
is a measurable function from Ω to [−∞,+∞].

4. In the previous part of this problem, what do we know about the behavior of Yn(ω) if
Y (ω) = −∞? And what do we know about the behavior of Yn(ω) if Y (ω) = +∞?

L. A S ⊂ R is a Lebesgue null set if for all ε > 0, there exists a countable collection of
sets (an, bn), n ∈ N, such that S ⊂ ∪n(an, bn) and

∑
n(bn − an) < ε. If S is a Lebesgue

null set, then it seems that S has to be “small.” This problem ask you to show that there
is a Lebesgue null set that is uncountable, that is, that has exactly the same cardinality
as R itself.
1. Any countable S is a Lebesgue null set.
2. Any countable union of Lebesgue null sets is a Lebesgue null set.
3. For each sequence ~a = (an)n∈N ∈ {0, 2}N, define r(~a) =

∑
n
an
3n .

a. Show that all of the sequences n 7→ an
3n are summable.

b. Show that {0, 2}N is uncountable.
c. Show that ~a 7→ r(~a) is one-to-one.
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d. Show that S := r({0, 2}N) is an uncountable Lebesgue null set.
M. The random variable X takes values in the two point space X = {x1, x2}. Before learning

the value of X, the decision maker must choose a point in A = {a1, a2, a3}. Their utilities,
u : A× X→ R are given by

x1 x2
a1 10 2
a2 7 7
a3 2 10

1. Give, as a function of β ∈ ∆(X), a∗(β) := arg maxai∈A
∑

xn∈X u(ai, xn)β(xn).
2. Give, as a function of β ∈ ∆({x1, x2}), V (β) := maxai∈A

∑
n u(ai, xn)β(xn).

3. The epigraph of the function V (·) is the set {(β, r) ∈ ∆(X) × R : V (β) ≥ r}. A
function is convex if its epigraph is a convex set. Show that the epigraph of V (·) is a
convex set.

4. The prior distribution of X is the point β◦ ∈ ∆(X) defined by β◦(X = x1) = β◦(X =
x2) = 1

2 . Before choosing a ∈ A, the decision maker observes the random signal
S ∈ S := {s1, s2, s2} where the conditional distribution of S are given by

x ↓ P (S = s1|x) P (S = s2|x) P (S = s3|x)
x1 0.1 0.2 0.7
x2 0.6 0.2 0.2

a. Give the conditional beliefs, β(·|si), i = 1, 2, 3.
b. Give the marginal distribution of S, P (S = si), i = 1, 2, 3.
c. Show that

∑
s∈S β(·|s)P (S = s) = β◦(·).

d. Give a∗(β(·|si)), i = 1, 2, 3.
e. Give V (β(·|si)), i = 1, 2, 3.
f. Give the value of S, V(S) :=

∑
s∈S V (β(·|s))P (S = s).

5. A randomized strategy for S is a function σ : S→ ∆(A). A randomized strategy for S
induces a joint distribution on X×A defined by µσ(x, a) = β◦(x) ·

∑
s∈S σs(a)P (S =

s|x). The set of inducible joint distributions for S is

D(S) := {µσ : σ is a randomized strategy for S}.

Give D(S) and show that it is a convex set.
6. Now supose that T is the Markov scramble of S with P (T = tj |S = si) given in the

matrix M

t1 t2 t3
s1 1/3 0 2/3
s2 1/2 1/2 0
s3 0 1/4 3/4

a. Give the conditional beliefs, β(·|ti), i = 1, 2, 3
b. Give the marginal distribution of T , P (S = ti), i = 1, 2, 3.
c. Show that

∑
t∈S β(·|t)P (T = t) = β◦(·).

d. Give a∗(β(·|ti)), i = 1, 2, 3.
e. Give V (β(·|ti)), i = 1, 2, 3.
f. Give the value of T , V(T ) :=

∑
t∈S V (β(·|t))P (T = t). Check your calculations by

showing that V(T ) ≤ V(S).
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7. The set of inducible joint distributions for T is D(T ) defined in a fashion directly
paralleling the definition of D(S) above. Give D(T ), show that it is convex, and show
that D(T ) ⊂ D(S). Use this to give an alternative argument that V(T ) ≤ V(S).

8. Refer to Theorem 4.11.9 (and the surrounding material) in Corbae et al. for the fol-
lowing. Suppose that the Markov scramble given by the matrix M above is applied
repeatedly. Show that is the number of applied scrambles becomes large, the informa-
tion structure becomes worthless, that is, it converges to V (β◦).

N. Let A, X, and S be finite sets of actions, possible realizations of X, and possible real-
izations of signals, let β◦ ∈ ∆(X) be a prior distribution for X, and let u : A × X → R
be a utility function. For each x ∈ X, suppose that the signal S has the conditional
distribution P (·|X = x) ∈ ∆(S), let P (s) =

∑
x P (s|X = x)β◦(x) be the marginal dis-

tribution of S, and for each s with P (s) > 0, let β(·|S = s) ∈ ∆(X) be the conditional
distribution of X given that S = s. Let a∗(β) = arg maxa∈A

∑
x u(a, x)β(x) and let

V (β) =
∑

x u(a∗(β), x)β(x). Define V(S) =
∑

s V (β(·|s))P (s) and let D(S) ∈ ∆(X×A)
be the set of inducible joint distributions.

Now suppose that the observations S are independently repeated, that is, suppose that
(S, S′) is observed and P (S = s, S′ = s′|X = x) = P (S = s|X = x) · P (S′ = s′|X = x).
Show that D(S) ⊂ D(S, S′) and that for every utility function u, the decision maker with
that utility function at least weakly prefers (S, S′) to S.

O. [Doob’s Theorem] Let (Ω,F) and let (Y,Y) be non-empty sets and σ-fields of subsets.
The most frequent class of sub-σ-fields, G ⊂ F , that we will encounter arise from a
measurable g : Ω→ Y , they are of the form G = g−1(Y). Let B denote the Borel σ-field
on R, that is, the smallest σ-field of subsets of R containing the open subsets of R. This
problem shows that if f : Ω→ [0, 1] has the property that f−1(B) ⊂ G, then there exists a
measurable h : Y → R such that f(ω) = h(g(ω)). Thus, the only G-measurable functions
are in fact functions of g, the function g contains everything (measurable) that one could
ever get from G.
1. Give an elementary proof of the assertion if g(Ω) is a finite set G = {y1, . . . , yN} and
{yn} ∈ Y for each n.

2. Show that G is a σ-field.
3. Show that Ai,n := {ω : f(ω) ∈ [i/2n, (i + 1)/2n)} is of the form g−1(Bi,n) for some
Bi,n ∈ Y.

4. Define the functions fn : Ω→ [0, 1] and hn : Y → [0, 1] by

fn =
∑2n

i=1
i
2n 1Ai,n and hn =

∑2n

i=1
i
2n 1Bi,n .

Show that for all ω, fn(ω) = hn(g(ω)).
5. Define h(y) = lim supn hn(y). Show that for all ω, f(ω) = h(g(ω)).
6. In the previous step, why couldn’t we define h(y) = limn hn(y)?

3


