
Homework Assignment #2 for Prob-Stats, Fall 2018
Due date: Monday, October 22, 2018

Topics: consistent estimators; sub-σ-fields and partial observations; Doob’s
theorem about sub-σ-field measurability; conditional expectations as mean-
squared loss optimal estimators; the Bridge-Crossing Lemma and condi-
tional distributions; Jensen’s inequality and expected utility maximization.

Readings: Bierens: Ch. 3.1-2, 3.4-5. CB: Ch. 2; Ch. 8.1-3; and Ch. 10.1.
CSZ: Ch. 6.6; Ch. 7.6; Ch. 8.4.

A. Let X be a measurable function taking values in R. EX1X>0 = 0 if
and only if P (X > 0) = 0. [Despite its simplicity, this will be a valuable
factoid for working with conditional distributions.]

B. This problem will take you through several aspects and applications of
the probability integral transform. The end goal of this material, in a
later problem set, is Skorohod’s representation theorem. A note: there
are two results having that name, one involves stopping times and Brow-
nian motions; the one we’re looking at shows that you can replace a
weaker kind of convergence of random variables with almost everywhere
convergence.
1. CB, Exercise 2.10.
2. We say that the random variable X first order stochastically dom-

inates the random variable Y if for all r ∈ R, P (X > r) ≥ P (Y > r).
Suppose that X FOSDs Y , let X ′ : (0, 1) → R and Y ′ : (0, 1) → R
denote the probability integral transform of X and Y . Show that
X ′(r) ≥ Y ′(r) for all r ∈ (0, 1).

3. X FOSDs Y if and only if
∫
u(X(ω)) dP (ω) ≥

∫
u(Y (ω)) dP (ω) for

all bounded, non-decreasing u : R→ R.
4. If Xn → X almost everywhere, then for all bounded continuous f :

R→ R,
∫
f(Xn(ω)) dP (ω)→

∫
f(X(ω)) dP (ω).

5. If for all bounded continuous f : R → R,
∫
f(Xn(ω)) dP (ω) →∫

f(X(ω)) dP (ω), then for all closed F ⊂ R, lim supn P (Xn ∈ F ) ≤
P (X ∈ F ). [Hint: the functions f(r) = max{0, 1 − n · d(r, F )} are
continuous and bounded; what do you learn from integrating them?]

6. If for all closed interval Fr := (−∞, r], lim supn P (Xn ∈ Fr) ≤ P (X ∈
Fr), then the probability integral transforms of the Xn converge al-
most everywhere to the probability integral transform of X.

C. The reading by Breiman et al. (1964) shows that a set of probabilities
Π on an observation space is strongly 0-1 if and only if there exists a
consistent sequence of estimators for the p ∈ Π. This problem takes you
through the most basic of such situtations.

The space of observations for this problem is X := {0, 1}N. For each
θ ∈ Θ = [0, 1], let pθ be the distribution on X defined by {projn(·) :
n ∈ N} is an iid collection of Bernoulli(θ) distributions. In case it is
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needed for later notational purposes, let Yn(x) = projn(x). Let Xn be
the smallest σ-field on {0, 1}N making each projm measurable, m ≤ n.
Let X be the smallest σ-field containing all of the Xn.
1. Show that the functions

x 7→ lim infn
1
n

∑
i≤n proji(x) and x 7→ lim supn

1
n

∑
i≤n proji(x)

are X -measurable.
2. Show that for each θ ∈ [0, 1], the set

Eθ := {x ∈ X : limn
1
n

∑
i≤n proji(X) = θ

is measurable.
3. Show that the set E = {x ∈ {0, 1}N : limn

1
n

∑
i≤n proji(X) exists } is

measurable.
4. Show that for each θ ∈ Θ, pθ(Eθ) = 1.

5. Show that θ̂n(Y1, . . . , Yn) = 1
n

∑
i≤n Yi is a consistent sequence of es-

timators for θ.
6. A set of probabilities Π on a measure space of observations, (X,X ),

is strongly zero-one if there exists a measurable E ⊂ X and an
onto Φ : E → Π such that for all p ∈ Π, p(Φ−1(p)) = 1. Show that
Π = {pθ : θ ∈ Θ} is strongly zero-one. [A consistent sequence of
estimators for the elements of Π exists if and only if it is strongly
zero-one.]

D. [The space of observations as a metric space] On X = {0, 1}N, consider
the metric d(x, y) =

∑
n |projn(x) − projn(y)|/2n. We use the σ-fields

Xn and X from the previous problem.
1. Let xα be a sequence in X. Show that d(xα, x) → 0 if and only if

(∀M ∈ N)(∃A)(∀α ≥ A)(∀m ≤M)[projm(xα) = projm(x)].
2. Show that (X, d) is a compact metric space, hence is both complete

and separable. [A metric space is said to be separable if it has a
countable dense subset.]

3. Characterize the compact subsets of X.
4. Show that f : X → R is continuous if and only if for each ε > 0,

there exists an M ∈ N and an XM -measurable function g such that
maxx∈X |f(x)−g(x)| < ε. [The function g is called finitely-determined,
so this is saying that all continuous functions on X are nearly finitely-
determined.]

5. Show that X is the Borel σ-field on (X, d).
6. Let X ◦ = ∪nXn. Show that this is the smallest field containing all of

the Xn, and that it is not a σ-field.
7. Show that every pθ is countably additive on the field X ◦, that is, show

that for every En ↓ ∅ in X ◦, pθ(En) ↓ 0.
Comments: Carathéodory’s extension theorem tells us that if p is a

countably additive probability on a field F◦ and F = σ(F◦), the p is a
unique countably additive extension to F .
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E. Let (M,d) be a separable metric space with Borel σ-field M, and let
(Ω,F , P ) be our usual probability space, i.e. Ω 6= ∅, F a σ-field of subsets
of Ω, and P : F → [0, 1] a countably additive probability.
1. Suppose that X : Ω → M is measurable and p is the image law of
X, i.e. p(A) = P (X ∈ A) for all A ∈ M. Show that p is countably
additive.

2. If p is a countably additive probability on the Borel σ-field, M, then
for all E ∈ M, p(E) = sup{p(F ) : F ⊂ E,F closed }. [This is a good
sets argument.]

3. If p and q are countably additive probabilities on the Borel σ-field,
then p = q if and only if p(F ) = q(F ) for all closed F .

4. We say that a probability p is tight if for every ε > 0, there exists a
compact K with p(K) > (1−ε). If p is tight and p and q are countably
additive probabilities on the Borel σ-field, then p = q if and only if
p(K) = q(K) for all compact K.

5. If X : Ω→ R is a measurable random variable and p(A) = P (X ∈ A)
is the distribution of X, then p is tight.

6. If (M,d) is a separable metric space and p and q are countably ad-
ditive probabilities on the Borel σ-field, then p = q if and only if∫
M f(x) dp(x) =

∫
M f(x) dq(x) for all bounded, Lipschitz continuous

f : M → R.
F. [The Neyman-Pearson Lemma] Suppose that X1, . . . , Xn ∈ {0, 1}n has

the Bernoulli density f(x|θ) for some θ ∈ Θ = {θ0, θ1}. Ahead of time,
we assign probability β ∈ (0, 1) to θ0 and probability 1− β to θ1.

After observing the data, we are going to take an action a ∈ {0, 1} to
solve

maxa∈{0,1}E (u(a, θ)|X1, . . . , Xn)

where if θ = θ0, then a = 0 is the better choice and if if θ = θ1, then
a = 1 is the better choice. Specifically, we are going to suppose that the
utilities are

a↓ θ → θ0 θ1
a = 0 u(0, 0) u(0, 1)
a = 1 u(1, 0) u(1, 1)

where u(0, 0) > u(1, 0) and u(1, 1) > u(1, 0).
1. Show that for any function f(θ) and probability q of θ0, the set of

solutions to the following two problems are the same,

maxa∈{0,1} u(a, θ) and maxa∈{0,1}[u(a, θ) + f(θ)].

2. Let f(θ0) = −u(1, 0) and f(θ1) = −u(0, 1) and rewrite the payoff
matrix above in the form

a↓ θ → θ0 θ1
a = 0 r 0
a = 1 0 s

where r, s > 0.
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3. Give the set of data realizations, x ∈ {0, 1}n, for which the optimal
decision is a = 0 and for which it is a = 1.

4. Express your regions above in terms of likelihood ratios.
5. Show that for large n, the effect of β “washes out.”
6. Compare the optimal regions with β = 1

2 to the Neyman-Pearson
lemma’s probability of Type I and Type II error.

G. [Bernoulli estimations with missing data] Suppose that (Yi, Zi) ∈ {0, 1}×
{0, 1}, i = 1, . . . , n, are iid. Let θY = E Yi, θ1 = E (Yi|Zi = 1),
θ0 = E (Yi|Zi = 0), and θZ = E Zi. Assume that all four θ’s belong
to the open interval (0, 1).
1. Assuming that the entire vector (Yi, Zi) is observable, give consistent,

unbiased estimators of the θ’s and show that they are consistent and
unbiased.

2. Now suppose that when Zi = 0, the value of Yi cannot be observed.
That is, suppose that what is observed is Xi defined, for some constant
g, as

Xi =

{
(Yi, 1) if Zi = 1

(g, 0) if Zi = 0.

Your previous consistent unbiased estimators of θ1 and θZ are still
consistent and unbiased. Supposing that there is enough data to pin
down θ1 and θZ . Give the range of possible values of θY as a function
of the other three θ’s. Explain the patterns of dependence of the
range.

3. Suppose now that we know that |θ1 − θ0| ≤ b for some 0 ≤ b < 2.
Give the range of possible values of θY as a function of b and the other
three θ’s.

4. Suppose now that the Yi and Zi are independent. How does this
change the previous answer?

H. [L2-best estimators] Let L2 = {X ∈ L0 :
∫
X2(ω) dP (ω) <∞}. For any

X,Y ∈ L2, define 〈X,Y 〉 =
∫
X(ω)Y (ω) dP (ω). For any X ∈ L2, define

‖X‖2 =
√
〈X,X〉, and for any X,Y ∈ L2, define d(X,Y ) = ‖X − Y ‖2.

1. Solve minr ‖Y − r‖2.
2. If Y =

∑
n≤N γn1An and X =

∑
m≤M βn1Bn , solve ming ‖Y − g(X)‖2

where g : R → R. The random variable g(X) is called “the expecta-
tion of Y conditional on X.” It is denoted E (Y |X) or E (Y |σ(X)).

3. If Y ∈ L2 and X =
∑

m≤M βn1Bn , solve ming ‖Y − g(X)‖2 where

g : R → R. The random variable g(X) is called “the expectation of
Y conditional on X.” It is denoted E (Y |X) or E (Y |σ(X)).

4. If ‖Yn−Y ‖2 → 0, andX =
∑

m≤M βn1Bn , then ‖E (Yn|X)−E (Y |X)‖2 →
0.

5. For X,Y ∈ L2 and Xn a sequence of simple functions in L2 with
‖Xn−X‖2 → 0, show that E (Y |Xn) is a Cauchy sequence in L2. Its
limit is denoted E (Y |X).

6. Bierens 3.6.10 (p. 83).
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I. Random variables X,Y are independent, denoted X ⊥⊥ Y if for all
measurable A,B, P ((X ∈ A) ∩ (Y ∈ B)) = P (X ∈ A) · P (Y ∈ B). If
X,Y are in L2, they are orthogonal, denoted X ⊥ Y , if 〈X,Y 〉 = 0.
Independence can be understood as a very strong form of independence.
1. Suppose that X,Y ∈ L2 and X ⊥ Y . Solve the problem

minα,β∈R ‖Y − (α+ βX)‖2.

2. For X,Y ∈ L2, 〈X − EX, Y − E Y 〉 = 0 if and only if EXY =
(EX) · (E Y ).

3. If X and Y are simple, show that X ⊥⊥ Y if and only if for all bounded
(measurable) f, g : R→ R, 〈f(X)− E f(X), g(Y )− E g(Y )〉 = 0.

4. If X and Y belong to L2, show that X ⊥⊥ Y if and only if for all
bounded measurable f, g : R→ R, 〈f(X)−E f(X), g(Y )−E g(Y )〉 =
0.

5. If X,Y ∈ L2 and X ⊥⊥ Y , solve the problem ming ‖Y − g(X)‖2 where
g is a measurable function satisfying g(X) ∈ L2.

J. Suppose that for some (α◦, β◦) ∈ Θ = R2 and some X ∈ L2, Y =
α◦ + β◦X + ε where E ε = 0 and ε ⊥⊥ X.
1. Let XL

n be the Lebesgue sequence of simple approximations to X.
Solve minα,β ‖Y − (α+ βXL

n )‖2.
2. Show that your solutions, (αn, βn), to the previous problem converge

to (α◦, β◦).
K. Yield per acre is a random variable Y and fertilizer per acre is a random

variable X. Let h(x) = E (Y |X = x). Suppose that h′(x) > 0 but that
ph′(x) > c where p is the price of the crop and c the cost of the fertilizer.
This looks like an argument that the farmers are under-utilizing fertilizer.
This problem is about omitted variable bias.

However, suppose that yield per acre satisfies Y = f(X,Q) + ε, ε ⊥⊥
X,Q, where Q is the quality of the acre. Suppose that ∂f/∂x > 0,
∂f/∂q > 0, and that ∂2f/∂x∂q > 0, i.e. suppose that f(·, ·) is increasing
and supermodular. Suppose also that farmers know their Q but that
it is random to the observers/econometricians who are forming their
conditional expectations. The risk-neutral farmers pick x(Q) to solve
x = arg maxq E(pf(x, q) + ε)− cx. Compare the true marginal product
of fertilizer in a field that uses an amount X = x to h′(x).

L. [Doob’s Theorem] Let (Ω,F) and let (Y,Y) be non-empty sets and σ-
fields of subsets. The most frequent class of sub-σ-fields, G ⊂ F , that we
will encounter arise from a measurable g : Ω → Y , they are of the form
G = g−1(Y). Let B denote the Borel σ-field on R, that is, the smallest
σ-field of subsets of R containing the open subsets of R. This problem
shows that if f : Ω → [0, 1] has the property that f−1(B) ⊂ G, then
there exists a measurable h : Y → R such that f(ω) = h(g(ω)). Thus,
the only G-measurable functions are in fact functions of g, the function
g contains everything (measurable) that one could ever get from G.
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1. Give an elementary proof of the assertion if g(Ω) is a finite set G =
{y1, . . . , yN} and {yn} ∈ Y for each n.

2. Show that G is a σ-field.
3. Show that Ai,n := {ω : f(ω) ∈ [i/2n, (i + 1)/2n)} is of the form
g−1(Bi,n) for some Bi,n ∈ Y.

4. Define the functions fn : Ω→ [0, 1] and hn : Y → [0, 1] by

fn =
∑2n

i=1
i
2n 1Ai,n and hn =

∑2n

i=1
i
2n 1Bi,n .

Show that for all ω, fn(ω) = hn(g(ω)).
5. Define h(y) = lim supn hn(y). Show that for all ω, f(ω) = h(g(ω)).
6. In the previous step, why couldn’t we define h(y) = limn hn(y)?

M. [I’ll cross that bridge when I come to it] Suppose that X and S are
simple random variables taking values in {x1, . . . , xN} and s1, . . . , sM .
The time line for the problem is that the value of S is observed before
X is known, and an action a ∈ A must be picked. We suppose that A
is a compact metric space, and that for each xn, u(·, xn) is a continuous
function. Amongst the elements of AS , let the function a∗(·) solve the
problem

maxa(·)E (u(a∗(S), X)).

The functions a(·) are called, for hopefully obvious reasons, “complete
contingent plans.” Define P (·|S = sm) ∈ ∆({x1, . . . , xN}) as the usual
conditional probability.
1. Show that a∗(·) is a solution if and only if for all sm with P (S =
sm) > 0, a∗(sm) solves the problem

maxa∈A
∑

xn
u(a, xn)P (xn|sm).

2. Check that the average conditional probability of any event X ∈ A is
the prior probability, P (X ∈ A). That is, P (X ∈ A) =

∑
m P (X ∈

A|S = sm) · P (S = sm).
Comments: Conditional probabilities map sm’s to ∆({x1, . . . , xn}).

When S and X are more general random variables, we will want a mea-
surable function from the range of S to ∆(R) that also solves these kinds
of optimization problems. For example, we are often interested in seeing
how educational procedures affect the performance of the median and
the bottom and top quartiles. Knowing P (·|S = s) answers this, and
many other questions.

6


