
Homework Assignment #3 for Prob-Stats, Fall 2018
Due date: Monday, November 19, 2018

Topics: parametric families of distributions; distributions of transforma-
tions; hazard rates and optimal waiting times; estimation for parametric
and non-parametric decision problems.

Readings: CB: Ch. 2, 3, and 7.2-3; Bierens: Ch. 4, 8.1-3.

A. Casella and Berger, p. 80, on moment generating functions, 2.30, 2.31,
and 2.32.

B. For any r, s ∈ R, let (r ∨ s) = min(r, s) and (r ∧ s) = max(r, s). It is
immediate that r + s = (r ∧ s) + (r ∨ s). Let X,Y : Ω → R be two
elements of L1, and show that

E (X ∨ Y ) = EX + E Y − E (X ∧ Y ).

Letting X = 1A and Y = 1B, what does the previous yield?
C. Let X : Ω→ R be a random variable with a continuous cdf, F (·).

1. Give the cdf of Y (ω) := F (X(ω)).
2. Suppose that Xn, n = 0, 1, 2, . . . are i.i.d. with continuous cdf F (·).

Define T (ω) = min{t ≥ 1 : Xt(ω) > X0(ω)}. Give E (T |X = x).
3. Give E τ .

D. Casella and Berger p. 78 on the most commonly used loss function esti-
mators, 2.18 and 2.19. [This is background for the next problem.]

E. For x,m ∈ R and 0 < α < 1, define

`α(x,m) =

{
α(m− x) if x < m, and

(1− α)(x−m) if x ≥ m.

For each of the following distributions for X (the notation for the
following distributions is from the Casella and Berger Table of Common
Distributions, p. 621-626), solve for

m̂α := arg min
m

E `(X,m).

1. X ∼Poisson (λ).
2. X ∼ logistic (µ, β).
3. X ∼Uniform (a, b).
4. X ∼Weibull (γ, β).
5. X ∼ N(µ, σ2).

F. Casella and Berger on hazard rates, 3.25 and 3.26, p. 131-2. [This is
background for the next three problems.]

G. People placing phone calls can be of two types, chatty and taciturn.
If they are chatty, the random time until they are done talking is dis-
tributed as an exponential(µ), if taciturn, as an exponential(λ, where
λ < µ so that, on average, the chatty people talk longer, average time
1/µ, than the taciturn, average time 1/λ.
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1. If a chatty and a taciturn person start talking at the same time, what
is the probability that the taciturn person will be done first?

2. If a chatty person has been talking for t minutes before the taciturn
person starts talking, what is the probability that the taciturn person
will be done first? [This is not an intuitive result, it comes from the
memorylessness of the exponential distribution.]

3. If we know that there is a probability α that the person talking is
chatty and (1−α) that they are taciturn, and T is the time until they
are done, give P (T > t).

4. If W : Ω → [0,∞) has density f(·), then the hazard rate for W

is defined as h(t) = f(t)
1−F (t) . Give the hazard rate for waiting for a

chatty person to be done talking.
5. If we know that there is a probability α that the person talking is

chatty and (1−α) that they are taciturn, and T is the time until they
are done, give the hazard rate for T . Find limt→∞ h(t) and explain
why you get this answer.

H. Suppose that X ∼negative exponential(λ), i.e. FX(t) = 1−e−λt for some
λ > 0, and that Y (ω) := Xγ(ω) for γ > 0. [Y belongs to the class of
Weibull distributions.]
1. Derive the density and the cdf of Y .
2. Give the hazard rate for Y .
3. When is the hazard rate increasing? Decreasing? Explain why this is

true.
4. Give the conditions on β and γ under which E (Y |Y > t) − t is in-

creasing, and under which it is decreasing. Explain.

5. The cumulative hazard is defined as H(t) =
∫ t
0 h(x) dx. Show that

1 − F (t) = e−H(t) for any non-negative random variable having a
density. Rederive the cdf of Y from this.

6. If Y : Ω → [0,∞] has a density on [0,∞) and P (Y = ∞) = q > 0,
show that P (W = ∞|W > t) ↑ 1 as t ↑ ∞. Does this imply that
limt↑∞ h(t) = 0? If not, give (or sketch) an example. If so, give a
proof. [Waiting time distributions with P (Y = ∞) > 0 are called
“incomplete” distributions.]

I. Suppose that we have a list of everyone who in unemployed at a randomly
picked time T , which is independent of everything else in sight. We
record Yi, the length of time between becoming unemployed and T , we
record Xi, the time between T and their new job, and we construct Ti =
Yi + Xi, the total length of i’s unemployment spell. Suppose also that
the random time between jobs has a negative exponential distribution.

Consider three estimators of λ, θ̂X = 1
n

∑
iXi, θ̂Y = 1

n

∑
i Yi, and θ̂T =

1
n

∑
i Ti.

1. Find Eλθ̂X .
2. Find Eλθ̂Y .
3. Find Eλθ̂T .
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4. Suppose now that the waiting time has a Weibull distribution as spec-
ified in the previous problem. If γ > 1, what pattern would we expect
to see in the previous estimators? What about if γ < 1?

J. At a flow cost of c ≥ 0, one can keep searching for a source of higher
profits (a low cost source of a crucial input, a process breakthrough,
a new product). If found, expected net flow profits of π result. If one
abandons the search, the decision is, by assumption, irreversible, and the
known alternative yields expected net flow profits of π, π > π > 0. The
random time until which the source is successful is a random variable
Y : Ω → [0,∞] that has a density on [0,∞) and for which it is possible
that P (Y =∞) = q > 0. Because we search the most likely places first,
we assume that the hazard rate for Y is decreasing, and for convenience,
we assume that it is continuous. You choose a time t1 at which you will
abandon searching and accept the lower π. You do this to maximize your
expected payoffs where,

• if Y > t1, then your payoffs are
∫ t1
0 −ce

−rx dx+ πe−rt1 , and

• if Y < t1, then your payoffs are
∫ Y
0 −ce

−rx dx+ e−rY π.
1. Show that the FOCs for your problem have a unique solution at the
t∗1 that solves h(t∗1) = r(c+ π)/(π − π).

2. Show that the SOCs are satisfied at your solution.
3. Show that the optimal t∗1 is higher for higher π and explain the eco-

nomics of your answer.
4. Show that the optimal t∗1 is lower for higher values of c and explain

the economics of your answer.
5. Show that the optimal t∗1 is lower for higher values of π and explain

the economics of your answer.
K. Casella and Berger on exponential families and natural parameter spaces,

3.28 and 3.29, p. 132. [The exponential families of distributions are a
flexible class, and their maximum likelihood estimators (MLEs) are often
easy to calculate. The next problem asks for MLEs for three classes of
distributions.]

L. This problem is background for examining the expected utility con-
sequences of model mis-specification. The data, (X1, . . . , Xn), is an
i.i.d. collection of random integers. We will consider three parametrized
classes of distributions for the data: the discrete uniforms, {UN : N ∈ N}
defined by UN (n) = 1/N for n = 1, . . . , N ; the geometric distributions,
{Gp : p ∈ [0, 1]}, defined by Gp(n) = p(1 − p)n−1, n = 1, 2, . . .; and
the “Poisson plus 1” distributions, {Pλ : 0 ≤ λ < ∞}, defined by

Pλ(n) = e−λλx−1

(x−1)! , x = 1, 2, . . ..

1. Give the likelihood function, the log likelihood function, and the max-

imum likelihood estimator, N̂n, associated with the assumption that
the data, (X1, . . . , Xn), is distributed according to some discrete uni-

form distribution with unknown N . Calculate the bias of N̂n and
show that, with probability 1, N̂n converges to the true N .
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2. Give the likelihood function, the log likelihood function, and the max-
imum likelihood estimator, p̂, associated with the assumption that the
data, (X1, . . . , Xn), is distributed according to some geometric distri-
bution with unknown p. Calculate the bias of the estimator and show
that, with probability 1, p̂n converges to the true p.

3. Give the likelihood function, the log likelihood function, and the max-

imum likelihood estimator, λ̂, associated with the assumption that the
data, (X1, . . . , Xn), is distributed according to some Poisson distribu-
tion with unknown λ. Calculate the bias of the estimator and show
that, with probability 1, λ̂n converges to the true λ.

M. [Problem L cont.] Consider the problem

max
a∈{0,1}

E u(a,X) where u(a,X) = (1− a)r · 1{X<7} + as · 1{X≥7}.

1. Assuming that X has a discrete uniform distribution with some pa-
rameter N , give the value function V (N) = maxa∈{0,1} E u(a,X) and
the optimal strategy for each N .

2. Assuming that X has a geometric distribution with some parameter p,
give the value function V (p) = maxa∈{0,1} E u(a,X) and the optimal
strategy for each p.

3. Assuming that X has a exponential distribution with some parame-
ter λ, give the value function V (λ) = maxa∈{0,1} E u(a,X) and the
optimal strategy for each λ.

N. [Problem M cont.] Suppose that the data is distributed according to a
discrete uniform distribution with unknown parameter N . Suppose also

that the decision maker uses the estimator N̂n to solve their maximiza-
tion problem, that is, suppose that after seeing the data, (X1, . . . , Xn),
they solve

Vn+1 := max
a∈{0,1}

E u(a,Xn+1)

under the assumption that Xn+1 is distributed according to U
N̂n

. Give
the distribution of Vn+1.

O. [Problem N cont.] Suppose that the decision maker’s model is {UN : N ∈
N}, but that the true distribution is a geometric with parameter p for
some p ∈ (0, 1).

1. Give the distribution of N̂n as a function of p.

2. Give limn N̂n as a function of p.

3. Suppose that the decision maker uses the estimator N̂n to solve their
maximization problem, that is, suppose that after seeing the data,
(X1, . . . , Xn), they solve

Vn+1 := max
a∈{0,1}

E u(a,Xn+1)

under the assumption thatXn+1 is distributed according to U
N̂n

. Give
limn Vn+1.
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4. Sketch how your answer would change if the true distribution is a
Poisson(λ) for some λ > 0.

P. [Problem O cont.] Suppose that the decision maker uses the following

“empirical strategy,” estimate F̂n defined by F̂n(m) = 1
n#{i : Xi = m},

and then solves

V emp
n+1 := max

a∈{0,1}
E u(a,Xn+1)

under the assumption that Xn+1 is distributed according to the cdf F̂n.
Show that, provided that the data is i.i.d. with distribution Q, V emp

n+1 →
V (Q) where V (Q) = maxa∈{0,1}

∑
x u(a, x)Q(x).
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