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We study the problem of identifying a forecaster’s loss function from observations
on forecasts, realizations, and the forecaster’s information set. Essentially different
loss functions can lead to the same forecasts in all situations, though within the class
of all continuous loss functions, this is strongly nongeneric. With the small set of
exceptional cases ruled out, generic nonparametric preference recovery is theoreti-
cally possible, but identification depends critically on the amount of variation in the
conditional distributions of the process being forecast. There exist processes with
sufficient variability to guarantee identification, and much of this variation is also
necessary for a process to have universal identifying power. We also briefly address
the case in which the econometrician does not fully observe the conditional distri-
butions used by the forecaster, and in this context we provide a practically useful set
identification result for loss functions used in forecasting binary variables.

1. INTRODUCTION

This paper examines how much can be learned about an expected loss mini-
mizing/expected utility maximizing forecaster’s loss function from a sequence
of forecasts, the corresponding sequence of realizations, and a sequence of co-
variates used in producing the forecasts. If the forecaster’s loss function is known
to belong in a given family, can such information uniquely identify the one used
by the forecaster? How large can this family be for identification to be possible?
Giving a complete answer to this question involves answering the question of
how much of the best response correspondence must be observed to completely
recover arbitrary continuous preferences.

We care about recovering loss functions for two related reasons. First, knowing
the trade-off between underpredicting versus overpredicting is informative about
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behavior in its own right. Second, when the loss function is the reduced form
of a deeper, structural model, one might identify the model’s parameters by first
identifying the loss function. If this is impossible, then the underlying structural
model will also remain unidentified.

The existing econometric literature on the problem of recovering forecaster
preferences is rather slim. Among the few papers that address this question
explicitly are Elliott, Komunjer, and Timmermann (2003) and Elliott, Komunjer,
and Timmermann (2005), and, partly, Patton and Timmermann (2005) and Patton
and Timmermann (2007). More recently, Elliott, Komunjer, and Timmermann
(2008) and Capistran and Timmermann (2009) have provided evidence of asym-
metric loss in professional and institutional forecasts of real output growth and
inflation. There is a much larger related literature concerned with testing the
rationality of forecasts that dates back to at least Mincer and Zarnowitz (1969).
Empirical work in this area typically relies on the assumption that the forecaster’s
objective is to minimize mean squared error loss. Indeed, the square loss function
is technically convenient and has very sharp observable implications concerning
the properties of optimal forecasts, including unbiasedness, uncorrelatedness of
one-step-ahead forecast errors, increasing forecast error variance as the forecast
horizon expands, etc.1

However, as argued by Granger (1969), economic forecasts are often pro-
duced in an environment where the square loss function or, more generally,
any symmetric loss function, does not adequately capture the costs resulting
from overprediction vs. underprediction. Under general loss functions, all of the
optimality properties listed earlier can be lost, and, as pointed out by Elliott
et al. (2003, 2005), purported tests of forecast rationality based on the implica-
tions of minimizing mean squared error are more appropriately viewed as joint
tests of forecaster rationality and the mean square loss function.

Given that the notion of forecast rationality is inextricably linked to the ob-
jective that the forecaster is presumably trying to achieve, there are two ways to
study individual forecasters’ behavior. If interest continues to center on testing for
optimizing (rational) behavior, then one needs to explore further the properties of
optimal forecasts under general classes of loss functions that allow for asymme-
tries and functional forms other than square loss. This approach is outlined by
Patton and Timmermann (2005, 2007). Alternatively, one can focus on the in-
verse problem: maintain the assumption of optimizing behavior and identify and
estimate a loss function, or a class of loss functions, consistent with the properties
of the observed forecasts. This is the viewpoint of Elliott et al. (2005) and of this
paper.

Our approach to the preference recovery problem is substantially more general
than that of Elliott et al. (2005). In particular, we study identification for the
class of continuous loss functions that strictly prefer a forecast of ŷ when it is
known that ŷ will be the next realization instead of any particular parametric
specification. The cost of this generality is that our identification results are more
abstract and do not directly translate into a strategy for estimation and inference.
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The benefit is a comprehensive theory of the informational requirements for
generic nonparametric identification.

More concretely, let L be the set of loss functions that depend continuously
on both the forecast and the realization and strictly prefer on-target forecasts to
any error. Expected loss minimization associates with each � ∈ L a forecast-
ing rule, i.e., a map from forecast densities into point forecasts (e.g., for square
loss, the optimal point forecast is the mean of the forecast density, whereas for
absolute loss it is the median). We show that some forecasting rules are not
unique to a specific element of L —there are essentially different loss func-
tions that produce the same point forecasts under all circumstances. As L
contains indistinguishable elements, it is unidentified as a model of the fore-
caster preferences. However, the set of “problematic” loss functions in L is
nongeneric, i.e., very small in a strong mathematical sense. Theorem 1 shows
that outside of this nongeneric subset of L , different loss functions have dif-
ferent forecasting rules unless they are generalized affine transformations of
each other. We explicitly characterize the nongeneric set, and in Proposition 3.1,
we give a sufficient condition for belonging to the generic set that is easy to
verify.

Even with the exceptional cases ruled out, nonparametric identification still
depends on sufficient variability in the sequence of forecast densities used by
the forecaster. For example, the model {square loss, absolute loss} is unidenti-
fied if all forecast densities are symmetric despite the fact that the forecasting
rules produce different results for skewed distributions. Theorem 1 in Section 3
also shows that for sequences of distributions with sufficient variability, one can
guarantee identification of any element of L outside of the problematic ones,
whereas Proposition 3.2 shows that much of the “sufficient variation” is also
necessary to achieve such universal identification. Of particular note is the re-
quired variation in the support of the forecast densities seen in Examples 3.4
and 3.5.

The foregoing identification results rely on the assumption that the sequence of
forecast densities used by the forecaster is also observed by the econometrician.
This assumption is restrictive—if the forecaster conditions the forecast density
on variables not observed by the econometrician, the forecast density is unidenti-
fied (to the econometrician). In this case nonparametric identification of the loss
function is a more challenging problem. We provide a practically useful set iden-
tification result in the special case when the variable to be forecast is binary and
sketch a more general identification strategy applicable to smooth (differentiable)
utility functions.

The rest of the paper is organized as follows. Section 2 presents the forecasting
environment along with some elementary results. Section 3 introduces the notion
of nonparametric identification and states the main result of the paper. Section 4
addresses the problem of unobserved covariates and treats the binary case in par-
ticular. Section 5 concludes. Technical material and proofs are collected in the
Appendixes.
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2. THE FORECASTING ENVIRONMENT

We first describe the environment in which the econometrician observes the fore-
caster and then describe the set of loss functions under consideration.

2.1. The Data Generating Process and Forecaster Behavior

The variable to be forecast at time t is a random scalar Yt+1, defined on
a probability space (�,F, P), taking values in a compact set D ⊂ R. The
forecaster possesses a jointly continuous loss function on D × D, (ŷ, y) �→
�(ŷ, y). The first argument, ŷ, denotes the value of the forecast, and the
second, y, the actual realization of Yt+1. We will denote by �(D) the set
of (Borel) probability measures defined on D, equipped with the Prokhorov
metric.2

The information held by the forecaster at time t is given by a filtration Ft ⊂F .
Let pt be an Ft -measurable random element of �(D), representing either the
conditional distribution of Yt+1 given Ft , or possibly some estimate of it. We
assume that ft , the forecast of Yt+1 reported at time t , minimizes expected loss,
i.e., belongs to the set

Br ( pt | Ft ,�) := arg min
ŷ∈Ft

∫
�
(

ŷ, y
)

pt (dy) , (1)

where the notation Br stands for “best response” and Ft ⊂ D is the set of allow-
able forecasts at time t . Assumption 1 restricts this set.

Assumption 1. Ft = supp( pt ) for all t .3

One could allow for off-support forecasts, but we will not do so for a number
of reasons. First, it would lead to a framing problem in that the support of pt ,
if smaller than D, could be embedded in many larger sets Ft . Second, as we will
show in Section 3.3, forecasters with two different loss functions can be indis-
tinguishable without variation in Ft . If off-support forecasts were permissible, it
would be hard to justify any variation in the set of allowable forecasts. (For ex-
ample, one might simply set Ft = D for all t .) Under Assumption 1, Ft varies
“naturally” to the extent that supp(pt ) varies. Third, even if one allows Ft to be
strictly larger than supp(pt ) and there is exogenous variation in Ft , Proposition
2.3 shows that one cannot tease out more information about � from the observed
forecasts than under Assumption 1.

We abbreviate Br (pt | supp(pt ),�) as Br (pt | �). Assumption 1 notwithstand-
ing, some definitions, examples, and technical arguments will necessitate con-
sidering Ft � supp(pt ). For these cases, we retain the more elaborate notation
defined in (1). Under Assumption 1, and if the process {Yt } is stationary, it is
without loss of generality to set D as the support of the marginal distribution of
Yt . If {Yt } is not stationary, then D is the closure of ∪t supp(Yt ).
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The following assumption specifies the econometrician’s information set.

Assumption 2. The econometrician observes

(a) the sequence of distributions {pt }∞t=1 and

(b) a sequence of point forecasts { ft }∞t=1 satisfying equation (1).

Assumption 2(a) is motivated by the structure of an expected loss minimizer’s
problem. Such forecasters (act as if they) first form pt , the conditional distribution
of Yt+1 given Ft , and second use pt to pick a forecast ft in a way that depends
on the loss function �. The mapping Ft �→ pt contains no information about �
and is, in principle, also estimable by the econometrician if Ft is fully observed.
It is only from the forecast mapping p �→ Br (p | �) that one can hope to learn
about �. Our main focus is whether or not this forecast mapping contains enough
information for � to be identified. We therefore start from the assumption that the
econometrician knows the pt at which this mapping is being evaluated. Our first
example adds some structure to the process being forecast to illustrate and further
motivate Assumption 2.

Example 2.1
Suppose that the forecaster’s information set can be represented as Ft =
σ(Xt , Xt−1, . . .), where Xt ∈ R� is a finite-dimensional vector, also defined on
(�,F, P), such that

(a) {(Yt+1, Xt )} forms a stationary, ergodic process and

(b) the conditional distribution of Yt+1 given Ft depends only on Xt .

The vector Xt may of course contain current and lagged values of Y . Let px (y)
denote the distribution of Yt+1 conditional on Xt = x induced by P . Under the as-
sumptions stated previously, the forecaster has perfect knowledge of the function
x �→ px , and, therefore, one can identify the probability measure pt appearing
in problem (1) with pXt . If the econometrician’s date t information set contains
Yt , Xt ,Yt−1, Xt−1, . . ., then pXt is also identified by the econometrician.

Section 4 relaxes Assumption 2 to allow the forecaster to have a larger infor-
mation set than is available to the econometrician.

2.2. The Loss Functions

Let C = C(D × D) denote the set of continuous functions on D × D, where D is
a nonempty, compact subset of R.

DEFINITION 2.1. We say that �,�′ ∈ C(D × D) are

(i) affine equivalent, written � ∼a f f �′, if there exist a continuous y �→ g(y)
and r > 0 such that �′(ŷ, y) = r ·�(ŷ, y)+ g(y), and

(ii) forecast equivalent or best response equivalent, written � ∼Br �′,
if Br (p | �) = Br

(
p | �′) for all p ∈ �(D); i.e., � and �′ always produce

the same forecasts.
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PROPOSITION 2.1. Affine equivalence implies forecast equivalence.

Proof. If � ∼a f f �′, then
∫

F �′(ŷ, y)p(dy) = r · [∫F �(ŷ, y) p(dy)
] +∫

F g(y) p(dy), where F = supp(p). As r > 0 and the second term does not de-
pend on ŷ, ŷ∗ ∈ F solves minŷ

∫
�(ŷ, y) p(dy) iff it also solves minŷ

∫
�′(ŷ, y)

p(dy). n

Example 3.3 shows that forecast equivalence does not imply affine equivalence
when D contains three (or more) points. However, Example 3.1 shows that the
two notions are equivalent if D has exactly two points, i.e., in the case where the
variable to be forecast is binary.

Each affine equivalence class contains what we will call a canonical form.

DEFINITION 2.2. The canonical form of � ∈ C(D × D) is defined as
�c(ŷ, y) = �(ŷ, y)−�(y, y). The set of loss functions in canonical form is denoted
C (D × D) or simply C .

Clearly, � ∼a f f �c (set r = 1 and g(y) = −�(y, y)), and so � ∼Br �c. Hence,
a loss function and its canonical form are indistinguishable given any data set on
forecasts, realizations, and covariates. The canonical form is characterized by the
property �c(y, y) = 0 for all y ∈ D. Without loss of generality, we restrict atten-
tion to loss functions in canonical form, i.e., replace C(D × D) with C (D × D).
To simplify notation, we will drop the superscript c in referring to the elements
of C . Note that for � and �′ in C , � ∼a f f �′ if and only if �′ = r ·� for some r > 0.

One cannot possibly determine how the forecaster makes trade-offs between
two possible forecasts if one (or both) of the forecasts is never made. The fol-
lowing condition rules out the existence of completely dominated forecasts. Here
δy ∈ �(D) denotes point mass on y; i.e., δy(E) = 1E (y).

DEFINITION 2.3. We say that �(ŷ, y) ∈ C (D × D) has no bias in case of cer-
tainty (nbcc) if for all y ∈ D, Br

(
δy | D,�

)= {y}.
By the “no-off-support-forecasts” postulated in Assumption 1, if the forecaster

places unit mass on a given value of Yt+1, then they are constrained to report
that value as their forecast. For loss functions satisfying the nbcc property, this
constraint is not binding—even if the set of allowable forecasts is extended to
D, the unique optimal forecast for pt = δy is y. For example, in the framework
of Granger and Machina (2006), where the loss associated with a forecast-
realization pair (ŷ, y) derives from an underlying decision problem, it is auto-
matically true that y ∈ Br

(
δy | D,�

)
. In this case the nbcc condition simply adds

the requirement that the optimal forecast be unique. The nbcc property could also
be replaced with the Morris and Ui (2004, Prop. 2) condition that every forecast
be strictly optimal for some δy .

The set of canonical loss functions with the nbcc property will be written as
Cnbcc = Cnbcc(D × D). The following simple proposition ties this set to what is
often the definition of a loss function in the traditional forecasting literature.



RECOVERABILITY OF FORECASTERS’ PREFERENCES 7

PROPOSITION 2.2. � ∈ Cnbcc ⇔ [�(ŷ, y) ≥ 0 with equality iff ŷ = y].

Proof. Immediate from the definition of the canonical form, the nbcc property,
and the fact that

∫
�(ŷ, z)δy(dz) = �(ŷ, y). n

If #D = M < ∞, then each �(ŷ, y) in Cnbcc(D × D) can be represented as
an M × M matrix with zeros on its main diagonal and M2 − M strictly positive
entries off the diagonal. In this case nonparametric preference recovery is a finite-
dimensional problem. If D is an infinite set then Cnbcc(D × D) is of course
infinite-dimensional.

Forecast (or best response) equivalence requires that forecasts agree for all
probabilities p when supp(p) is the set from which the forecaster must choose.
The following gives a stronger-seeming, but equivalent formulation that will be
useful subsequently.

PROPOSITION 2.3. For �,�′ ∈ Cnbcc(D × D), � ∼Br �′ if and only if
Br (p | F,�) = Br

(
p | F,�′) for all compact F ⊂ D and p ∈ �(F).

This shows that the mapping (p, F) �→ Br (p | F,�) contains no more infor-
mation about the underlying loss function than the mapping p �→ Br (p | �);
i.e., as mentioned previously, off-support forecasts do not carry extra identifying
power.

3. NONPARAMETRIC IDENTIFICATION

We begin with definitions and examples. The examples demonstrate that identifi-
ability can fail either because the sequence {pt } does not vary enough to separate
a given loss function from the other possible loss functions or because essen-
tially different loss functions can be forecast equivalent. Theorem 1 in Section 3.2
shows that such loss functions are “knife-edge” or nongeneric phenomena—tiny
changes in the loss functions make them identifiable. After ruling out this small
set of loss functions, we show that sequences {pt } with a huge amount of varia-
tion are guaranteed to identify any member of the generic set. The examples and
results in Section 3.3 show that much of this variation is also necessary for such
universal identification to obtain.

3.1. Definition and Examples

Let the set L ⊂ Cnbcc represent a model of the forecaster’s loss function. Suppose
that the model is correctly specified in that the forecaster’s true loss function, �◦,
is known to belong to L .4 The identification problem can be stated as follows.
Given an infinite sequence of point forecasts and the underlying conditional dis-
tributions, is it possible to pick out uniquely from L the loss function used in
generating the forecasts? (In the present setting uniqueness means up to affine
equivalence.) More formally, we supply the following definition.
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DEFINITION 3.1. A loss function �◦ ∈ L is identified (in L ) under {pt }∞t=1 ⊂
�(D) if for any sequence of forecasts f ◦

t ∈ Br (pt | �◦) the set
⋂
t≥1

{
� ∈ L : f ◦

t ∈ Br (pt | �)
}

(2)

contains only positive scalar multiples of �◦, and it is potentially identified if it is
identified under some sequence {pt }.

A model L is identified under {pt } if every �◦ ∈ L is identified under {pt }, in
which case we say that {pt } is a universal identifying sequence for L . A model
is potentially identified if it is identified under some {pt }.

Identification of a loss function in a model can fail for two reasons. First, it is
possible that {pt } does not vary enough to pin down a given element of L , i.e., the
forecaster is not observed in a sufficiently diverse set of circumstances. Example
3.1 characterizes how much variability is needed when the variable to be forecast
is binary. Second, the model L might not be potentially identified because it is too
large. Example 3.3 shows that already when D contains three points, there may
exist �,�′ ∈ L such that the two functions are not affine equivalent and for any
sequence {pt } the set (2) contains both � and �′. This is a more fundamental failure
of identification because essentially different loss functions are indistinguishable
from each other no matter how rich the available data set is.

Example 3.1
Let Y ∈ D = {0,1}. An nbcc loss function �(ŷ, y) in canonical form is specified by
the two strictly positive numbers �(1,0) and �(0,1), where �(0,0) ≡ �(1,1) ≡ 0.
At time t , the forecast is ft ∈ argmin f ∈{0,1} [�( f,0)pt (0)+�( f,1)pt (1)] so that
ft = 1(pt (1) ≥ c�), where c� = 1/(1+�(1,0)/�(0,1)) ∈ (0,1) is the optimal cut-
off for predicting 1 vs. 0.5 Clearly, the cutoff c� is the most that can be recovered
from a loss function because � ∼Br �′ iff c� = c�′ . Further, c� = c�′ iff � ∼a f f �′.
The model L = {�,�′}, ��a f f �′, is identified under {pt } iff at least one of the pt

belongs to the interval between the associated cutoffs; a given �◦ is identified in
L = Cnbcc iff there are subsequences {pt ′ } and {pt ′′ } such that pt ′ ↑ c�◦ and pt ′′ ↓
c�◦ ; and L = Cnbcc is identified under {pt } iff {pt (1)} is dense in [0,1], equiva-
lently, {pt } is a universally identifying sequence for Cnbcc iff {pt (1)} is dense.

The next two examples show that for general D best response equivalence does
not imply affine equivalence; hence, Cnbcc(D × D) fails to be potentially identi-
fied. The first example pertains to asymmetric absolute loss, one of the canonical
loss functions in the forecasting literature.6

Example 3.2
Let D = [a,b] ⊂ R, a < b, and α ∈ (0,1). For φ : R→ R a continuous, strictly
increasing function, the following loss functions belong to Cnbcc(D × D):

�
(

ŷ, y
)= [α −1

(
ŷ ≥ y

)](
y − ŷ

)
and �φ

(
ŷ, y
)= [α −1

(
ŷ ≥ y

)]
×(φ(y)−φ

(
ŷ
))

. (3)



RECOVERABILITY OF FORECASTERS’ PREFERENCES 9

Here � �a f f �φ unless for some some r > 0, (y − ŷ) = r · (φ(y) − φ(ŷ)), and
for any distribution p ∈ �(D), Br (p | �) consists of a set of α-quantiles, qα ,
associated with p. The following considerations show that for any φ and p,
Br
(

p | �φ

)= Br (p | �):

(a) the forecaster’s objective under �φ is minŷ
∫

[α − 1(ŷ ≥ y)](φ(y) −
φ(ŷ))p(dy);

(b) this can be rewritten as minẑ
∫

[α−1(ẑ ≥ z)](z − ẑ)p′(dz) where p′(A) :=
p(φ−1(A)) is the image law of p under the mapping φ;

(c) the solutions to the problems in (b) are the α-quantiles, q ′
α , associated with

p′; and

(d) q ′
α is an α-quantile of p′ iff φ−1(q ′

α) is an α-quantile of p.

The second example uses a three-point domain and provides a deeper insight
into the reasons why potential identification can fail in Cnbcc(D × D). This exam-
ple is the key to our theory of generic nonparametric identification.

Example 3.3

For D = {1,2,3}, let [�(ŷ, y)] =
[

0 1 3
1 0 2
3 2 0

]
and [�′(ŷ, y)] =

[
0 3 4
3 0 1
4 1 0

]
where the (i, j)

entry in each matrix corresponds to �(ŷ, y) = �(i, j). Here � and �′ represent
essentially different trade-offs between joint distributions on (ŷ, y) pairs be-
cause they do not represent the same preferences—there are p,q ∈ �(D) and
ŷ ∈ D such that (ŷ, p) �� (ŷ,q) but (ŷ,q) ��′ (ŷ, p). We show that � and �′ are
forecast equivalent; i.e., for every F ⊂ D and every p ∈ �(F), Br (p | F,�) =
Br
(

p | F,�′). This in turn implies that the loss functions in the two-dimensional
cone N (�,�′) := {α�+β�′ : α,β ≥ 0,α +β > 0} are all forecast equivalent, and
so no model containing linearly independent elements from N (�,�′) can be po-
tentially identified.

For #F = 3, i.e., F = D, the best response correspondences p �→ Br (p | D,�)
and p �→ Br

(
p | D,�′) over the unit simplex are depicted in Figure 1. First note

that

FIGURE 1. Best responses under � and �′ when F = D.
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• for p = (p(1), p(2), p(3)) = (1/2,1/2,0), Br (p | D,�) = Br
(

p | D,�′)=
{1,2},

• for q = (0,1/2,1/2), Br (q | D,�) = Br
(
q | D,�′)= {2,3}, and

• for r = (1/2,0,1/2), Br (r | D,�) = Br
(
r | D,�′)= {1,2,3}.

Because the set of probabilities for which a given ŷ ∈ D is an optimal forecast
is closed and convex (see Lemma B.2 in Appendix B), {2,3} ⊂ Br (π | D,�) and
{2,3} ⊂ Br

(
π | D,�′) for π along the line joining q and r ; {1,2} ⊂ Br (π | D,�)

and {1,2} ⊂ Br
(
π | D,�′) for π along the line joining p and r . Because nbcc

is satisfied, moving π a small amount in the direction of any vertex from either
of these indifference sets leads to a unique best forecast. Thus, Br (π | D,�) =
Br
(
π | D,�′) for all π ∈ �(D).

For F � D, #F = 2, note that if one deletes row i and column i from both �
and �′, then the resulting 2 × 2 matrices are positive scalar multiples, so trivially
Br (p | F,�) = Br

(
p | F,�′) for all p ∈ �(F).

There are four additional comments worth making about these two examples.

1. Example 3.3 does not depend on the choice of three-point set D.
2. There is an intimate connection between Examples 3.2 and 3.3. Let F =

{y1, y2, y3} ⊂ [a,b], y1 < y2 < y3 and consider the restriction of the loss
functions in (3) to F . It is straightforward to check that the probability mea-
sure p = (α,0,1 −α) makes the forecaster indifferent between forecasting
y1, y2, or y3 (if off-support forecasts are allowed). Thus, every three-point
restriction of asymmetric absolute loss results in the same type of “bad” loss
function exhibited in Example 3.3.

3. The “problem” with the loss functions in the cone N (�,�′) in Example 3.3
can be understood as follows. The point r at which the forecasts are com-
pletely indifferent imposes two linearly independent restrictions on the six
numbers representing a given member of N (�,�′). Two additional points on
the 1 ∼ 2 and 2 ∼ 3 indifference lines (say, p and q) give two more inde-
pendent restrictions. However, as the point of “total indifference” falls on
the boundary of the unit simplex, there are no other independent indiffer-
ence conditions. Recovery of six numbers up to scale from four equations
is not possible. A loss function in Cnbcc(D × D) with #D = 3 can fall into
two other categories: the point of total indifference may be in the interior
of the unit simplex (with three indifference lines meeting at this point); or it
may not exist (there are only two indifference lines that do not intersect as in
Figure 2 in Section 3.3). It turns out that in both of these cases there are five
linearly independent indifference conditions allowing preference recovery
up to scale.

4. The example can be easily rewritten so that instead of r being the point at
which all three forecasts are optimal, it is either p or q (by nbcc only one
of them can have this property). For each of these three choices, there is a
two-dimensional cone of loss functions with the property that no two linearly
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independent members are identifiable. More generally, let p′ = (a,1−a,0),
q ′ = (0,b,1−b), and r ′ = (c,0,1− c) where 0 < a,b,c < 1. For each such
(a,b,c), there are three, two-dimensional cones of loss functions with lin-
early independent members not being identifiable. Combining, the problem-
atic loss functions are the union of three, five-dimensional manifolds. As
rich as this class is, it is a very small subset of the six-dimensional space
Cnbcc(D × D). Further, the dimension of Cnbcc(D × D) grows quadratically
in #D, whereas the dimension of the problematic manifold grows linearly,
suggesting that this type of problem is strongly nongeneric when D is larger,
though Example 3.2 shows that there can be an infinite-dimensional set
of problematic loss functions when D is an interval.

3.2. Generic Identification

We now show that the failure of potential identification highlighted in Exam-
ples 3.2 and 3.3 is a “rare” occurrence for arbitrary compact D ⊂ R, and that by
ruling out such occurrences, identification is restored.

DEFINITION 3.2. Let F = {x1, x2, x3} be a three-point subset of D. The loss
function � ∈ Cnbcc(D × D) has a three-point boundary problem at F if there
exists p ∈ �(F) with p(xi ) = 0 for some xi ∈ F while Br (p | F,�) = F.

DEFINITION 3.3. Let G = G (D × D) denote the collection of � in Cnbcc(D ×
D) for which there exists a dense D′ ⊂ D such that � does not have a three-point
boundary problem at any F ⊂ D′.

Loosely speaking, G (D × D) collects all loss functions with a dense set of
well-behaved three-point restrictions. For #D = 2, Cnbcc vacuously satisfies Def-
inition 3.3, so that, in this case G = Cnbcc, as was more directly observed in
Example 3.1.

We will show that Cnbcc is a convex, topologically complete, separable metric
space. A subset S of such a space is called relatively shy (Anderson and Zame,
2001) if it satisfies a generalization of being a Lebesgue null set. The subset S is
Baire small (Baire, 1899) if it is the union of (at most) countably many closed
sets with empty interior. A set is totally small if it is both relatively shy and Baire
small.7

The following result is central to the paper.

THEOREM 1. G = G (D × D) has the following properties.

(i) Cnbcc \G is a totally small subset of Cnbcc.

(ii) �,�′ ∈ G are affine equivalent iff they are forecast equivalent. Indeed,
for any �,�′ ∈ G , if � �a f f �′, then there exists a nonempty open set
P = P�,�′ ⊂ �(D) such that the set of p ∈ P for which Br (p | �) ∩
Br
(

p | �′)=∅ is dense in P .
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(iii) If {pt } is a sequence of distributions with {pt ,supp(pt )} dense in �(D)×
K(D), where K(D) is the space of compact subsets of D, then G is iden-
tified under {pt }.8

Part (i) is our statement that G is a large or generic subset of Cnbcc. Part (ii)
states that the way expected loss minimization “assigns” a best response corre-
spondence p �→ Br (p | �) to each � ∈ Cnbcc is essentially unique on G because
the best response functions belonging to nonaffine equivalent loss functions differ
from each other on a dense subset of an open set. Part (iii) shows that with a
tremendous amount of variation in the conditional distribution of the outcome,
G is sure to be identified, i.e., nonparametric identification of a generic set of
preferences is theoretically possible. This is a consequence of the uniqueness of
Br (· | �) over G combined with some continuity properties. In Section 3.3 we will
briefly examine to what extent the variation stated in part (iii) is actually necessary
for the identification of G . An immediate corollary to part (iii) is that if the entire
set G is identified under a sequence {pt }, then each � ∈ G must be identified under
some subsequence {p(�)

t ′ }. Such a subsequence might have less variation than {pt };
e.g., in the binary case, described in Example 3.1, {pt (1)} needs to be dense in
[0,1] for universal identification, whereas to identify a given loss function �, one
only needs a subsequence {p(�)

t ′ (1)} that is dense around c� (i.e., for every ε > 0,

{p(�)
t ′ (1)} is infinitely often in the interval (c� −ε,c�) and infinitely often in the in-

terval (c�,c� +ε)). Finally, we note that it is an open question whether or not there
are sets strictly larger than G that are potentially identified; Theorem 1 gives suffi-
cient conditions, but we do not know if they are necessary for general compact D.

In sum, the key part of Theorem 1, and the one that is perhaps the hardest
to see, is that forecast equivalence implies affine equivalence in G (D × D) for
general compact D. The proof, detailed in Appendix D, proceeds as follows. First
we show that the result holds for #D = 3. We use induction to extend the claim
to finite domains, where the definition of G means that no three-point restriction
of a loss function belonging to it has a boundary problem. For arbitrary compact
D, the general definition of G and the previous step imply that forecast equivalent
loss functions are proportional to each other when restricted to any finite subset
of D′; hence, they must be proportional on D′ itself. As D′ is dense in D and the
loss functions are continuous, proportionality extends to D.

The set G (D× D) has a rather abstract definition, and although being in G (D×
D) is a generic property, it would be good to know about specific classes of loss
functions. The following definition requires that that no convex combination of
any pair �(·, y1) and �(·, y2) be flat as a function of ŷ on a set having positive
Lebesgue measure.

DEFINITION 3.4. For convex D, a loss function � ∈ Cnbcc(D × D) is almost
nowhere an affine function of itself if for all y1, y2 ∈ D, y1 �= y2, for all β ∈ (0,1),
and for all κ ∈ R, λ({ŷ ∈ D : β�( ŷ, y1)+ (1 −β)�( ŷ, y2) = κ}) = 0, where λ is
Lebesgue measure.
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The condition fails if �(·, y1) is a negative affine transformation of �(·, y2) on a
nondegenerate interval for some y1 and y2, as is the case for all of the asymmetric
absolute loss functions in Example 3.2 (take β = α).

PROPOSITION 3.1. For convex D, if � ∈ Cnbcc(D × D) is almost nowhere an
affine function of itself or each �(·, y) is strictly convex, then � ∈ G (D × D).

In many settings, it is easy to verify that nonconvex loss functions satisfy Defi-
nition 3.4. The strictly risk averse case covers generalized mean squared loss, i.e.,
�(ŷ, y) = h(y)(ŷ− y)2, where h(·) is continuous and strictly positive. Generalized
check functions, �(ŷ, y) = |ŷ − y|α1{ŷ<y} + |ŷ − y|γ 1{ŷ≥y} are also included—as
long as α,γ > 1.

As mentioned previously, asymmetric absolute loss violates Definition 3.4, and
it is in fact excluded from G (by Example 3.2 this exclusion is necessary for
identification to obtain). We do not however know whether or not all functions
violating Definition 3.4 are excluded from G .

3.3. Necessary Variation in {pt} for Universal Identification of GGG
In Theorem 1 the denseness of the sequence {pt ,supp(pt )} in �(D)×K(D) is
sufficient to identify all loss functions in G (D × D). It is natural to ask how much
variation is necessary for {pt } to be a universal identifying sequence for G .

In our nonparametric setting it is clearly not possible to recover fully the fore-
caster’s loss function if parts of D never become optimal forecasts as pt varies.9

The following result indicates the amount of variation necessary for the set of
observed forecasts to be dense in D.

PROPOSITION 3.2. If D = [a,b] ⊂ R, P ⊂ �(D) is closed, and
∪p∈P Br (p | �) = D for all � ∈ G , then δy ∈ P for all y ∈ D.

To give some sense of the richness that this result entails, if each p ∈ P◦ has
a Lebesgue density and P := cl(P◦) satisfies the conditions of Proposition 3.2,
then P◦ must be a complete class of distributions.

A sequence of conditional probabilities with full support D can have closure
satisfying the variability requirement of Proposition 3.2 but still not be a univer-
sal identifying sequence for G . To have this property, some variation in supp(pt ),
i.e., the set of allowable forecasts, is also needed. The following examples are de-
signed to highlight how this additional source of variation can reveal information
about the forecaster’s loss function not available otherwise.

• Example 3.4 gives, for #D = 3, an open subset of loss functions in G that
are unidentified under any sequence {pt } with supp(pt ) = D for all t . To
identify loss functions in this open set, it is necessary to observe Br (p | �)
for distributions p supported on two-point subsets of D. For some of these
p’s, Br (p | D,�) ∩ Br (p | �) = ∅, i.e. the forecaster would rather violate
the support condition in Assumption 1.
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FIGURE 2. Best responses over D are fully determined by p, q, r , s.

• Example 3.5 gives, for D any compact convex subset of (0,1], a class
of utility functions parametrized by a single scalar, θ > 0, with the following
properties: each �(·, ·; θ) belongs to G ; for θ �= θ ′, �(·, ·; θ) and �(·, ·; θ ′) are
not forecast equivalent; yet, for distributions p supported on compact convex
subsets of (0,1], the optimal forecast Br (p | �(·, ·; θ)) does not depend on θ .

Example 3.4
Let D = {1,2,3} and fix the probability measures p = (0, p2, p3), p3 > 1/2,
q = (0,q2,q3), q2 > 1/2, r = (r1,r2,0), r1 > 0, and s = (s1,0,s3), s1 > 0 (see
Figure 2). For b > 0 consider the nbcc loss function

[
�p,q,r,s,b(ŷ, y)

]=
⎡
⎢⎣

0 1 b
r2
r1

0 q2
q3

+b
s3
s1

b 1+ p3
p2

b 0

⎤
⎥⎦ , (4)

where, as before, the (i, j) entry in the matrix corresponds to the loss of (ŷ, y) =
(i, j). This class of loss functions is constructed so that

Br
(

p | D,�p,q,r,s,b
)= Br

(
s | D,�p,q,r,s,b

)= {1,3},
Br
(
q | D,�p,q,r,s,b

)= Br
(
r | D,�p,q,r,s,b

)= {1,2}.
Observe that no �p,q,r,s,b has a three-point boundary problem so they all be-

long to G ; on the line segment between p and q, 1 is the unconstrained strict best
response; i.e., for any α ∈ (0,1), Br

(
αp + (1−α)q | D,�p,q,r,s,b

)= {1}; for any
distribution π supported on D, the best response Br

(
π | D,�p,q,r,s,b

)
is com-

pletely determined by the points p, q, r , and s and does not depend on the value
of b. However, for binary distributions supported on {2,3}, the point between
p and q at which the forecaster is indifferent between reporting 2 or 3 is uniquely
determined by b so that, as in Example 3.1, b can be recovered by a suitable se-
quence {pt }. Finally, for any given �p,q,r,s,b, there exists some ε > 0 such that
for all �′ ∈ Cnbcc(D × D) with �′(1,2) = 1 and ‖�− �′‖∞ < ε, �′ is also of the
form (4). This shows that the �p,q,r,s,b constitute an open subset of R5++ and also
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implies that positive scalar multiples of the �p,q,r,s,b constitute an open subset of
R6++ = Cnbcc(D × D).

Example 3.5
For θ > 0, consider the class of loss functions

�
(

ŷ, y; θ)= − 1

1+ θ
ŷ−(1+θ)y + 1

2+ θ
ŷ−(2+θ)y2 + y−θ

(1+ θ)(2+ θ)

defined on D × D, where D is a compact convex subset of (0,1]. Nothing can
be learned about θ by observing choices made by the forecaster over the set
D—consider the forecaster’s problem for p supported on D:

min
ŷ∈D

∫
�
(

ŷ, y; θ) p (dy) = min
ŷ∈D

[
− 1

1+ θ
ŷ−(1+θ)EY + 1

2+ θ
ŷ−(2+θ)EY 2 + const.

]
,

where Y is a random variable with distribution p. Setting the first-order conditions
equal to zero yields −ŷ−(2+θ)EY + ŷ−(3+θ)EY 2 = 0, which one solves for ŷ∗ =
EY 2/EY , and the second-order conditions for a minimum are satisfied for all
θ > 0. To see that this class has nbcc, for p = δr , note that EY 2/EY = r . To
see that this class belongs to G (D × D), and so is potentially identified, note that
their canonical forms are never piecewise affine functions of themselves and apply
Proposition 3.1.

It is worth observing how delicate the problems with identification in Example
3.5 are—small changes in the specification of the loss function would obviate
them.

4. IDENTIFICATION WHEN SOME COVARIATES ARE UNOBSERVED

When the forecaster uses covariates unavailable to the econometrician, there are
two ways to proceed: in the case of smooth loss functions, one can find subclasses
that are identified by the observation that the expected derivative with respect to
the forecast is equal to 0; alternatively, one can look for partial (or set) identifica-
tion results, and this turns out to be quite easy in the binary case.

4.1. A General Strategy for Smooth Loss Functions

It is implicit in Assumption 2 that the econometrician can observe the forecaster’s
entire information set based on which the forecast is produced. We now relax this
assumption and allow the forecaster to possess private information.

Consider the setup described in Example 2.1. We now suppose that the covari-
ates observed by the forecaster can be partitioned as Xt = (Zt , Z ′

t ), where the
econometrician observes Zt but not Z ′

t . Hence, the econometrician identifies the
distribution of Yt+1 conditional on Zt but not conditional on (Zt , Z ′

t ).
Suppose that the density pZt ,Z ′

t
is supported on some interval [at ,bt ] ⊂ [a,b] =

D, at < bt , and let C (1)
nbcc denote the collection of nbcc loss functions that are
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continuously differentiable in ŷ over D. If the forecaster’s true utility function �◦
belongs to C (1)

nbcc, then forecasts f ◦
t falling strictly between at and bt must satisfy

the first-order condition∫
�◦

ŷ

(
f ◦
t , y
)

pZt ,Z ′
t
(y)dy = 0 a.s. (5)

By the law of iterated expectations, equality (5) remains valid if pZt ,Z ′
t

is replaced
by pZt . Then, adopting Definition 3.1, �◦ is identified if the set

⋂
t

{
� ∈ C (1)

nbcc :
∫

�ŷ
(

f ◦
t , y
)

pZt (y)dy = 0

}

contains scalar multiples of �◦ only.
It is easy to make this identification strategy technically more precise, e.g., by

accommodating forecasts that are not interior solutions, etc. We could then ask
similar questions to those underlying Theorem 1: How large a subset of C (1)

nbcc

is potentially identified? How much variation in {pZt } is sufficient for universal
identification within such a set? How much is necessary? We hope to return to
these questions in future research.

4.2. A set Identification Result for the Binary Case

In addition to Example 2.1, consider the setup in Example 3.1. Again, Xt is
partitioned as Xt = (Zt , Z ′

t ), where the econometrician observes Zt but not Z ′
t .

Hence, for any given value z of Zt , only pz := pz(1) = P(Yt+1 = 1|Zt = z) is
identified by the econometrician. However, the observed forecasts are based on
pz,z′ := pz,z′(1) = P(Yt+1 = 1 | Zt = z, Z ′

t = z′); specifically, ft = 1(pZt ,Z ′
t
≥ c�).

Let Qz = P(pZt ,Z ′
t
≥ c� | Zt = z) be the proportion of the time a forecast

of 1 is observed when Zt = z. Although the distribution of the random variable
pZt ,Z ′

t
over the interval [0,1] is unknown, by the law of iterated expectations it

must satisfy E[pZt ,Z ′
t
| Zt ] = pZt with probability 1. Let Rz denote the set of all

distributions R on [0,1] satisfying
∫

[0,1] r R(dr) = pz . For z and c� fixed, the
following constraints on Qz must be satisfied:

inf
R∈Rz

∫
[c�,1]

R(dr) ≤ Qz ≤ sup
R∈Rz

∫
[c�,1]

R(dr).

For pz < c�, these bounds imply Qz ∈ [0, pz/c�]; for pz ≥ cu , Qz ∈ [(pz −
c�)/(1 − c�),1].10 Combining the two constraints and solving for c� yields cu ∈
[(pz − Qz)/(1− Qz), pz/Qz].

As the function z �→ Qz is identified by the econometrician, c� is set-identified
as a point in the interval

⋂
t

[
pZt − Q Zt

1− Q Zt

,
pZt

Q Zt

]
=
[

sup
z

pz − Qz

1− Qz
, inf

z

pz

Qz

]
. (6)
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In the extreme case when no covariates are observed by the econometrician, i.e.,
pz = p = P(Yt+1 = 1) and Qz = Q = P( ft = 1) = P(pZ ′

t
≥ c�), the interval

given in equation (6) may still have nontrivial identifying power as long as (p, Q)
is off of the diagonal of the unit square. With some of the covariates observed by
the econometrician, and sufficient variability in pZt and Q Zt , it is even possible
that the identified set is a singleton.

At the other extreme, when Z ′
t is empty, then Qz is either 0 or 1, depending on

the value of z. Let Z0 = {z : pz < c�} and Z1 = {z : pz ≥ c�}. Then Qz = 0 for z ∈
Z0 and Qz = 1 for z ∈Z1. With the convention that division by zero produces plus
or minus infinity, the interval in (6) reduces to

[
supz∈Z0

pz, infz∈Z1 pz
]
. Thus, the

loss function is (point) identified if supz∈Z0
pz = infz∈Z1 pz . This identification

result is of course the same as in Example 3.1.

5. CONCLUSION

In this paper we studied the problem of recovering forecaster preferences from
a sequence of forecasts and the underlying sequence of forecast densities—the
latter identified by the realizations of the variable of interest and the full set of
covariates in the forecaster’s information set. We showed that within a large non-
parametric class of loss functions, defined by the “no bias in case of certainty”
condition, optimal forecasting rules are not necessarily unique. Nevertheless, the
set of loss functions responsible for this multiplicity turns out to be very small.
We explicitly characterize a generic set of preferences for which nonparametric
recovery is possible provided that the forecaster is observed making choices in
response to a sufficiently wide variety of conditional distributions. Because of
continuity properties of optimal forecasting rules, a dense sequence of distribu-
tions with a dense sequence of supports is guaranteed to identify all generic loss
functions (though any particular loss function might be identifiable with substan-
tially less variation).

In practice, it may be that not all variables in the forecaster’s information set are
observed by the econometrician. This means that the forecast density used by the
forecaster will be unidentified. In the special case when the variable to be forecast
is binary, we give a practically useful partial identification result for identifying
the forecaster’s preferences, but developing formal results for the more general
cases is left for future research.

It is instructive to contrast these identification results with identification in a
parametric setting (cf. Elliott et al., 2003, 2005). If the forecaster’s utility func-
tion depends on a d-dimensional vector of parameters, d finite, then observing
forecasts for d or more linearly independent forecast densities will, under gen-
eral conditions, identify the unknown parameter, at least locally. Thus, unless
the parametric model is exactly correct, the unknown parameter will often be
overidentified in practice, necessitating the use of a minimum distance criterion
for estimation. Making a parametric assumption greatly reduces the amount of
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information needed to achieve identification at the cost of providing a possibly
imperfect approximation to the true loss function.

More generally, the strength of the various identifying assumptions one could
impose on loss functions in addition to the nbcc property can be measured by
how much the necessary variation needed for universal identification is reduced
relative to the general case discussed in Section 3.3. This is also an interesting
direction for future research.

NOTES

1. The following Web site, hosted at the Philadelphia Federal Reserve, lists a number of papers
concerned with testing the rationality of economic forecasts: http://www.phil.frb.org/research-and-
data/real-time-center/survey-of-professional-forecasters/academic-bibliography.cfm (accessed on 2
April 2012; updated from a link cited by Patton and Timmermann, 2005).

2. The Prokhorov distance metrizes the usual weak convergence of probabilities; see Appendix A.
3. The support of a probability p is the smallest closed set C ⊂ D with p(C) = 1.
4. If L is a small subset of Cnbcc (e.g., a parametric model), then one might be worried about

the possibility that L is misspecified. The models we consider will be either Cnbcc itself or large,
nonparametric subsets of Cnbcc . We will therefore maintain the assumption of correct specification.

5. For simplicity only, we assume that ties lead to ft = 1.
6. This example is based on the criterion function proposed by Komunjer and Vuong (2010) to

define a family of conditional quantile estimators. We thank an anonymous referee for this reference.
7. More detailed definitions and a discussion are in Appendix.
8. Denseness inK(D) is in terms of the Hausdorff metric; see Appendix A. A sequence {pt } can be

dense in �(D) without any variation in the support of its elements; therefore, requiring the denseness
of the support sets makes the condition stronger.

9. If there is a set G ⊂ D, open relative to D, such that points in G are never optimal forecasts
under {pt }, then one can alter the loss function on G in a way that further increases loss for ŷ ∈ G
(uniformly in y) and preserves continuity. Such a transformation will not change the best responses
observed under {pt }.

10. The solution arises by considering two-point measures inRz .
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APPENDIX A: Notation and Definitions

We introduce additional notation used in the proofs but not given in the main text. In
addition, we state the definitions of some technical concepts used in the main text or the
proofs.

1. For y ∈ D and ε > 0, Bε(y) = {y′ ∈ D : |y′ − y| < ε} is the ε-ball around y.
2. For A ⊂ D, Aε = ∪y∈A Bε(y), denotes the ε-ball around the set A.
3. The Prokhorov distance between two distributions p,q ∈ �(D) is given by

ρ(p,q) = inf{ε ≥ 0 : ∀A ⊂ D, p(A) ≤ q(Aε)+ ε and q(A) ≤ p(Aε)+ ε}. The dis-
tance between point masses, ρ(δy,δy′), is equal to min{|y − y′|,1}, and ρ(pn, p) →
0 iff

∫
h dpn → ∫

h dp for all bounded continuous h. See, e.g., Corbae, Stinchcombe,
and Zeman (2009, Ch. 9.3) for further properties.

4. For A ⊂ �(D), Aε = ∪p∈A Bρ
ε (p) denotes the Prokhorov ε-ball around the set A.

5. K(D) denotes the class of nonempty, compact subsets of D.
6. dH (A, B) = inf{ε ≥ 0 : A ⊂ Bε, B ⊂ Aε} denotes the Hausdorff distance between

compact sets.
7. A compact-valued correspondence � : R→ K(R) is upper hemicontinuous if for

every r ∈ R and every ε > 0 there exists δ > 0 such that [d(r,r ′) < δ] ⇒ [�(r ′) ⊂
[�(r)]ε ].

8. For � ∈ C and F ⊂ D the restriction of � onto F × F is denoted as �| F×F .

APPENDIX B: Auxiliary Results

We now establish some basic properties of the mapping (p, F) �→ Br (p | F,�).

LEMMA B.1. For any � ∈ Cnbcc, the mapping (p, F) �→ Br (p | F,�) ∈K(F) is upper
hemicontinuous at each (p, F) ∈ �(D)×K(D).

Proof. Let F ∈ K(D) and p ∈ �(D) (p may or may not belong to �(F)). Define
L(ŷ, p, F) := ∫D[−�(ŷ, y)]p(dy). This function is jointly continuous on D × �(D) ×
K(D); in fact, it is constant in the argument F . The optimization problem of inter-
est is maxŷ∈F L(ŷ, p, F), where we consider (p, F) as parameters of the problem.
As F ⊂ D is compact and is trivially a continuous function of (F, p), it is immedi-
ate from the theorem of the maximum (e.g., Corbae et al., 2009, Thm. 4.10.2) that
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Br (p | F,�) = argmaxŷ∈F L(ŷ, p, F) is compact and upper hemicontinuous at each
(p, F) ∈ �(D)×K(D). n

LEMMA B.2. Let F ⊂ D, F compact, and ŷ ∈ F. The set of probability measures for
which ŷ is optimal as a forecast, i.e., the set {p ∈ �(F) : ŷ ∈ Br (p | F,�)}, is closed and
convex.

Proof. Closure comes from Lemma B.1. For convexity, suppose that for all ŷ′ ∈ F ,
∫

�
(

ŷ, y
)

dp(y) ≤
∫

�
(

ŷ′, y
)

dp(y) and
∫

�
(

ŷ, y
)

dq(y) ≤
∫

�
(

ŷ′, y
)

dq(y).

Multiplying the first inequality by α ∈ [0,1], the second inequality by 1 − α, adding the
two together, and using the linearity of the integral yields

∫
�(ŷ, y)d(αp + (1−α)q)(y) ≤∫

�(ŷ′, y)d(αp + (1−α)q)(y). n

The following lemma relies on the nbcc property.

LEMMA B.3. Let � ∈ Cnbcc, F ⊂ D, F compact, p ∈ �(F), and ŷ ∈ Br (p | F,�). If ŷ
is an optimal forecast at p, then there are q’s arbitrarily close to p for which ŷ is the
unique optimal forecast.

Proof. We must show that for all ε > 0, there exists q ∈ �(F), q �= p, ρ(p,q) < ε
such that Br (q | F,�) = {ŷ}. Because ŷ ∈ Br (p | F,�),

∫
�(ŷ, y)dp(y) ≤ ∫ �(ŷ′, y)dp(y)

for all ŷ′ �= ŷ. Because � has nbcc,
∫

�(ŷ, y)dδŷ(y) <
∫

�(ŷ′, y)dδŷ′(y) for all ŷ′ �=
ŷ. Therefore, for any α ∈ (0,1),

∫
�(ŷ, y)d(αδ ŷ + (1 − α)p)(y) <

∫
�(ŷ′, y)d(αδŷ +

(1−α)p)(y) for all ŷ′ �= ŷ. For α sufficiently close to 0, ρ(αδ ŷ + (1−α)p, p) < ε. n

LEMMA B.4. For � ∈ Cnbcc(D× D) and F ⊂ D compact, Br (p | F,�) �= Br (p | F,m)
for some p ∈ �(F) iff there exists a nonempty open P ⊂ �(F) with Br (p | F,�) ∩
Br (p | F,m) =∅ for all p ∈ P .

Proof. (⇐) As Br (p | F,�) and Br (p | F,m) are nonempty for any p and F ,
Br (p | F,�)∩ Br (p | F,m) =∅ implies that Br (p | F,�) �= Br (p | F,m).

(⇒) Now suppose that for a given F ⊂ D, F compact, and p ∈ �(F), Br (p | F,�) �=
Br (p | F,m). Interchanging � and m if necessary, there exist ε > 0 and ŷ ∈ Br (p | F,�)
with d(ŷ, Br (p | F,m)) > 2ε. By upper hemicontinuity, there exists some δ > 0 such
that q ∈ Bρ

δ (p) implies Br (q | F,m) ⊂ [Br (p | F,m)]ε . Because � ∈ Cnbcc, by Lemma
B.3 there is q ′ ∈ Bρ

δ (p) such that Br
(
q ′ | F,�

) = {ŷ}. By upper hemicontinuity again,
for some δ′ > 0, Bρ

δ′(q ′) ⊂ Bρ
δ (p), and for every q ′′ ∈ Bρ

δ′(q ′), Br
(
q ′′ | F,�

) ⊂
[Br
(
q ′ | F,�

)
]ε = (ŷ − ε, ŷ + ε) and, by construction, Br

(
q ′′ | F,m

)⊂ [Br (p | F,m)]ε .
As d(ŷ, Br (p | F,m)) > 2ε, for every q ′′ in the ρ-open set Bρ

δ′(q ′), Br
(
q ′′ | F,�

)
and

Br
(
q ′′ | F,m

)
are disjoint. n

APPENDIX C: Notions of Smallness and Genericity

We now describe in some detail the notion of smallness used in Theorem 1. Relative
shyness has a rather involved definition. If C is a separable, topologically complete, convex
subset of a toplogical vector space, we say that a set S ⊂ C is shy relative to C if for
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all c ∈ C , all neighborhoods Uc of c, and all ε > 0, there exists a compactly supported
η ∈ �(C) such that η(Uc ∩ [εC + (1 − ε)c]) = 1 and (∀x ∈ V )[η(S′ + x) = 0]. A useful
sufficient condition for shyness is finite shyness, which takes η to be the continuous affine
image of the uniform distribution on the unit ball in Rk for some k. See Anderson and
Zame (2001) for further details.

DEFINITION C.1. If C is a separable, topologically complete, convex subset of a topo-
logical vector space, we say that a set S ⊂ C is totally small if it is both Baire small
and relatively shy (with respect to C). A set is totally large (or generic in C) if it is the
complement of a totally small set.

Remarks.

1. A metric space (X,d) is topologically complete if there is some metric e that induces
the same topology as d, and X is complete under e.

2. In our context the ambient vector space is C (D × D) equipped with the topology
induced by the uniform (sup) metric, i.e., d∞(�,m) = supŷ,y∈D |�(ŷ, y)−m(ŷ, y)|.
This space is shown to be topologically complete subsequently. The convex subset
of interest relative to which shyness is considered is C = Cnbcc.

3. As stated in the text, a set is Baire small if it is the countable union of closed sets
with no interior.

4. A subset of a finite-dimensional topologically complete C is relatively shy if and only
if it is a Lebesgue null subset of the affine hull of C . More generally, relatively shy
sets have empty relative interior, and the class of relatively shy sets is closed under
countable union (again, see Anderson and Zame, 2001, for details). Such properties
are then inherited by totally small sets; e.g., the class of totally small sets is closed
under countable unions; a totally small set has no interior (relative to C), and if C is
finite-dimensional, a totally small set must have Lebesgue measure zero, though this
is not sufficient.

5. The combination of Baire smallness and Lebesgue measure zero is a strictly stronger
criterion for smallness than either of the two taken separately, and the same is
true for Baire smallness and relative shyness. Consider the following example. Let
{qn : n ∈ N} enumerate the points in Rk with rational coordinates. Let E(ε) :=
∪n Bε/2n (qn), an open dense set having Lebesgue measure K εk for some K > 0.
Therefore, F(ε) := [E(ε)]c is a closed set with no interior. It follows that ∪n F(1/n)
is a Baire small set having full Lebesgue measure and ∩n E(1/n) is a Baire large set
having Lebesgue measure zero.

To guarantee that relative shyness and Baire smallness are useful, we must show the
following result.

LEMMA C.1. Cnbcc(D × D) is separable and topologically complete.

Proof. If D is finite, separability and topological completeness are trivial, though the
proof for general compact D can also be applied. The outline of the proof is as follows.

(a) We define a suitable metric d on Cnbcc(D × D) for compact D.

(b) Then we show that it is topologically equivalent to the uniform (sup norm) metric
d∞.

(c) Then we show that Cnbcc(D × D) is complete in the newly defined metric.
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Step (a): Defining a metric for Cnbcc(D × D) for compact D. For k ∈ N and
� ∈ Cnbcc(D × D), let rk(�) = min|ŷ−y|≥1/k |�(ŷ, y)|, and for �,m ∈ Cnbcc(D × D),
let fk(�,m) = min{1, |1/(rk(�))−1/(rk(m))|}. Define

d(�,m) = d∞(�,m)+∑k
1
2k fk(�,m).

Here �(ŷ, y) = 0 iff ŷ = y implies rk(�) > 0, so d is well defined, and it is immediate that
d is a metric.

Step (b): Topological equivalence. We first show that for each k and all �,m, |rk(�)−
rk(m)| ≤ d∞(�,m). To see this, note that the set {(ŷ, y) ∈ D × D : |ŷ − y| ≥ 1/k} ⊂ R2

is compact; hence, we can choose from it (ŷ0, y0) such that |m(ŷ0, y0)| = rk(m). Further,
we can write

rk(�) ≤ ∣∣�(ŷ0, y0
)∣∣= ∣∣∣�(ŷ0, y0

)−m
(

ŷ0, y0
)+m

(
ŷ0, y0

)∣∣∣
≤
∣∣∣�(ŷ0, y0

)−m
(

ŷ0, y0
)∣∣∣+
∣∣∣m (ŷ0, y0

)∣∣∣
≤ d∞ (�,m)+ rk(m).

Reversing the roles of � and m yields
∣∣rk(�)− rk(m)

∣∣≤ d∞ (�,m) . (C.1)

Because d(�,m) ≥ d∞(�,m), if d(�n,�) → 0, d∞(�n,�) → 0. Suppose that
d∞(�n,�) → 0 and pick ε > 0. We must show that there exists N ∈ N such that for all
n ≥ N , d(�n,�) < ε. Pick N1 such that for all n ≥ N1, d∞(�n,�) < ε/3. Pick K such that
∑k>K 1/2k < ε/3. Finally, using (C.1), pick N2 such that for all n ≥ N2 and for all k ≤ K ,
fk(�n,�) < ε/(3K ). For all n ≥ max{N1, N2},
d (�n,�) = d∞ (�n,�)+∑k≤K

1
2k fk (�n,�)+∑k>K

1
2k fk (�n,�) < ε

3 + ε
3 + ε

3 .

Step (c): d-completeness. Let �n be a d-Cauchy sequence in Cnbcc(D × D), hence a
d∞-Cauchy sequence in C(D × D). Because C is d∞-complete, there exists a � ∈ C such
that d∞(�n,�) → 0. All that is left to show is that � ∈ Cnbcc. Because �n(ŷ, y) ≥ 0 for all
(ŷ, y), and d∞(�n,�) → 0 implies �n(ŷ, y) → �(ŷ, y) pointwise, it follows that �(ŷ, y) ≥ 0
for all (ŷ, y). Suppose that � /∈ Cnbcc, i.e., �(ŷ0, y0) = 0 for some ŷ0 �= y0. Let k0 be the
smallest value of k with |ŷ0 − y0| ≥ 1/k. As �n(ŷ0, y0) → 0, it follows that rk(�n) →n 0
for all k ≥ k0; in fact, supk≥k0

rk(�n) = rk0(�n) →n 0. Therefore, for any fixed integer
n ∈ N there exists J ∈ N so that fk(�n,�n+ j ) = 1 for all j ≥ J and k ≥ k0. Hence, for all

j large enough, d(�n,�n+ j ) ≥ ∑k≥k0 1/2k fk(�n,�n+ j ) ≥ 1/2k0 , contradicting �n being a
d-Cauchy sequence. n

APPENDIX D: Remaining Proofs

Proof of Proposition 2.3. (⇐) Suppose that Br (p | F,�) = Br
(

p | F,�′) for all com-
pact F ⊂ D and p ∈ �(F). For any p ∈ �(D), F = supp(p) is a compact set, so that
� ∼Br �′.

(⇒) Now suppose that there exist some compact F ⊂ D and p ∈ �(F) such that
Br (p | F,�) �= Br

(
p | F,�′). Then, by Lemma B.4, there is an open set P ⊂ �(F) such
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that Br (p | F,�)∩ Br
(

p | F,�′) = ∅ for all p ∈ P . Pick any p ∈ P and any q ∈ �(F)
with support F . For α > 0 sufficiently small, pα := αq + (1−α)p is also contained in P ,
and its support is also F . Hence, Br (pα | supp(pα),�) �= Br

(
pα | supp(pα),�′). n

Proof of Theorem 1(i). We first show that for finite D, Cnbcc \G is Lebesgue-negligible
in Cnbcc. Given #D = M , we show in particular that the closure of Cnbcc \G has Lebesgue

measure 0 as a subset of (the negative orthant of) RM2−M . If M = 2 then Cnbcc \ G is
empty. Let M ≥ 3, and pick an arbitrary three-point subset F = {y1, y2, y3} from D. Re-
stricted to F × F , any u ∈ Cnbcc can be represented by six positive numbers, a through f ,
ordered clockwise as

ŷ ↓
y1 0 a b
y2 f 0 c
y3 e d 0
y → y1 y2 y3 .

According to Definition 3.3, if � fails to be in G , then there must be a yi ∈ F and p ∈
�(F) with p(yi ) = 0 such that Br (p | F,�) = F . Suppose, for the sake of concreteness,
that yi = y2, so that p = (α,0, (1−α)) for some α ∈ (0,1). Note that Br (p | F,�) = F iff
b(1−α) = f α + c(1−α) = eα, equivalently, iff

[
0 (1−α) (α −1) 0 0 −α
0 0 (1−α) 0 −α α

]
⎡
⎢⎢⎢⎢⎢⎢⎣

a
b
c
d
e
f

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[

0
0

]
. (D.1)

For each α ∈ [0,1], let Sα(y2) be the set of (a,b,c,d,e, f ) ∈R6 satisfying (D.1). Because
the 2×6 matrix is of full row rank for all α, each Sα(y2) is a four-dimensional linear sub-
space of R6. Because α smoothly parametrizes the Sα(y2), S(y2) := ∪α Sα(y2) is a closed
manifold of dimension at most 5. Because Cnbcc is convex and has nonempty interior in
R6, S(y2) ∩ Cnbcc is negligible in Cnbcc, i.e., has Lebesgue null closure. This argument,
repeated two more times, covers the cases where yi = y1 and yi = y3. Finally, the result
follows as there are only finitely many subsets of D that are of size 3, and a finite union of
negligible sets is negligible.

We now show that for infinite compact D, Cnbcc \G is totally small. Let D′ be an arbi-
trary, countable dense subset of D (which exists because D is compact). There is a count-
able class of three-point sets, F ⊂ D′. For each F , consider the three five-dimensional
closed manifolds S(y1), S(y2), S(y3) constructed in the last step. The set of � in Cnbcc

such that �|F×F falls in S(y1)∪ S(y2)∪ S(y3), and hence fails the conditions in Defini-
tion 3.3, is finitely shy and Baire small (�|F×F is six-dimensional if � varies freely). By
Lemma C.1, Cnbcc is topologically complete, implying that the countable union of totally
small sets is totally small. n

Proof of Theorem 1(ii). Suppose that the first claim in part (i) has already been
shown, i.e., for any �,m ∈ G , � �a f f m, it is true that � �Br m. Then, by Proposition
2.3 and Lemma B.4, there exist F ⊂ D, F compact, and P ⊂ �(F), P open, such that
Br (p | F,�)∩ Br (p | F,m) = ∅ for all p ∈ P . Fix any p ∈ P and ε > 0. We must show
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that for some p′ ∈ Bρ
ε (p), Br

(
p′ | supp(p′),�

)∩ Br
(

p′ | supp(p′),m
)=∅. To construct

such p′, pick any q ∈ �(F) with full support F and some α ∈ (0,1) small enough such
that p′ := αq + (1 −α)p is contained in P and ρ(p, p′) < ε. Therefore, Br

(
p′ | �

)
and

Br
(

p′ | m
)

are disjoint, and the proof is complete.
We will now show that if �,m ∈ G (D × D), [� ∼Br m] implies � ∼a f f m. The outline

of the proof is as follows:

(I) Show the result for #D = 3;

(II) use induction to show the result for #D = M < ∞;

(III) use continuity and denseness of D′ in D to show the result when D is a general
compact set.

Part (I): ###D=3. To keep the notation simple, let D = {1,2,3}. Each � ∈ Cnbcc(D × D)
can be represented as six positive numbers, a through f , ordered clockwise as

ŷ ↓
1 0 a b
2 f 0 c
3 e d 0
y → 1 2 3 .

As discussed in comment 3 after Example 3.3, each � ∈ Cnbcc(D × D) can be classified
according to whether Br (p | D,�) = D can happen for some p ∈ �(D). There are three
mutually exclusive cases:

Case 0. There is an i ∈ D such that if p(i) = 0 then Br (p | D,�) = {1,2,3}. As this case
is ruled out in the definition of G , we need only consider the next two cases.

Case 1. There exists p = (p(1), p(2), p(3)), p(i) > 0, i = 1,2,3, such that Br (p | D,�) =
{1,2,3}.

Case 2. There is no p ∈ �(D) such that Br (p | D,�) = D. Equivalently, there is an i ∈ D
such that for all α in some nonempty open interval (r,s) ⊂ (0,1), if p(i) = 0,
p( j) = α, and p(k) = 1−α, then Br (p | D,�) = {i} and, further, Br (p | D,�) =
{i, j} when α = s and Br (p | D,�) = {i,k} when α = r . This case is depicted in
Figure 2.

Case 1. In this case there exist distributions satisfying

p = (p1, p2,0) with Br (p | D,�) = {1,2},
q = (q1,0,q2) with Br (q | D,�) = {1,3},
r = (r1,r2,r3) with Br (r | D,�) = {1,2,3},
s = (0,s1,s2) with Br (s | D,�) = {2,3},
where p1, p2,q1,q2, etc., are all strictly positive. We will show that the indifference
conditions implicit in these best response sets determine � up to a multiplicative con-
stant. If m ∈ Cnbcc is another loss function with � ∼Br m then by Proposition 2.3,
Br (π | D,�) = Br (π | D,m) for π = p,q,r,s. Therefore, m must be a scalar multiple
of �, i.e., � ∼a f f m.

Let us normalize a to 1. Combining this normalization with the five equalities that come
from the indifference conditions for p,q,r , and s (there are two conditions associated with
r ), we obtain the following six linear equations in the six unknowns, a,b,c,d,e, and f :
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⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
p2 0 0 0 0 −p1
0 q2 0 0 −q1 0
r2 r3 0 −r2 −r1 0
0 0 r3 −r2 −r1 r1
0 0 s2 −s1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a
b
c
d
e
f

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

normalization
Br (p | D,�) = {1,2}
Br (q | D,�) = {1,3}
Br (r | D,�) = {1,2,3}
Br (r | D,�) = {1,2,3}
Br (s | D,�) = {2,3}

. (D.2)

We will show that the determinant of the 6 × 6 coefficient matrix is nonzero, meaning
that there is exactly one normalized � ∈ Cnbcc with the best response sets determined by
p,q,r , and s. To do this, we first expand into cofactors along the top row, which has only
one nonzero entry, 1. In the remaining 5×5 matrix, we again expand into cofactors along
the top row, which has only one nonzero entry, −p1. Thus, we arrive at needing to show
that

det

⎡
⎢⎢⎣

q2 0 0 −q1
r3 0 −r2 −r1
0 r3 −r2 −r1
0 s2 −s1 0

⎤
⎥⎥⎦= q2 det

⎡
⎣ 0 −r2 −r1

r3 −r2 −r1
s2 −s1 0

⎤
⎦− r3 det

⎡
⎣ 0 0 −q1

r3 −r2 −r1
s2 −s1 0

⎤
⎦ �= 0.

After expanding the 3×3 matrices, this is q2r1s1r3 +r3q1r2s2 −q1s1r2
3 . Because r3 > 0,

we take it out as a common factor so that we need to show q2r1s1 +q1r2s2 −q1s1r3 �= 0.
In this last expression, replace q2 with (1−q1) and s2 with (1−s1) and rearrange, arriving
at needing to show r1s1(1 − q1)+ r2q1(1 − s1)+ r3q1s1 �= 0. Because each term in this
sum is strictly positive, this is indeed the case.

Case 2. For concreteness, suppose that Assumption 1 binds on edge E2 of the unit
simplex. There are probability distributions such that

p = (p1, p2,0) with Br (p | D,�) = {1,2},
q = (q1,0,q2) with Br (q | D,�) = {1,2},
t = (t1,0, t2) with Br (t | D,�) = {2} and Br (t | supp(t),�) = Br (t | �) = {1,3},
r = (r1,0,r2) with Br (r | D,�) = {2,3}, and

s = (0,s1,s2) with Br (s | D,�) = {2,3},
where p1, p2,q1,q2, etc., are all strictly positive. The strategy of proof is the same as in
Case 1; i.e., we will show that the indifference conditions implicit in these best response
sets determine � up to scale.

Again, we normalize a to 1. Combining this normalization with the five equalities that
come from the indifference conditions for p,q,r,s, and t , we have the following six linear
equations in the six unknowns, a,b,c,d,e, and f :
⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
p2 0 0 0 0 −p1
0 q2 −q2 0 0 −q1
0 t2 0 0 −t1 0
0 0 r2 0 −r1 r1
0 0 s2 −s1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a
b
c
d
e
f

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

normalization
Br (p | D,�) = {1,2}
Br (q | D,�) = {1,2}
Br (t | supp(t),�) = {1,3}
Br (r | D,�) = {2,3}
Br (s | D,�) = {2,3}

(D.3)

Again, we will show that the determinant of the 6 × 6 coefficient matrix is nonzero. We
first expand into cofactors along the top row, which has only one nonzero entry, 1. In the
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remaining 5 × 5 matrix, we expand into cofactors along the third column, which has only
one nonzero entry, −s1. In the remaining 4×4 matrix, we expand along the top row, which
has only one nonzero entry, −p1. The remaining 3×3 matrix is

⎡
⎣q2 −q2 0

t2 0 −t1
0 r2 −r1

⎤
⎦ which has determinant q2

[∣∣∣∣ 0 −t1
r2 −r1

∣∣∣∣+
∣∣∣∣t2 −t1
0 −r1

∣∣∣∣
]

= q2
[
t1r2 − t2r1

]
.

Combining all of this, the determinant of the 6 × 6 matrix is κ[t1r2 − t2r1], where κ =
−s1 p2q2 < 0. The term [t1r2 − t2r1] can be rewritten as [t1(1−r1)−(1− t1)r1] = [t1 −r1].
Because t �= r , we know that t1 �= r1.

Part (II): Induction on ###D. The inductive hypothesis is that Theorem 1(i) holds for
#D ≤ M , where M is some fixed integer greater than or equal to three. The inductive step
is to show that the theorem also holds for #D = M +1.

Let D ⊂ R with #D = M +1 and suppose that for �,m ∈ G (D × D), � ∼Br m. To keep
the notation simple, put D = {1,2, . . . , M, M + 1}. It follows immediately from Proposi-
tion 2.3 that � ∼Br m implies �|F×F ∼Br m|F×F for F ⊂ D.

Let F1 = {1, . . . , M} and F2 = {2, . . . , M +1}. As �|F1×F1 ∼Br m|F1×F1 , by the induc-
tive hypothesis there exists a unique r1 > 0 such that �|F1×F1 = r1 · m|F1×F1 . Also, as
�|F2×F2 ∼Br m|F2×F2 , by the inductive hypothesis there exists unique r2 > 0 such that
�|F2×F2 = r2 ·m|F2×F2 . By considering the common part of F1 × F1 and F2 × F2, which
includes points at which � and m are both nonzero, we must have r1 = r2 := r . There-
fore, �(ŷ, y) = r · m(ŷ, y) must hold for all (ŷ, y) ∈ D × D except possibly at the points
(1, M + 1), (M + 1,1); see Table 1. Replacing F2 with F3 = {1,3,4, . . . , M, M + 1} ⊂ D
and repeating the arguments above shows that �(ŷ, y) = r · m(ŷ, y) holds even at these
points.

TABLE 1. D× D

(1,1) (1,2) ... (1, M) (1, M +1)
F1 × F1 (2,1) (2,2) ... (2, M) (2, M +1)

...
...

...
...

(M,1) (M,2) ... (M, M) (M, M +1) F2 × F2
(M +1,1) (M +1,2) ... (M +1, M) (M +1, M +1)

Part (III): Compact D. Suppose that for �,m ∈ G (D × D), � ∼Br m. The previous
two steps have shown that there exists a unique r > 0 such that for all finite F ⊂ D′,
�|F×F = r · m|F×F . This implies that �|D′×D′ = r · m|D′×D′ . Because D′ × D′ is dense
in D × D and � and m are continuous, � = r ·m. n

Proof of Theorem 1(iii). Letting Ft = supp(pt ), consider a dense sequence {(pt , Ft )}
in �(D) ×K(D). Fix �◦ ∈ G . By Proposition 2.3 and Lemma B.4, for any � ∈ G ,
� �a f f �◦, there exist F ′ ⊂ D, F ′ compact, and p′ ∈ �(F ′) such that Br

(
p′ | F ′,�◦)∩

Br
(

p′ | F ′,�
) = ∅. As both best response sets are compact, this implies ε :=

dH (Br
(

p′ | F ′,�◦) , Br
(

p′ | F ′,�
)
) > 0. Because the mapping (p, F) �→ Br (p | F,�)

is upper hemicontinuous, there exists δ > 0 such that ρ(p, p′) < δ, dH (F, F ′) < δ
implies Br (p | F,�◦) ⊂ [Br

(
p′ | F ′,�◦)]ε/2 and Br (p | F,�) ⊂ [Br

(
p′ | F ′,�

)
]ε/2.
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As {(pt , Ft )} is dense, there exists some t such that ρ(pt , p′) < δ and dH (Ft , F ′) < δ.
Hence, Br (pt | Ft ,�

◦)∩ Br (pt | Ft ,�) = ∅. As � was arbitrary (apart from � �a f f �◦),
�◦ is identified up to scale as t → ∞. n

Proof of Proposition 3.1. Let {Rn}n∈N be an independent and identically distributed
sequence of random variables, defined on a probability space (�,F , P), with the distri-
bution of each Rn having a continuous, strictly positive Lebesgue density on D. We will
show that for any � ∈ Cnbcc(D × D) that is nowhere a piecewise affine function of itself
or satisfies each �(·, y) being strictly convex, there exists a probability 1 set of ω such
that the dense set {Rn(ω)} serves as the D′ in Definition 3.3. That is, for each three-point
set F ⊂ D′ and p ∈ ∂�(F), it follows that Br (p | F,�) �= F , where ∂�(F) denotes the
boundary of the unit simplex.

Step 1. Because the Rn have a strictly positive density, there is an �′ ∈F with P(�′) = 1
such that for all ω ∈ �′ and n �= n′, Rn(ω) �= Rn′(ω), and {Rn(ω)}n∈N is dense in D.

Step 2. Let {n1,n2,n3} be one of the countably many subsets of N containing three
distinct points, and condition on Rn1 = y1 and Rn2 = y2, y1 �= y2. By nbcc, the unique
probability on {y1, y2} making y1 and y2 indifferent as forecasts is αδy1 +(1−α)δy2 where
α = �(y1, y2)/(�(y1, y2)+�(y2, y1)) ∈ (0,1). Letting κ = α�(y2, y1) = (1 −α)�(y1, y2),
both � being nowhere a piecewise affine function of itself and each �(·, y) being strictly
convex implies that

P
({

ω : α�
(

Rn3 , y1
)+ (1−α)�

(
Rn3 , y2

)= κ
})= 0 (D.4)

because Rn3 has a density with respect to Lebesgue measure. Because we conditioned
on arbitrary y1 �= y2, there is a probability 1 set of ω, call it �(n1,n2,n3), for which
there exists no p ∈ ∂�(F) with Br (p | �, F) = F where F = {Rn1 , Rn2 , Rn3 }. Define
�′′ =⋂�(n1,n2,n3) where the intersection is taken over three-point subsets of N so that
P(�′ ∩�′′) = 1.

Step 3. For all ω in �′ ∩�′′, and for all three-point subsets, F = {y1, y2, y3} of the dense
set D′ = {Rn(ω)}n∈N, there is no p ∈ ∂�(F) with Br (p | F,�) = F . n

Proof of Proposition 3.2. Without loss of generality, we set D = [0,1]. Considering
the loss function �(ŷ, y) = (y − ŷ)2, we know that δ1 ∈ P because the only p with 1
solving minŷ∈supp(p)

∫
�(ŷ, y) p(dy) is p = δ1. Similarly, δ0 ∈P . Suppose that there exists

y◦ ∈ (0,1) such that δy◦ /∈ P . We will then construct a loss function � ∈ G such that y◦
does not belong to Br (p | �) for any p in P . This, however, contradicts the definition
of P .

As P is closed, there exists some ε > 0 such that ρ(δy◦ ,P) > ε. The definition
of the Prokhorov metric then implies p(Bε(y◦)) < 1 − ε for all p ∈ P . Further, because
δ0,δ1 ∈ P , decreasing ε if necessary, Bε(y◦) = (y◦ − ε, y◦ + ε) ⊂ (0,1). By continuous
interpolation, there exists a loss function � with the properties

(a) �(1, y) = er |y−1| −1 for some r satisfying 0 < r < log(1+ ε2).

(b) �(y◦, y) = es|y−y◦| −1 for some s > 1
ε log(1+ ε).

(c) � is almost nowhere a piecewise affine function of itself and hence is in G .
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The choice of r ensures that �(1, y) < ε2 for y ∈ D. The choice of s ensures that �(y◦, y) >
ε for |y − y◦| > ε. Pick an arbitrary p ∈ P . As established previously p(Bε(y◦)) < 1 − ε
so that p(D \ Bε(y◦)) ≥ ε. In particular,
∫

�(y◦, y) p(dy) =
∫

Bε (y◦)
�(y◦, y) p(dy)+

∫
D\Bε (y◦)

�(y◦, y) p(dy) > ε2.

On the other hand,
∫

�(1, y)p(dy) < ε2 so that y◦ cannot be an optimal forecast. n


