
Assignment #2 for Mathematics for Economists
Fall 2018

Due date: Monday, Oct 15, 2018

Topics: Compactness and continuity; convexity and concavity; FOCs for concave func-
tions; maximization of concave functions over convex sets; the separating hyperplane
theorem and the Kuhn-Tucker theorem; differentiable comparative statics.

Readings: CSZ, Ch. 4.4-9, 4.11, Ch. 5.1-8, Ch. 6.1-2.

Handout with Ben-Porath’s proof of the Kuhn-Tucker theorem.

A. CSZ, Exercise 4.8.4.
B. CSZ, Exercise 4.8.17.
C. The boundary of a set E in a metric space (M,d) is defined by ∂(E) = cl(E) ∩

cl(Ec).
1. Give ∂Br(x).
2. Give ∂(E) if both E and Ec are dense in M .
3. Show that E ∪ ∂(E) = cl(E).
4. Show that x ∈ ∂(E) if and only if it is an accumulation point of both E and Ec.
5. Show that if E ⊂ Rn is convex, then so is cl(E).
6. If E = {(x1, x2) ∈ R2 : x21 + x22 ≤ 1}, give ∂(E).
7. If E = {(x1, x2, 0) ∈ R3 : x21 + x22 ≤ 1}, give ∂(E). [The answer is different than

the previous one.]
8. CSZ, Exercise 5.5.7.

D. Let d(·, ·) and ρ(·, ·) be two metrics on M . The metrics are equivalent if [d(xn, x)→
0]⇔ [ρ(xn, x)→ 0].

1. Let d(·, ·) be a metric on M and define ρ(x, y) = d(x,y)
1+d(x,y)

. Show that ρ(·, ·) is a

metric and that it is equivalent to d(·, ·).
2. Generalize the previous to show that if h : R+ → R+ is strictly increasing and

concave, then ρ(x, y) := h(d(x, y)) is a metric equivalent to d(·, ·). To what
extent can you remove the adjective “strictly” and still have this result be true?

3. For M = R, define e(x, y) = |Φ(x)− Φ(y)| where Φ(r) = er

1+er
. Show that e(·, ·)

is a metric and that it is equivalent to d(x, y) = |x− y|.
4. In the previous problem, characterize the e-Cauchy sequences and prove that

your characterization is correct.
E. Compactness is a very thorough form of completeness: show that (K, d) is compact

if and only if (K, ρ) is a complete metric space for every metric ρ(·, ·) that is
equivalent to d(·, ·).

F. Compactness in R and Rk.
1. If rn → r is a sequence in R, then there exists a monotone subsequence rnk

.
2. Using the previous, show that if rn is a bounded sequence in R, then there exists

a convergent subsequence.
3. Using the previous, show that if rn is a bounded sequence in Rk, then there

exists a convergent subsequence.
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4. Using the previous, show that K ⊂ Rk is compact if and only if it is closed and
bounded.

5. Using the previous, show that K ⊂ Rk is compact if and only if every continuous
f : K → R achieves its maximum on K.

6. The previous statement is true for all metric spaces. Find its proof in CSZ and
figure out what makes it more difficult to prove. [There is nothing to hand in
for this problem.]

G. Suppose that K is a compact set of possible decisions and allocations that a society
consisting of individuals i = 1, . . . , I could make, and that each i has preferences
that can be represented by a continuous ui : K → R. A point x∗ ∈ K is weakly
Pareto optimal if there is no y ∈ K such that ui(y) > ui(x

∗) for each i. Let WP
denote the set of weakly Pareto optimal x∗ in K.
1. Let x∗(Λ) = argmaxx∈K

∑
i λiui(x) where Λ = (λi)

I
i=1 > 0 (i.e. is weakly positive

in each component and is not equal to 0). Show that each x∗(Λ) is a non-empty
subset of WP.

2. Give an example in which WP contains elements that are not of the form x∗(Λ)
for any Λ. [It is sufficient to give the set of possible utility levels for this.]

3. For each i, let ϕi : R → R be a continuous, strictly increasing function and
define u◦i (x) = ϕi(ui(x)). Show that WP does not change with these new utility
functions. Give an example in which the union of the set of x∗(Λ) changes after
this kind of monotonic transformation of the utility functions.

4. For a vector v ∈ RI and Λ > 0, define U(x; v,Λ) = mini λi(ui(x) − vi) and
x∗(v, λ) = argmaxx∈K U(x; v,Λ). Show that WP is the union of the x∗(v,Λ).

5. Show that replacing the ui(·) by the monotonic transformations u◦i = ϕi(ui(·))
does not change the union of the x∗(v,Λ). [There is a hard way to do this, and
an easy way.]

H. Suppose that (K, d) is a compact metric space and that f : K → K is strictly
non-expansive, that is, suppose that f satisfies d(f(x), f(y)) < d(x, y) for all
x, y ∈ K.
1. Show that the function (x, y) 7→ d(f(x), f(x)) from K ×K to R+ is continuous

(i.e. show that if xn → x and yn → y, then d(f(xn), f(yn))→ d(f(x), f(y))).
2. Show that f has a unique fixed point in K.
3. Let M be the non-compact metric space R+ with the usual metric and define
f : M →M by f(x) = x+ 1/ex

2
.

a. Show that f is strictly non-expansive.
b. Show that f has no fixed point.
c. Define x◦ to be a nummerical fixed point if |x◦ − f t(x◦)| < 1/1, 000, 000 for

all t ∈ {1, . . . T}. If T = 10, how many steps will the numerical procedure
with x0 = 1 and xt+1 = f(xt) take to reach a numerical fixed point?

I. For a metric space (M,d), Cb(M) denotes the set of continuous and bounded
functions f : M → R. The distance between functions f, g ∈ Cb(M) is given by
d(f, g) = supx∈M |f(x) − g(x)|. This problem asks you to show that Cb(M) is a
complete metric space, i.e. that every Cauchy sequence of functions in Cb(M) has
a limit that also belongs to Cb(M).
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1. Show that d(·, ·) is a metric.
2. Show that if fn is a Cauchy sequence in Cb(M), then for each x ∈ M , fn(x) is

a Cauchy sequence in R. Let f(x) denote limn fn(x).
3. Show that f ∈ Cb(M), that is, show that f is both bounded and continuous.
4. Show that d(fn, f)→ 0.

J. Problems related to the Theorem of the Maximum.
1. CSZ, Exercise 4.10.4.
2. CSZ, Exercise 4.10.5.
3. CSZ, Exercise 4.10.25.

K. More problems related to the Theorem of the Maximum.
1. CSZ, Exercise 6.1.19.
2. CSZ, Exercise 6.1.20

L. CSZ, Exercises 5.1.18 and 5.1.19.
M. CSZ, Exercise 5.1.40.
N. CSZ, Exercise 5.4.9.
O. CSZ, Exercise 5.4.24.
P. [A primitive version of the Kuhn-Tucker theorem] Suppose that: K is a compact

convex subset of an openG ⊂ R`; K has a non-empty interior; f : G→ R is concave
and has continuous first derivatives. Let x∗ solve the problem maxx∈K f(x). Show
the following.
1. If x∗ is in the interior of K, then Df(x∗) = 0.
2. If x′ is in the interior of K and Df(x′) = 0, then x′ solves maxx∈K f(x).
3. If x∗ ∈ ∂(K), then for all x ∈ K, (x− x∗) ·Df(x∗) ≤ 0.
4. Suppose now that K = {x : gm(x) ≤ bm,m = 1, . . . ,M} where each gm(·) is a

continuously differentiable, convex function. Show thatDf(x∗) =
∑

m λmDgm(x∗)
for a non-negative set of numbers λm, m = 1, . . . ,M .
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