
Solutions to Assignment #1 for Managerial Economics
ECO 351M, Fall 2016

1. From Ch. 3 of Kreps’s Micro for Managers,
a. Problem 3.1. There are (at least) two ways to proceed: write out profit func-

tion, take derivative w.r.t. x, set equal to 0, check that you’re at a maximum
rather than a minimun; set Marginal Revenue equal to Marginal Cost (an
implication of the derivative of profits being equal to 0) and solve, then check
that the solution is actually the maximum. [See Problem 3.6 for a graphical
example where you can check the second order derivatives and think through
the logic of having MR = MC while being at a minimum profit point.]
Profits are

π(x) = x · (100− x
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As this is a quadratic in x opening downwards, the unique maximum happens
at the point π′(x∗) = 0 (stating that counts as checking that we’ve found a
maximum rather than a minimum).

π′(x) = 100− x
50 − 20− x

150 ,

setting equal to 0 yields 80 = 4x
150 , solving yields x∗ = 80·150

4 = 3, 000.
b. Problem 3.2. Proceed as in the previous problem, π′(x) = 16x − x

500 so
x∗ = 8, 000.

c. Problem 3.8. The profit function is

π(xp, xq) = [100xp−
x2
p
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xpxq

400 ]+[80xq−
x2
q
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200 ]−300−20xp−10xq−
9x2
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2
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Gathering terms yields

π = [80xp + 60xq]−
7x2

p

400 −
xpxq

100 −
61x2

q

1200 − 300.

Doing the (matrix) algebra to show that this is also a quadratic that opens
downwards is tricky if you don’t know the material, easy if you do. In any
case, set ∂π/∂xp = 0 and ∂π/∂xq = 0. This yields two linear equations in
two unknowns, solve them, approximately, for xp = 1, 888, xq = 1, 114.

2. From Ch. 3 of Kreps’s Micro for Managers,
a. Problem 3.9. There are, again, (at least) two ways to proceed: write out

the profit as a function of xr and xb and simultaneously solve the equations
∂π/∂xr = 0 and ∂π/∂xr = 0, noting that it is the sum of two quadratics
opening downwards, so simultaneous solution of these two gives the optimum;
find MRr(xr), MRb(xb), and MC(xr + xb), and set them simultaneously
equal, check that this gives a maximum rather than a minimum.

π(xr, xb) = 20xr − x2
r

1000 + 17xb − x2
b

2000 − 4(xr + xb)− x2
r+xrxb+x

2
b

4000 ,

∂π
∂xr

= 20− xr

500 − 4− xr

2000 −
xb

4000

∂π
∂xb

= 17− xb

1000 − 4− xb

2000 −
xr

4000

Solve these two equations.
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b. Problem 3.11. One way to proceed, solve for xb(xr) such that the marginal
revenues are equal, then solve xb + xb(xr) = 2000. Another way to proceed,
set xb = 2000 − xr, write out profits as π(xr, 2000 − xr) and solve the one-
dimensional problem. Because the costs are constant at 4 ·2000+20002/4000,
you will again have equality of marginal revenues. Either way, x∗r = 1, 666 2

3

and x∗b = 333 1
3 .

3. From Ch. 4 of Kreps’s Micro for Managers,
a. Problem 4.5. Here the price elasticity is greater than 1 in absolute value, so

demand is sufficiently responsive to price cuts that it is optimal to decrease
price.
(a) A decrease in the price of $0.10 is a 100 · 10

800 percentage change, that is,
a decrease of %1.25. 3 times that is an increase of %3.75 in quantity, so they
will sell 1.0375 · 10, 000 at a price of $7.90, for revenues of $81,962.50.
(b) This is a 1.5% decrease in quantity, corresponding to a 0.5% increase in
price, yielding revenues 9850 · 0.995 · 8 = 78, 406.

b. Problem 4.6. The price elasticity of demand is ν(x) = 1/(d log p(x)d log(x) ) = p(x)
xp′(x) .

The one-good profit maximization problem is

max
x≥0

xp(x)− c(x), with FOCs p(x) + xp′(x) = c′(x).

Rearranging the left-hand side of the FOCs yields

p(x)

[
1 +

xp′(x)

p(x)

]
= c′(x), or p(x)

[
1 +

1

ν(x)

]
= c′(x).

With ν(x) = −4, we have c′(x) = 3
4p(x), so the marginal cost is (approxi-

mately) $15,000.

c. Problem 4.8. From just above, we have c′(x) = p(x)
[
1 + 1

ν(x)

]
. In this

problem, we have c′(x) = c and p(x) = 1.2c. Combining,
[
1 + 1

ν(x)

]
· 1.2 = 1,

that is ν(x) is (approximately) −6.

4. From Ch. 4 of Kreps’s Micro for Managers,
a. Problem 4.9. The inverse demand functions are xy = 10, 000−1, 000·py, xm =

30, 000− 2, 000 · pm, and xs = 10, 000− 800 · px. Adding gives the aggregate
inverse demand function, x = 50, 000 − 3, 800p, for a demand function of
p(x) ' 13.6− x

3,800 .

b. Problem 4.10. The demand function is

p(x) =

{
20− x

5,000 if 0 ≤ x ≤ 30, 000

16− x
15,000 if 30, 000 ≤ x ≤ 240, 000

This means that marginal revenue is

R′(x) =

{
20− x

2,500 if 0 ≤ x ≤ 30, 000

16− x
7,500 if 30, 000 ≤ x ≤ 240, 000

Notice that the marginal revenue is not continuous, it jumps upwards at
x = 30, 000, jumping from 8 = 20− 30,000

2,500 to 12 = 16− 30,000
7,500 . There are two

solutions to R′(x) = 10, one at x = 25, 000 and one at x = 45, 000. The larger
one maximizes profits (as you should check), and corresponds to a price of
16− 45,000

15,000 = 13.
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c. Problem 4.13.
The first part of the problem asks about the perfectly discriminating mo-
nopolist with demand functions pT = 5 − xT

120 and pL = 3 − xL

180 . The
marginal revenue for tourists is 5 − xT

60 , setting this equal to the marginal
cost, 1.2, yields x∗T = 228 and p∗T = 3.1. For locals, the parallel calcu-
lations yield MRL = 3 − xL

90 , and this is equal to MC at xL = 162. The

corresponding profits are πT = (5 − 228
120 ) · 228 − 1.2 · 228 = 433.20 and

πL = (3− 162
180 ) · 162− 1.2 · 162 = 145.80. Total profits are then 579.

One can also do the first part of the problem using prices as the bakery’s
decision variable: xT = 120(5− pT ) = 600− 120pT so πT (pT ) = (pT − 1.2) ·
(600 − 120pT ) which achieves its maximum at p∗T = 3.1 as above. For the
locals, the calculation is πL(pL) = (pL − 1.2) · (540 − 180pT ) which achieves
its maximum at p∗L = 2.1 as above.
The second part asks you to horizontally sum the inverse demand functions
x = 600− 120pT for 0 ≤ p ≤ 5 and x = 540− 180p for 0 ≤ p ≤ 3. This yields

x(p) =

{
1140− 300p if 0 ≤ p ≤ 3

600− 120p if 3 ≤ p ≤ 5

Now, profit is π(p) = (p− 1.2) · x(p), maximizing yields p∗ = 2.5, for profits
of 1.3 · (1140− 300 · 2.5) = 507. As we knew must happen, profits are lower,
here 507 vs. 579, when the monopolist cannot discriminate between the two
populations.
The third part asks you to compare the welfare of the locals and the Town
Council. In the case that you allow the bakery to perfectly discriminate as
a monopolist, go back to the first case and calculate the consumer surplus
for the local demand function. Consumer surplus decreases as a function of
the price they are charged, when they are on their own, they are charged
2.1, when they are tossed in with the less price sensitive tourists, they are
charged the higher price 2.5. (The consumer surpluses are 72.9 and 22.5
respectively.) Here, the council’s interest in getting money from the baker’s
contributions and the council’s interest in the welfare of their own consumers
go hand in hand. However, the surplus of the tourists goes down, they are
charged the higher price 3.1 rather than 2.5 if they are separately identifiable
by the bakery. If this ends up meaning less tourist revenue, not only because
they get a less good deal that they can tell their friends about, but because
they now miss the ‘local color,’ it could be bad.

5. From Ch. 5 of Kreps’s Micro for Managers,
a. Problem 5.3. The marginal utilities are 6

b , 2
c , 1

s , and 1. Equalizing the bang-

for-the-buck requires 6
b = 1.20, 2

c = 3.00, 1
s = 4. The utility maximizing

choices are: b∗ = 5, c∗ = 2/3, s∗ = 4, and m∗ = 148.
b. Problem 5.4.

(a) The marginal utilities multiplied by a constant to be determined, call it
κ, must equal the prices of all goods that are consumed at positive levels.
Guessing that all are consumed, this yields

κ 8
b+2 = 1, κ 6

c+1 = 2, κfrac42s+ 1 = 4.

These need to be combined with 1b + 2c + 4s = 18, which yields b∗ = 10,
c∗ = 7.5, and s∗ = 0.25.
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(b) Attempting the previous with 6.50 to spend ends up with negative con-
sumption of good s, so s∗ = 0. The remaining demands are b∗ = 4 and
c∗ = 1.25.
(c) Now we know that the marginal utilities of all goods consumed must be
equal to 1. Working through, as long as income is above 16, we will have b∗ =
6, c∗ = 2, s∗ = 1.5, corresponding to expenditures of 1 · 6 + 2 · 2 + 4 · 1.5 = 16.
If w = 50, then m∗ = 50− 16, if w = 500, the m∗ = 500− 16, if w = 18, then
m∗ = 18− 16. If w = 6.50, then one will spend the money as in problem (b).

c. Problem 5.5.
(a) The marginal utilities multiplied by a constant to be determined, call it
κ, must equal the prices of all goods that are consumed at positive levels.
Guessing that all are consumed at w = 83 yields

b = 5κ, c = 1
5κ− 1, s = 1

20κ− 4.

Combining with the budget equation yields κ = 76
23 . One should plug these

in to find the demands, checking that they are positive, and then, just to be
sure, check that the expenditures are equal to 83.
(b) Similar.

6. From Ch. 5 of Kreps’s Micro for Managers,
a. Problem 5.11.
b. Problem 5.12.

7. A biotech firm . . . .
a. Let f(x, θ) = (B1(x) + θB2(x)) − x. When θ = 0, we have the firm’s profit

maximization problem, when θ = 1, we have society’s total welfare maximiza-
tion problem. Since B2(·) is increasing, for x′ > x and θ′ = 1 > θ = 0, we
have

L = f(x′, 1)− f(x, 1) = [(B1(x′)− x′)− (B1(x)− x)] +B2(x′)−B2(x)

R = f(x′, 0)− f(x, 0) = [(B1(x′)− x′)− (B1(x)− x)]

Since L − R = B2(x′) − B2(x) > 0, the function is supermodular, hence
society’s optimum, x∗(1), should be greater than the firm’s optimum, x∗(0).

b. Let g(x, θ) = (B1(x) + θB2(x))− x for 0 ≤ θ ≤ 1 being the portion of social
benefits captured by the firm. By the previous analysis, x∗(·) is increasing in
θ.
One of several possible ways to do the last part of the analysis: let h(x, θ) =
B1(x) − (1 − θ)x where θ is the portion of costs subsidized. This is super-
modular in x and θ, hence x∗(·) is again increasing in θ.

8. An oil company . . . .
LetH(fi, θ) = Πi(fi)−Ci(fi)−θCj(fi). When θ = 0, the problem maxfi H(fi, θ)

is firm i’s profit maximization problem, when θ = 1, they take account of the
negative externality they impose on firm j. The function f∗i (θ) is therefore
decreasing in θ.

9. One part . . . .
Let x be the amount of training, let f(x, θ) = BC(x) + θBi(x)− C(x) where

BC(·) is the benefit to the consulting firm and Bi(·) is the benefit to the in-
dividual. When θ = 0, the problem maxx f(x, θ) is the firms problem, when
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θ = 1, the problem takes into account some of the benefits not captured by the
consulting firm, and f(·, ·) is supermodular.

10. For x, t ∈ [1200, 1900], let f(x, t) = xt.
The problem maxx∈[1200,1900] f(x, t) has x∗(t) ≡ {1900} (not x∗(t) = {100}

as in the problem). Let g(x, t) = log(f(x, t)), ∂g/∂x = 1
x , ∂2g/∂x∂t = 0. Let

h(x, t) = log(g(x, t)), ∂h/∂x = ( 1
x )/(log(x) + log(t)) and ∂2h/∂x∂t < 0 because

the denominator, (log(x)+log(t)) is a positive and strictly increasing function of
t. Thus, h(·, ·) is strictly submodular while its monotonic transformation f(·, ·)
is strictly supermodular.

11. Suppose that an organization . . . .
This is an application of the textbook’s horizontal summing of demand curves

to the problem we did in class.
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