
Homework #1, Econometrics III, Spring 2007

Maxwell B. Stinchcombe

All random objects are defined on a probability space (Ω,F , P ), and L2(Ω,F , P ) is the

set of R-valued, measurable functions with ‖X‖2 = ‖X‖ :=
(∫

[X(ω)]2 dP (ω)
)1

2 < ∞,

that is, L2(Ω,F , P ) is the set of random variables with finite variance. A partition E ⊂ F
of Ω is non-null if for all E ∈ E , P (E) > 0.

Definition 1. For any non-null partition E of Ω and X ∈ L1, define the conditional

expectation of X given E as the function

(1) XE(ω) =
∑

Ek∈E

(
1

P (Ek)

∫
Ek

X dP
)
· 1Ek

(ω).

The Borel σ-field in Rk is denoted Bk or B, and defined as the smallest σ-field con-

taining the open subsets of Rk.

Let G ⊂ F be a σ-field, L2(G) := {X ∈ L2(Ω,F , P ) : (∀B ∈ B)X−1(B) ∈ G}. It

can be shown that L2(G) is a closed, linear subspace of L2(Ω,F , P ), and that orthogonal

projection onto L2(G) is a continuous linear mapping from L2(Ω,F , P ) to its subspace,

L2(G).

Definition 2. For Y ∈ L2(Ω,F , P ), the conditional expectation of Y given G,

written as E (Y
∣∣G), is defined by E (Y

∣∣G) = projL2(G)(Y ).

The geometry of orthogonal projection is that E (Y
∣∣G) is the unique solution to the

problem

(2) minf∈L2(G) ‖Y − f‖2.

When G = σ(X), σ(X) := X−1(B), this can be re-written as

(3) min{f :f(X)∈L2(Ω,F ,P )} ‖Y − f(X)‖2.

The following is immediate from orthogonal projection, but extremely useful nonethe-

less. It is often used as the definition of the conditional expectation.

Theorem 3. E (Y
∣∣G) is the unique (up to sets of measure 0) G-measurable random vari-

able with the property that for all A ∈ G,
∫

A
Y dP =

∫
A

E (Y
∣∣G) dP .

The conditional expectation of Y given X is written E (Y
∣∣X) and defined by

E (Y
∣∣σ(X)).

Theorem 4 (Strong Law of Large Numbers). If Xn is an iid sequence of random variables

with finite expectation, E Xn = µ, then P ({ω : Sn(ω) → µ}) = 1 where Sn(ω) :=
1
n

∑
i≤n Xi(ω). If Xn is an iid sequence without finite expectation, E |Xn| = ∞, then

P ({ω : Sn(ω) converges }) = 0.
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1. Show the following using the projection definition of E (Y
∣∣X).

a. Let G = {∅, Ω}. For any Y , E (Y
∣∣G) = E Y .

b. Let G = {∅, E, Ec, Ω} and Y = 1B. E (Y
∣∣G) = P (B

∣∣E) · 1E + P (B
∣∣Ec) · 1Ec .

c. Let G = {∅, E, Ec, Ω} and Y ∈ L2(Ω,F , P ). E (Y
∣∣G) = E (Y

∣∣E) ·1E +E (Y
∣∣Ec) ·1Ec

where E (Y
∣∣E) := 1

P (E)

∫
E

Y dP and E (Y
∣∣Ec) := 1

P (Ec)

∫
Ec Y dP .

d. Show that when G is the smallest σ-field containing a finite non-null partition E , the

two definitions of conditional expecation are equivalent.

2. Let (Ω,F , P ) = ((0, 1]2,B2, λ2), Y = 1
(0,

1
2
]×(0,

1
2
]
, and X(ω1, ω2) = ω1 + ω2. Find

E (Y
∣∣σ(X)) and verify that your answer satisfies the condition given in Theorem 3.

3. Let Ω = {(G, G), (G, B), (B, G), (B, B)} with F = P(Ω), and P ({ω}) = 1
4
. Let

G be the smallest σ-field containing the set {(G, G), (G, B), (B, G)}. Let A be the

event {(G, G)}. Find P (A
∣∣G). [This is a version of the story about meeting an old

acquaintance in the street, they have with them a girl child, they tell you that the

girl is one of their two children, then some probabilist walking by and overhearing the

conversation, asks you “What’s the probability that the other child is a girl?” Most

people incorrectly answer “1
2
”]

4. Let (Ω,F , P ) = ((0, 1],B, λ). For each of the following rvs X and Y , find E (Y
∣∣X).

a. Y (ω) = ω, X = 1
(0,

1
3
]
(ω).

b. Y (ω) = ω, X = 1
(0,

1
3
]
(ω) + 1(0.9,1](ω).

c. Y (ω) = ω, X = 1
(0,

1
3
]
(ω) + 2 · 1(0.9,1](ω).

d. Y (ω) = ω2, X = 1
(0,

1
3
]
(ω).

e. Y (ω) = 1
(
1
2

,1]
(ω), X =

∑
k≤2n

k
2n 1( k

2n , k+1
2n ](ω).

f. Y (ω) = 1
(
1
3

,1]
(ω), X =

∑
k≤2n

k
2n 1( k

2n , k+1
2n ](ω).

g. Y (ω) = ω, X =
∑

k≤2n
k
2n 1( k

2n , k+1
2n ](ω).

5. Read/review the material in §1.4 below. You need not hand in any of the exercises

in that subsection, but you should know how to do them. [The other material, on

the relation of positive (semi-)definiteness of matrices to differentiable concavity, is

sometimes useful, but we’ll not use it in this class.]

6. Let X : Ω → Rk and Y : Ω → R be a random vector and a random variable where

Y and each Xi, X = (Xi)
k
i=1, belong to L2(Ω,F , P ). Let β∗ be the solution to the

problem

min
β

E (Y −X ′β)2.

Suppose that we have data, X1, . . . , Xn, and that as T →∞, the empirical moments of

the data approach the true moments. Specifically, this means that for all 1 ≤ i, j ≤ k,

P ({ω :
1

T

T∑
t=1

Xi,t(ω)Xj,t(ω) → E XiXj}) = 1,
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and for all i,

P ({ω :
1

T

T∑
t=1

Xi,t(ω)Yt(ω) → E XiY }) = 1.

Let β̂T (ω) be the solution to the problem

min
β

1

T

T∑
t=1

(Yt(ω)−Xt(ω)′β)2.

a. Give conditions on the distribution of X under which β∗ exists and is unique, and

prove existence and uniqueness under the conditions that you give.

b. Under the conditions you just gave, show that P ({ω : β̂T (ω) → β∗}) = 1.

7. Let X,Y and X1, . . . , Xn be as in the previous problem, and let Z be an T × `, ` ≥ k,

matrix of random variables with P ({ω : Z ′X(ω) →T M}) = 1 where M is a full

rank matrix. For each ω and T , the instrumental variable estimator, β̂IV , of β solves

minβ(Y −Xβ)′ZPZ ′(Y −Xβ) where P is a positive definite `× ` matrix. Give β̂IV .

8. Let ω 7→ X(ω) ≥ 0 be a random variable with E X < ∞.

a. Show that for all ω and all t ≥ 0, X(ω) ≥ t · 1{X≥t}(ω). [Yes, this is very easy.]

Lemma 5 (Chebyschev). For integrable X ≥ 0, P (X ≥ t) ≤ E X
t

.

b. Prove Chebyschev’s inequality using the previous step.

c. Show that for some random variables and some t, Chebyschev’s inequality is tight,

that is, it is satisfied as an equality. [Check any random variable with P (X = 0) =

P (X = 2) = 1
2
.]

d. Being tight is all fine and good, but for many random variables, one can get a much(!)

better inequality. Show that if Z ∼ N(0, 1), then P (|Z| ≥ t) ≤
√

2/π(1/t)e−
t2

2 . [As

with Chebyschev’s inequality, this follows by monotonicity of the integral.]

e. If X is a random variable, then |X| and X2 and |X|p, p ∈ [1,∞) are all non-

negative random variables, as are |X − r| and (X − r)2 and |X − r|p, p ∈ [1,∞).

[The same is true for p ∈ (0, 1), but these are less useful except as a source of

oddities.] When these rvs are integrable, Chebyshev’s inequality applies. One most

often takes r = E X. These yield

i. P (|X − µ| ≥ t) = [1− P (−t < X − µ < t)] ≤ E |X−µ|
t

.

ii. P ((X − µ)2 ≥ t2) ≤ σ2
X

t2
where σ2

X := Var (X). By taking square roots, this

yields

iii. P (|X − µ| ≥ t) ≤ σ2
X

t2
.

iv. More generally, P (|X|p ≥ tp) ≤ E |X|p
tp

or P (|X| ≥ t) ≤ E |X|p
tp

(which sometimes

goes by the name of Markov’s inequality).

Suppose that Xn is an iid sequence in L2, show that for all ε > 0, limn P (|Sn−µ| >
ε) = 0. This is known an the Weak Law of Large Numbers.

9. The SLLN does not guarantee that for all ω, Sn(ω) → µ.

Let (Ω,F , P ) = ((0, 1],B, λ). For k = 0, . . . , 2n − 1, let Yk,n(ω) = 1(k/2n,(k+1)/2n](ω),

and define Xn(ω) =
∑

k even Yk,n(ω)−
∑

k odd Yk,n(ω).
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a. Show that {Xn : n ∈ N} is an iid sequence with λ({Xn = −1}) = λ({Xn = +1}) = 1
2

so that E Xn = 0. Show that if ω = k/2n, then for all m ≥ n, Xm(ω) = +1, so that

Sn(ω) →∞. Thus, there is a dense set of exceptions to Sn(ω) converging.

b. There is more, it can be shown that there are uncountably many ω such that

Sn(ω) 6→ 0. Take a typical ω = 0.ω1ω2ω3 . . . where each ωn is the n’th element

of the binary expansion of ω. From the SLLN, limn
1
n
#{i ≤ n : ωi = 1} = 1

2
for a

set of ω having probability 1. For any such ω, show that ω′ = 0.0ω10ω20ω3 . . . has

the property that limn
1
n
#{i ≤ n : ω′

i = 1} = 1
4
.

c. Start the previous process of adding 0’s into every other spot after ωN , and consider

the union over N of these sets. Show that this gives a dense uncountable set of ω’s

for which Sn(ω) 6→ 0.

10. (This problem is only for those of you that have had a course that teaches measure the-

ory. The rest of you should read the problem, and be sure you understand what is being

claimed.) Suppose that (Ω,F , P ) = ((0, 1],B, λ). This problem gives a construction of

a sequence, Xk, of independent U [0, 1] random variables defined on (0, 1].

For n ∈ N and 0 ≤ k ≤ 2n − 1, let I(k, n) = ( k
2n , k+1

2n ] be the k’th dyadic interval of

order n. Define X1(ω) = 1
(
1
2

,1]
(ω) = 1I(1,1), X2(ω) = 1I(1,2)(ω) + 1I(3,2)(ω), and more

generally, Xn(ω) =
∑

k odd 1I(k,n)(ω).

a. Show that Xn is an iid sequence.

b. Show that for all r ∈ (0, 1], limn P ({ω :
∑

t≤n
Xt(ω)

2t → s for some s < r) = r.

c. If I = {i1, i2, i3, . . .} ⊂ N is an infinite set of distinct integers, then

lim
n

P ({ω :
∑
t≤n

Xit(ω)

2t
→ s for some s < r}) = r.

d. Partition N into a countable collection Ik = {ik,1, ik,2, . . . of disjoint infinite subsets.

For each k, define Xk(ω) = limt

∑
t≤n

Xit (ω)

2t . Show that Xk is a countable collection

of iid U [0, 1] random variables defined on the probability space ((0, 1],B, λ).

There is a (much) more general version of this result: If (Ω,F , P ) is a non-atomic

probability space, (M, d) is a complete, separable metric space, and µ is a probability

distribution on M, the smallest σ-field containing the open subsets of M , then there

exists a measurable function f : Ω → M such that P (f−1(B)) = µ(B) for every

B ∈ M. Letting M = [0, 1]N with the metric d(x, y) =
∑

n
1
2n min{1, |xn − yn|} allows

you to go from this result to the previous, after some moderately involved work.
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1. Differentiability and Concavity

This section develops the negative semi-definiteness of the matrix of second derivatives

as being equivalent to the concavity of a twice continuously differentiable function. It

also develops the determinant test for negative semi-definiteness. As we need them, we’ll

mention, but not prove, some basic facts about matrix multiplication and determinants.1

1.1. The two results. Before giving the results, we need some terminology.

Definition 6. A function f : C → R is strictly concave if ∀x, x′ ∈ C, x 6= x′, and all

λ ∈ (0, 1), f(xλx′) > f(x)λf(x′).

An n × n matrix A = (aij)i,j=1,...,n is symmetric matrix if aij = aji for all i and j.

A symmetric A is negative semi-definite if for all vectors z ∈ Rn, zTAz ≤ 0, it is

negative definite if for all z 6= 0, zTAz < 0.

Theorem 7. A twice continuously differentiable f : Rn → R defined on an open, convex

set C is concave (respectively strictly concave) iff for all x◦ ∈ C D2
xf(x◦) is negative

semi-definite (respectively negative definite).

The principal sub-matrices of a symmetric n × n matrix A = (aij)i,j=1,...,n are the

m × m matrices (aij)i,j=1,...,m, m ≤ n. Thus, the 3 principal sub-matrices of the 3 × 3

matrix

A =

 3 0 0

0 4
√

3

0
√

3 6


are [

3
]
,

[
3 0

0 4

]
, and

 3 0 0

0 4
√

3

0
√

3 6

 .

Theorem 8. A matrix A is negative semi-definite (respectively negative definite) iff the

sign of m’th principal sub-matrix is either 0 or −1m (respectively, the sign of the m’th

principal sub-matrix is −1m). It is positive semi-definite (respectively positive definite) if

you replace “−1m” with “+1m” throughout.

In the following two problems, use Theorem 7 and 8, even though we have not yet

proved them.

Exercise 9. The function f : R2
+ → R defined by f(x, y) = xαyβ, α, β > 0, is strictly

concave on R2
++ if α + β < 1, and is concave on R2

++ if α + β = 1.

Exercise 10. The function f : R2
+ → R defined by f(x, y) = (xp + yp)1/p is convex on

R2
++ if p ≥ 1 and is concave if p ≤ 1.

1Multiplying by −1 makes this a section on convexity, something that we’ll mention only here.
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1.2. The one dimensional case, f : R1 → R.

Exercise 11. Suppose that f : (a, b) → R is twice continuously differentiable. [Read the

third part of this before starting the first two.]

(1) Show that if f ′′(x) ≤ 0 for all x ∈ (a, b), then f is concave. [Hint: We know that

f ′ is non-increasing. Pick x, y with a < x < y < b and pick α ∈ (0, 1), define

z = αx + (1 − α)y. Note that (z − x) = (1 − α)(y − x) and (y − z) = α(y − x).

Show

f(z)− f(x) =

∫ z

x

f ′(t) dt ≥ f ′(z)(z − x) = f ′(z)(1− α)(y − x),

f(y)− f(z) =

∫ y

z

f ′(t) dt ≤ f ′(z)(y − z) = f ′(z)α(y − x).

Therefore,

f(z) ≥ f(x) + f ′(z)(1− α)(y − x), f(z) ≥ f(y)− f ′(z)α(y − x).

Multiply the lhs by α, the rhs by (1− α), and . . . .]

(2) Show that if f is concave, then f ′′(x) ≤ 0 for all x ∈ (a, b). [If not, then f ′′(x◦) > 0

for some x◦ ∈ (a, b) which implies that f ′′ is strictly positive on some interval

(a′, b′) ⊂ (a, b). Reverse the above argument.]

(3) Repeat the previous two problems for strict concavity, changing whatever needs to

be changed.

1.3. The multi-dimensional case, f : Rn → R.

Exercise 12. Suppose that f : C → R is twice continuously differentiable, C an open

convex subset of Rn.

For each y, z ∈ Rn, define gy,z(λ) = f(y+λz) for those λ in the interval {λ : y+λz ∈ C}.

(1) Show that f is (strictly) concave iff each gy,z is (strictly) concave.

(2) Show that g′′(λ) = zT D2
xf(x◦)z where x◦ = y + λz.

(3) Conclude that f is (strictly) concave iff for all x◦ ∈ C, D2f(x◦) is negative semi-

definite (negative definite).

1.4. A fair amount of matrix algebra background. The previous has demonstrated

that we sometimes want to know conditions on n × n symmetric matrices A such that

zTAz ≤ 0 for all z, or zTAz < 0 for all z 6= 0. We are trying to prove that a A is negative

semi-definite (respectively negative definite) iff the sign of m’th principal sub-matrix is

either 0 or −1m (respectively, the sign of the m’th principal sub-matrix is −1m). This

will take a longish detour through eigenvalues and eigenvectors. The detour is useful for

the study of linear regression too, so this section is also background for next semester’s

econometrics course.

Throughout, all matrices have only real number entries.
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|A| denotes the determinant of the square A. Recall that A is invertible, as a linear

mapping, iff |A| 6= 0. (If these statements do not make sense to you, you missed linear

algebra and/or need to do some review.)

Exercise 13. Remember, or look up, how to find determinants for 2×2 and 3×3 matrices.

A vector x 6= 0 is an eigenvector and the number λ 6= 0 is an eigenvalue2 for A if

Ax = λx. Note that Ax = λx iff A(rx) = λ(rx) for all r 6= 0. Therefore, we can, and

do, normalize eigenvectors by ‖x‖ = 1, which corresponds to setting r = 1/‖x‖. There is

still some ambiguity, since we could just as well set r = −1/‖x‖.
In general, one might need to consider λ’s and x’s that are imaginary numbers, that is

λ = a + bi with i =
√
−1. This means that x will need to be imaginary too. To see why,

read on.

Lemma 14. A = λx, x 6= 0, iff (A− λI)x = 0 iff |A− λI| = 0.

Proof. You should know why this is true. If not, you need some more review. �

Define g(λ) = |A− λI| so that g is an n’th degree polynomial in λ. The fundamental

theorem of algebra tells us that any n’th degree polynomial has n roots, counting mul-

tiplicities, in the complex plane. To be a bit more concrete, this means that there are

complex numbers λi, i = 1, . . . , n such that

g(y) = (λ1 − y)(λ2 − y) · · · (λn − y).

The “counting multiplicities” phrase means that the λi need not be distinct.

Exercise 15. Using the quadratic formula, show that if A is a symmetric 2× 2 matrix,

then both of the eigenvalues of A are real numbers. Give a 2 × 2 non-symmetric matrix

with real entries having two imaginary eigenvalues. [This can be done with a matrix having

only 0’s and 1’s as entries.]

The conclusion about real eigenvalues in the previous problem is true for general n×n

matrices, and we turn to this result.

From your trigonometry class (or from someplace else), (a + bi)(c + di) = (ac − bd) +

(ad + bd)i defines multiplication of complex numbers, and (a + bi)∗ := a− bi defines the

complex conjugate of the number (a+bi). Note that rs = sr for all complex r, s. Further,

r = r∗ iff r is a real number. By direct calculation, (rs)∗ = r∗s∗ for any pair of complex

numbers r, s. Complex vectors are vectors with complex numbers as their entries. Their

dot product is defined in the usual way, x ·y :=
∑

i xiyi. Notationally, x ·y may be written

xT y. The next proof uses

Exercise 16. If r is a complex number, then rr∗ = 0 iff r = 0. If x is a complex vector,

then xT x∗ = 0 iff x = 0.

2“Eigen” is a german word meaning “own.” Sometimes eigenvalues are called characteristic roots. The
idea that we are building to is that the eigenvalues and eigenvectors tell us everything there is to know
about the matrix A.
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Lemma 17. Every eigenvalue of a symmetric A is real, and distinct eigenvectors are

real, and orthogonal to each other.

Proof. The eigenvalue part: Suppose that λ is an eigenvalue and x an associated eigen-

vector so that

(4) Ax = λx.

Taking the complex conjugate of both sides,

(5) Ax∗ = λ∗x∗

because A has only real entries.

[Ax = λx] ⇒ [(x∗)TAx = (x∗)T λx = λxT x∗],

[Ax∗ = λ∗x∗] ⇒ [xTAx∗ = xT λ∗x∗ = λ∗xT x∗].

Subtracting,

(x∗)TAx− xTAx∗ = (λ− λ∗)xT x∗.

Since the matrix A is symmetric,

(x∗)TAx− xTAx∗ = 0.

Since x 6= 0, xT x∗ 6= 0. Therefore,

[(λ− λ∗)xT x∗ = 0] ⇒ [(λ− λ∗) = 0],

which can only happen if λ is a real number.

The eigenvector part: From the previous part, all eigenvalues are real. Since A is real,

this implies that all eigenvectors are also real.

Let λi 6= λj be distinct eigenvalues and xi, xj their associated eigenvectors so that

Axi = λixi, Axj = λjxj.

Pre-multiplying by the appropriate vectors,

xT
j Axi = λix

T
j xi, xT

i Axj = λjx
T
i xj.

We know that xT
i xj = xT

j xi (by properties of dot products). Because A is symmetric,

xT
j Axi = xT

i Axj.

Combining,

(λi − λj)x
T
j xi = 0.

Since (λi − λj) 6= 0, we conclude that xi · xj = 0, the orthogonality we were looking for.

�

The following uses basic linear algebra definitions.

Exercise 18. If the n × n A has n distinct eigenvalues, then its eigenvectors form an

orthonormal basis for Rn.

A careful proof shows that if A has an eigenvalue λi with multiplicity k ≥ 2, then

we can pick k orthogonal eigenvectors spanning the k-dimensional set of all x such that
8



Ax = λix. There will be infinitely many different ways of selecting such an orthogonal

set. You either accept this on faith or go review a good matrix algebra textbook.

Exercise 19. Find eigenvalues and eigenvectors for[
4

√
3√

3 6

]
and

 3 0 0

0 4
√

3

0
√

3 6

 .

Let λ1, . . . , λn be the eigenvalues of A (repeating any multiplicities), and let u1, . . . , un

be a corresponding set of orthonormal eigenvectors. Let Q = (u1, . . . , un) be the matrix

with the eigenvectors as columns. Note that QTQ = I so that Q−1 = QT . Let Λ be the

n× n matrix with Λii = λi and with 0’s in the off-diagonal.

Exercise 20. Show that QTAQ = Λ, equivalently, A = QΛQT .

Expressing a symmetric matrix A in this form is called diagonalizing the matrix. We

have shown that any symmetric matrix can be diagonalized so as to have its eigenvalues

along the diagonal, and the matrix that achieves this is the matrix of eigenvectors.

Theorem 21. A is negative (semi-)definite iff all of its eigenvalues are less than (or

equal to) 0.

Proof. zTAz = zTQT ΛQz = vT Λv, and the matrix Q is invertible. �

1.5. The Alternating Signs Determinant Test for Concavity. Now we have enough

matrix algebra background to prove what we set out prove, A is negative semi-definite

(respectively negative definite) iff the sign of m’th principal sub-matrix is either 0 or −1m

(respectively, the sign of the m’th principal sub-matrix is −1m).

We defined g(y) = |A − yI| so that g is an n’th degree polynomial in λ, and used the

fundamental theorem of algebra (and some calculation) to tell us that

g(y) = (λ1 − y)(λ2 − y) · · · (λn − y)

where the λi are the eigenvalues of A. Note that g(0) = |A − 0I| = |A| = λ1 · λ2 · · ·λn,

that is,

Lemma 22. The determinant of a matrix is the product of its eigenvalues.

We didn’t use symmetry for this result.

Recall that the principal sub-matrices of a symmetric n×n matrix A = (aij)i,j=1,...,n

are the m × m matrices (aij)i,j=1,...,m, m ≤ n. The following is pretty obvious, but it’s

useful anyway.

Exercise 23. A is negative definite iff for all m ≤ n and all non-zero x having only the

first m components not equal to 0, xTAx < 0.
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Looking at m = 1, we must check if

(x1, 0, 0, . . . , 0)


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann




x1

0

0
...

0

 = a11x
2
1 < 0.

This is true iff the first principal sub-matrix of A has the same sign as −1m = −11 = −1.

Looking at m = 2, we must check if

(x1, x2, 0, . . . , 0)


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann




x1

x2

0
...

0

 < 0.

This is true iff the matrix [
a11 a12

a21 a22

]
is negative definite, which is true iff all of its eigenvalues are negative. There are two

eigenvalues, the product of two negative numbers is positive, so the m = 2 case is handled

by having the sign of the determinant of the 2× 2 principal submatrix being −12.

Looking at m = 3, we must check if a11 a12 a13

a21 a22 a23

a31 a32 a33


is negative definite, which is true iff all of its eigenvalues are negative. There are three

eigenvalues, the product of three negative numbers is negative, so the m = 3 case is

handled by having the sign of the determinant of the 3×3 principal submatrix being −13.

Continue in this fashion, and you have a proof of Theorem 8. Your job is to fill in the

details for the negative semi-definite, the positive definite, and the positive semi-definite

cases as well.

Exercise 24. Prove Theorem 8.
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