Homework #1, Micro III, Spring 2007 Maxwell B. Stinchcombe

All random variables are defined on a probability space (Ω, \mathcal{F}, P) . Throughout, $X, X', Y : \Omega \to \mathbb{R}$ are random variables having finite range, and $P(Y = 1) = P(Y = 2) = \frac{1}{2}$.

Time line: first, $\omega \in \Omega$ is drawn according to P; then the value of a signal $X(\omega)$ or $X'(\omega)$ is observed; then a choice $a \in A$ is made; and finally the utility $u(a, Y(\omega))$ is received.

Notation and definitions:

- 1. $\beta_x^X := P(Y = 1 | X = x)$ is the **posterior probability**, aka **belief** that Y = 1 given that X = x;
- 2. $V_{u,A}(X) := \max_{f:S \to A} E u(f(X), Y);$
- 3. the **convex hull** of $C \subset \mathbb{R}^k$ is written **con** (C); A^S is the set of functions $f: S \to A$;
- 4. for a (finite) set C, $\Delta(C) = \{p \in \mathbb{R}^{C}_{+} : \sum_{c \in C} p_{c} = 1\}$ is the set of probability distributions over C;
- 5. the range of a function $X : \Omega \to \mathbb{R}$ is $\mathcal{R}(X) = \{r \in \mathbb{R} : (\exists \omega \in \Omega) [X(\omega) = r]\};$
- 6. for p, q distribution on \mathbb{R}^k , $k \ge 2$, p is **riskier** that q if for all continuous, concave $g: \mathbb{R}^k \to \mathbb{R}, \int g(x) dp(x) \le \int g(x) dq(x);$
- 7. for distributions p, q on \mathbb{R}^1 , q is **riskier** that p if for all continuous, concave, nondecreasing $g : \mathbb{R}^1 \to \mathbb{R}$, $\int g(x) dp(x) \geq \int g(x) dq(x)$.
- 8. for distributions p, q on \mathbb{R}^1 , q is a **mean preserving spread of** p if $\int x \, dq(x) = \int x \, dp(x)$ and there is an interval $|a, b| \subset \mathbb{R}$, such that a. for all $E \subset (a, b], q(E) \leq p(E)$,
 - b. for all $E \subset (b, \infty)$, $q(E) \ge p(E)$, and
 - c. for all $E \subset (-\infty, a], q(E) \ge p(E)$.
- 9. For $r \in \mathbb{R}$, δ_r is point mass on \mathbb{R} , that is, $\delta_r(E) = 1_E(r)$.
- 10. for distributions p, q on \mathbb{R}^1 , p first order stochastically dominates q if for all nondecreasing $g : \mathbb{R} \to \mathbb{R}$, $\int g(x) dp(x) \ge \int g(x) dq(x)$.

1. Consider the problem (u, A) and the random variables X, X' given by

a = 3	0	40		0.2	0.0	[V = 0	0.1	0.7
a-2	30	30	$\Lambda \equiv Z$	0.3	0.8		$\Lambda \equiv Z$	0.1	0.7
u - 2	00	- 50	X = 1	0.7	0.2		X' = 1	0.9	0.3
a=1	50			- ·		 		 	TT
	V = 1	V = 2		Y = 1	Y = 2			Y = 1	Y = 2
	I = I	I = Z							

where, e.g. 50 = u(a = 1, Y = 1) and 0.3 = P(X = 2|Y = 1).

- a. Let $(\beta, 1 \beta) \in \Delta(\mathcal{R}(Y))$ be a distribution over the range of Y. Give the set of β for which $\operatorname{argmax}_{a \in A} \int u(a, y) d\beta(y) = \{1\}$, $\operatorname{argmax}_{a \in A} \int u(a, y) d\beta(y) = \{2\}$, and $\operatorname{argmax}_{a \in A} \int u(a, y) d\beta(y) = \{3\}$.
- b. Give the β_x^X and the $\beta_{x'}^{X'}$. Using the previous problem, give the solutions f_X^* and $f_{X'}^*$ to the problems $\max_{f \in A^S} E u(f(X), Y)$ and $\max_{f \in A^S} E u(f(X'), Y)$. From these calculate $V_{(u,A)}(X)$ and $V_{(u,A)}(X')$. [You should find that $X' \succ_{(u,A)} X$.]
- c. Let $M = (\beta_x^X, P(X = x))_{x=1,2} \in \Delta(\Delta(\mathcal{R}(Y)) \text{ and } M' = (\beta_{x'}^{X'}, P(X' = x'))_{x'=1,2} \in \Delta(\Delta(\mathcal{R}(Y)))$. Show directly that M is not risker than M' and that M' is not riskier than M.
- d. Graph, in \mathbb{R}^2 , the sets of achievable, Y-dependent utility vectors for the random variables X and X'. That is, graph

$$F_{(u,A)}(X) = \{ (E(u(f(X),Y) | Y = 1), E(u(f(X),Y) | Y = 2)) \in \mathbb{R}^2 : f \in A^S \}$$

and

$$F_{(u,A)}(X') = \{ (E(u(f(X'),Y) | Y = 1), E(u(f(X'),Y) | Y = 2)) \in \mathbb{R}^2 : f \in A^S \}.$$

- e. If we allow random strategies, that is, pick f according to some $q \in \Delta(A^S)$, then the sets of achievable Y-dependent utility vectors become **con** $(F_{(u,A)}(X))$ and **con** $(F_{(u,A)}(X'))$. Show that the same is true if we allow "behavioral strategies," that is, $f \in \Delta(A)^S$.
- f. Show that $\operatorname{con}(F_{(u,A)}(X)) \not\subset \operatorname{con}(F_{(u,A)}(X'))$ and $\operatorname{con}(F_{(u,A)}(X')) \not\subset \operatorname{con}(F_{(u,A)}(X))$. g. Give a different problem, (u°, A°) for which $X \succ_{(u^{\circ}, A^{\circ})} X'$.
- 2. Let X, X' be two signals, and define X'' = (X, X') to be both signals. Let S, S' and S'' be the ranges of the three signals
 - a. Show directly that for all (u, A), $X'' \succeq_{(u,A)} X$ (hence $X'' \succeq_{(u,A)} X'$).
 - b. Show directly that $\{(\beta_{x''}^{X''}, P(X'' = x''))_{x'' \in S''}$ is riskier than $\{(\beta_x^X, P(X = x))_{x \in S}\}$.
 - c. Interpret X as the result of a doctor's diagnostic test and X' is the result of a possible additional test. Show that if $f^*_{(X,X')}(x,x') = f^*_X(x)$ for a problem (u, A), then there is no point in doing the extra test.
- 3. Most of the following results are in the Müller [1] article, which covers and extends the famous Rothschild and Stiglitz [2], [3] articles on increases in risk.
 - a. If q is a mean preserving spread of p, then q is riskier than p.
 - b. If $X \sim p$ (i.e. $P(X \in A) = p(A)$), $Y \sim q$, and there is a random variable Z such that E(Z|X) = 0 and $X + Z \sim q$, then q is riskier than p.

- c. Let $p_0 = \delta_0$, $p_1 = \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$. Let $p_2 = \frac{1}{2}\delta_{-1} + \frac{1}{4}\delta_0 + \frac{1}{4}\delta_2$, and $p_3 = \frac{1}{4}\delta_{-2} + \frac{1}{4}\delta_0 + \frac{1}{4}\delta_0 + \frac{1}{4}\delta_2 = \frac{1}{4}\delta_{-2} + \frac{1}{2}\delta_0 + \frac{1}{4}\delta_2$. Continuing in this fashion, $p_4 = \frac{1}{8}\delta_{-4} + \frac{6}{8}\delta_0 + \frac{1}{8}\delta_4$, and so on.
 - i. Show that p_1 is a mean preserving spread of p_0 .
 - ii. Show that p_{k+1} is a mean preserving spread of p_k .
 - iii. Show that $p_k \to_w p_0$.
- d. The previous problem showed that a sequence can become riskier and riskier and still converge to something that is strictly less risky. Show that this cannot happen if $p_k([a, b]) \equiv 1$ for some compact interval [a, b]. Specifically, show that if $p_k([a, b]) \equiv 1$, for all k, p_{k+1} is riskier than p_k , and $p_k \to q$, then q is riskier than all of the p_k .
- 4. In each time period, t = 1, ..., a random wage offer, $X_t \ge 0$, arrives. The X_t are iid with cdf F. The problem is which offer to accept. If offer $X_t = x$ is accepted, utility is $\beta^t u(x)$ where $0 < \beta < 1$, and $u : \mathbb{R}_+ \to \mathbb{R}$ is strictly monotonic, concave, and $\int u(x) dF(x) < \infty$. A "reservation wage" policy is one that accepts all offers of \underline{x} or above for some \underline{x} .
 - a. Show that the optimal policy is a reservation wage policy, and give the distribution of the random time until an offer is expected.
 - b. In terms of u and F, give the expected utility of following a reservation wage policy with reservation wage \underline{x} .
 - c. If the offers are, instead, iid Y_t with cdf G and G is riskier than F, then the optimal reservation wage is higher, and the expected utility is also higher.
- 5. X_a is your random income depending on your action $a \ge 0$, understood as money that you spend on stochastically increasing X_a . The distribution of X_a is $R_{a,c} := cQ_a + (1-c)\mu$, $0 \le c \le 1$. Here, μ does not depend on a, but, if a > a', then Q_a first order stochastically dominates $Q_{a'}$. The parameter c is the amount of "control" that you have, c = 0 means you have no control, c = 1, means you have the most possible. This question asks you how a^* depends on c. Intuitively, increasing c ought to increase the optimal action, more control means that your actions have more effect.

Let $f(a,c) = Eu(X_a - a)$ where u is an increasing, concave function. Increases in a pull down $X_a - a$, hence $u(X_a - a)$, by increasing the direct cost, but increase $X_a - a$ by stochastically increasing X_a .

- a. Show that $f(\cdot, \cdot)$ is not, in generally, supermodular.
- b. Suppose that f(a, c) is smooth, that we can interchange integration and differentiation, and that the optimum, $a^*(c)$ is differentiable. The $f_a := \partial f/\partial a$ is equal to

$$f_a = -\int u'(x-a)d\mu(x) + cd/da$$
[messy term with Q_a and μ].

We let $m = [messy \text{ term with } Q_a \text{ and } \mu].$

- i. Show that if $f_a(a,c) = 0$, then $\partial m(a,c)/\partial a > 0$.
- ii. Show that $f_{a,c} := \partial^2 f / \partial a \partial c = \partial m / \partial a > 0$.
- iii. Show that $da^*(c)/dc > 0$.

References

- Alfred Müller, Comparing risks with unbounded distributions, J. Math. Econom. 30 (1998), no. 2, 229–239. MR MR1652641 (99m:90049)
- Michael Rothschild and Joseph E. Stiglitz, *Increasing risk. I. a definition*, J. Econom. Theory 2 (1970), 225–243. MR MR0503565 (58 #20284a)
- 3. _____, *Increasing risk. II. Its economic consequences*, J. Econom. Theory **3** (1971), 66–84. MR MR0503567 (58 #20284c)