
Homework #3, Micro, Spring 2007

Max Stinchcombe

1. Probability 0 Events: Single Person Decision Theory

We introduce two ways of handling the 0 probability signals. They turn out to be the

same for one person games, and in many, but not all, games with more than one person.

The terms we’ll use are perfect Bayesian equilibria and sequential equilibria.

S is the set of signals, Ω the set of states, πS : S × Ω → S is defined by πS(s, ω) = s,

and margS(P )(s) := P (π−1
S (s)) is the marginal distribution of P on S. In a similar fashion,

πΩ : S × Ω → S is defined by πΩ(s, ω) = ω.

We’ve got P ∈ ∆(S × Ω), and the ex ante decision problem

max
s 7→a(s)

∑
s,ω

u(a(s), ω) P (s, ω).

For every s with margS(P )(s) > 0, let βP
s := margΩP (·|π−1

S (s)) be the posterior distribution

after the signal s is observed. Let a∗(s) denote the solution(s) to

max
a∈A

∑
ω

u(a, ω)βP
s (ω).

If margS(P )(s◦) = 0, then ex ante expected utility is unaffected by choices after s◦. Let S◦
P

denote the set of s◦ having probability 0 under P .

The perfect Bayesian approach asks that a∗PB(s) be the solution set for

max
a∈A

∑
ω

u(a, ω)βP
s (ω)

when s 6∈ S◦
P , and a∗PB(s◦) be the solution set for

max
a∈A

∑
ω

u(a, ω)βPer
s (ω)

for some βPer
s◦ ∈ ∆(Ω) when s◦ ∈ S◦

P .

The consistent approach also asks for best responses to βs when s 6∈ S◦
P , but it asks that

a∗con(s◦) be the solution set for

max
a∈A

∑
ω

u(a, ω)βC
s◦(ω)

for some βC
s◦ that is consistent with P .

The distinction is between

(1) “for some βPer
s◦ ∈ ∆(Ω),” and

(2) “for some βC
s◦ that is consistent with P .”
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Consistency asks that the beliefs at every s come from some strictly positive approxima-

tion to, or perturbation of, P . For single person decision theory, we shall see that consistency

means nothing at all. This is emphatically not true in games.

Problem 1. Let S = {1, 2, 3}, Ω = {ω1, ω2, ω3}, and A = {a, b, c}. Let P be given by the

matrix

S = 3 0 0 0

S = 2 0.1 0.1 0.2

S = 1 0.2 0 0.4

ω1 ω2 ω3

and let u(a, ω) be given by the matrix

d 5 4 3

c 9 0 0

b 6 6 6

a 2 5 8

ω1 ω2 ω3

(1) Give S◦
P , and for every s 6∈ SP , given βs.

(2) Give a∗PB(s) for each s ∈ S.

(3) Define s 7→ βs to be consistent with P if there exists a sequence Pn � 0 with

Pn → P , βn,s = βPn
s , and βn,s → βs. Give the set of s 7→ βs that are consistent with

P . [Your calculations should lead you to the observation that a∗con(s) ≡ aPB(s).]

We now apply the perfect Bayesian approach to a simple game.

Problem 2. In Puccini’s Gianni Schicchi, Buoso Donati has died and left his large estate to

a monastery. Before the will is read by anyone other than the relatives, they call in a noted

mimic, Gianni Schicchi, to play Buoso on his deathbed, re-write the will in front of lawyers,

and then convincingly die. The relatives explain, very carefully, to Gianni Schicchi, just how

severe are the penalties for anyone caught tampering with a will (at the time, the penalities

included having one’s hand cut off). The plan is put into effect, but, on the deathbed, Gianni

Schicchi, as Buoso Donati, rewrites the will leaving the entire estate to the noted mimic and

great artist, Gianni Schicchi. The relatives can expose him, and thereby expose themselves

too, or they can remain silent. With player 1 being Gianni Schicchi and player 2 being the

relatives, and some utility numbers with y � 200 to make the point, with Gianni Shicchi

being player 1, we have
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An equilibrium outcome for a game is a distribution over the end points of the game

that arises from play of equilibrium strategies.

(1) Give the normal form for this extensive form game.

(2) Give the two sets of equilibria and the two equilibrium outcomes for this game.

(3) In one of the sets of equilibria, 2’s decision node is reached with probability 0, that

is, it is a null set. What is a∗PB at this null set?

(4) A Nash equilibrium is a perfect Bayesian equilibrium if it calls for a∗PB at every null

set in the game. Which of the equilibria for this game are perfect Bayesian equilibria?

An equilibrium in which people play optimally with respect to some beliefs at all informa-

tion sets is called a sequentially rational equilibrium, or it is called a perfect Bayesian

equilibrium (pbe). The “sequential” does not have to do with sequences such as used in

real analysis. Rather, it has to do with rationality in a sequence of decisions. The “perfect”

is an attempt to cast aspersions on all equilibria which do not satisfy this criterion.

3



2. Not all pbes are consistent with the structure of a game

Problem 3. Consider the following extensive form game.rH
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Beliefs, b, are consistent with a strategy σ if there exists a sequence σn � 0 with σn → σ,

and bn → b where bn are the beliefs one arrives at by applying Bayes’ Law with the strictly

positive strategies σn. An equilibrium is sequential if it is sequentially rational with respect

to consistent beliefs. [I hate this terminology.]

(1) Show that the given 2× 2 game is the normal form.

(2) Find the sets of Nash equilibria for this game, and the two equilibrium outcomes for

this game.

(3) Show that every Nash equilibrium for this game is a pbe.

(4) Give the only set of beliefs that are consistent with any of the equilibrium strategies.

(5) Identify the sequential equilibria.
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Problem 4. Fill in the payoffs for the normal form representation of the following horse

game. Find the closed connected sets of equilibria and the corresponding equilibrium out-

comes. Figure out which equilibria are sequential. [If you get stuc, there is a worked example

of this form below.]

Another horse game
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3. Yet stronger restrictions on beliefs

There are even stronger ways to restrict beliefs than asking that they be consistent with

the structure of the game. The most powerful and widely used is a kind of self-referential

iterated deletion of dominated strategies test. This is refered to as stability.1

A strategy σi ∈ ∆i dominates (or strongly dominates) ti ∈ Ai relative to T ⊂ ∆ if

(∀σ◦ ∈ T )[ui(σ
◦\σi) > ui(σ

◦\ti)].

If T = ∆, this is the usual definition of dominance. Let Di(T ) denote the set of ti ∈ Ai

that are dominated relative to T . Smaller T ’s make the condition easier to satisfy, that is,

[T ′ ⊂ T ] ⇒ [Di(T
′) ⊃ Di(T )].

A strategy σi ∈ ∆i weakly dominates ti ∈ Ai relative to T ⊂ ∆ if

(∀σ◦ ∈ T )[ui(σ
◦\σi) ≥ ui(σ

◦\ti)], and

(∃σ′ ∈ T )[ui(σ
′\σi) > ui(σ

′\ti)].
Let WDi(T ) denote the set of ti ∈ Ai that are weakly dominated relative to T .

Lemma 1. If Γ is finite, then for all T ⊂ ∆, Ai \Di(T ) 6= ∅ and Ai \WDi(T ) 6= ∅.

This is not true when Γ is infinite.

Problem 5. [Two variants of ‘pick the largest integer’]

(1) Γ = (Ai, ui)i∈I where I = {1, 2}, Ai = N, ui(ni, nj) = 1 if ni > nj, and ui(ni, nj) =

0 otherwise. Show that every strategy is weakly dominated, and the game has no

equilibrium.

(2) Γ = (Ai, vi)i∈I where I = {1, 2}, Ai = N, and vi(ni, nj) = Φ(ni − nj), Φ(·) being the

cdf of a non-degenerate Gaussian distribution. Show that every strategy is strongly

dominated (hence the game has no equilibrium).

We are now going describe an interative sequence of tests. The basic ingredient applied

over is passing at T -test.

Definition 2. For E ⊂ Eq(Γ) and T ⊂ ∆, E passes a T -test if

(∀σ ∈ E)(∀i ∈ I)[σi(Di(T )) = 0].

For example, E passes a ∆-test if no element of E puts mass on a dominated strategy.

1Well, not quite. There are several definitions of stable sets of equilibria running around in the literature.
The better definitions have the property that a stable set of equilibria exists and satisfies the self-referential
tests that are described here. Therefore, if a set fails the self-referential tests, then it must not be stable,
and if only one set satisfies the tests, then it is the stable set.
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The iterative procedure starts with S1
i = Ai, defines ∆n = ×i∈I∆(Sn

i ), and if Sn has been

defined, set Sn+1
i = Sn

i \Di(∆
n). If Γ is finite, then Lemma 1 implies

(∃N)(∀n, n′ ≥ N)[Sn
i = Sn′

i 6= ∅].

There are many variations on this iterative-deletion-of-dominated-strategies theme. In all

of them, A1
i = ∆i.

(1) Sn+1
i = Sn

i \Di(∆
n). If this reduces the strategy sets to singletons, then the game

is dominance solvable (a term due to Herve Moulin).

(2) Sn+1
i = Sn

i \WDi(∆
n) where WDi(T ) is the set of strategies weakly dominated with

respect to T .

(3) Set S2
i = S1

i \ WDi(∆
1), and for n ≥ 2, set Sn+1

i = Sn
i \ Di(∆

n). Dekel and

Fudenberg, and Börgers show that the most that can be justified by appealing to

common knowledge of the structure of the game and common knowledge of expected

utility maximization is this kind of iterated deletion procedure.

These iterated procedures become really powerful when we make them self-referential.

Let Eq(Γ) be the set of Nash equilibria of a game Γ. Let us ask if a set of equilibria,

E ⊂ Eq(Γ), is “sensible” or “internally consistent” by asking if it passes an E-test. This

kind of self-referential test is called an equilibrium dominance test. Verbally, this makes

(some kind of) sense because, if everyone knows that only equilibria in a set E are possible,

then everyone knows that no-one will play any strategy that is either weakly dominated or

that is strongly dominated relative to E itself. That is, E should survive an E-test.

There is a problem with this idea as stated, if we take E = Eq(Γ) and there are many

equilibrium outcomes, people do not know enough to determine their own best response.

We solve this by applying the iterative procedures only to elements of a particular class, E ,

of subsets of Eq(Γ). This is the class E of closed and connected subsets of Eq(Γ) on which

the outcome function is constant.

Formally, fix a set E ⊂ Eq(Γ), set S1
i = Ai, E1 = E. Given Sn

i and En for each i ∈ I, set

∆n = ×i∈I∆(Sn
i ), and define Sn+1

i by

Sn+1
i = Sn

i \ {WDi(∆
n) ∪Di(E

n)}.

In this step, we eliminate from the game all weakly dominated strategies and all strategies

that are dominated relative to En.

After this deletion, some of the strategies in En may not be playable in the new game.

To take care of this, we define

En+1 = {σ ∈ En : ∀σ ∈ En+1, ∀i ∈ I, σi(Di(E
n)) = 0}.

It is possible than En+1 = ∅. This tells us that the original set E has failed the test. In

other words, we say that E ∈ E passes the iterated equilibrium dominance test if at
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each stage in the iterative process, there exists a non-empty En+1 ∈ E , En+1 ⊂ En, such

that ∀σ ∈ En+1, ∀i ∈ I, σi(Di(E
n)) = 0.

You will now examine this workings of this logic, first in a “horse” game, then in a couple

of signaling games.

Problem 6. Returning to the previous horse game, which of the closed connected sets of

equilibrium strategies that you found satisfy the self-referential test? [If you need it, and I

would if I were seeing this for the first time, you can find a worked example of this procedure

in a different horse game.]

Example 3. Consider
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There are three closed connected sets of equilibria for this game. Listing probabilities of

playing down and left first, they are

EA = {((0, 1), (0, 1), (γ, 1− γ)) : γ ≥ 5/11},

where the condition on γ comes from 15 ≥ 9γ + 20(1− γ),

EB = {((1, 0), (β, 1− β), (1, 0)) : β ≥ 1

2
},

where the condition on β comes from 15 ≥ 10β + 20(1− β), and

EC = {((0, 1), (1, 0), (0, 1))}.

Note that for any σ, σ′ ∈ Ek, k ∈ {A, B, C}, the outcome is the same, hence the utilities

are the same.

There are no weakly dominated strategies for this game, which means that iterated deletion

of weakly dominated strategies changes nothing.

(1) u1(s\D1) = (15, 15, 0, 0) while u1(s\A1) = (10, 20, 30, 20) so no weakly dominated

strategies for 1,
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(2) u2(s\D2) = (40, 9, 50, 20) while u2(s\A2) = (40, 15, 50, 15) so no weakly dominated

strategies for 2,

(3) u3(s\L3) = (10, 0, 10, 30) while u3(s\R3) = (0, 1, 0, 3) so no weakly dominated strate-

gies for 3.

There are consistent beliefs that 3 could hold to make EA sequential because the beliefs

associated with ((ε, 1 − ε), (δ, 1 − δ), (γ, 1 − γ)) are b = ( ε
ε+(1−ε)δ

, (1−ε)δ
ε+(1−ε)δ

). For ε, δ ↓ 0, b

can converge to anyplace in [0, 1]. There are beliefs, b, for which any of the given, strictly

positive γ’s are best responses.

However, such b’s are not stable — if everyone knows that the outcome associated with

EA obtains, they must believe in some equilibrium strategy in EA. However, against all of

the strategies in EA, D1 is dominated for 1. Stable beliefs would survive the removal of such

a strategy from the game, and none of the beliefs making EA sequential are stable.

It is not just the first round of arguments about beliefs that is needed for stability, suppose

that we have eliminated a strategy and we look at the new game. Pbe, sequentiality, and

stability should also apply here, in the new smaller game. However, the strategy R3 is

dominated for 3 relative to EB, removing R3 make D2 weakly dominated for 2, meaning that

every σ ∈ EB puts mass on the deleted strategy.

Therefore, since at least one closed connected set of equilibria survive the self-referential

tests, EC does. Something that can be directly verified.
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The following is a famous example due Cho and Kreps (1987).
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There are (at least) two versions of the story behind this game:

(1) There is a fellow who, on 9 out of every 10 days on average, rolls out of bed like

Popeye on spinach. When he does this we call him “strong.” When strong, this

fellow likes nothing better than Beer for breakfast. On the other days he rolls out of

bed like a graduate student recovering from a comprehensive exam. When he does

this we call him “weak.” When weak, this fellow likes nothing better than Quiche for

breakfast. In the town where this schizoid personality lives, there is also a swaggering

bully. Swaggering bullies are cowards who, as a result of deep childhood traumas,

need to impress their peers by picking on others. Being a coward, he would rather

pick on someone weak. He makes his decision about whether to pick, p, or not, n,

after having observed what the schizoid had for breakfast.

(2) 9 out of every 10 days on average, a stranger who feels like Glint Westwood2 comes

into town. We call such strangers “strong.” Strong strangers like nothing better

than Beer (and a vile cigar) for breakfast. On the other days, a different kind of

stranger comes to town, one who feels like a graduate student recovering from a

comprehensive exam. We call such strangers “weak.” Weak strangers like nothing

better than Quiche for breakfast. Strong and weak strangers are not distinguishable

to anyone but themselves. In the town frequented by breakfast-eating strangers,

2A mythical Hollywood quasi-hero, who, by strength, trickiness and vile cigars, single-handedly overcomes
huge obstacles, up to and including bands of 20 heavily armed professional killers.
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there is also a swaggering bully. Swaggering bullies are cowards who, as a result of

deep childhood traumas, need to impress their peers by picking on others. Being a

coward, he would rather pick on someone weak. He makes his decision about whether

to pick, p, or not, n, after having observed what the stranger had for breakfast. With

payoffs listed in the order 1st, 1wk, 2 and normalizing strangers’ payoffs to 0 when

they are not breakfasting in this town, the game tree is
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This game has three players (four if you include Nature), 1st (aka Glint), 1wk

(aka the weak stranger), and 2 (aka the Bully). In principle, we could also split

the Bully into two different people depending on whether or not they observed Beer

or Quiche being eaten. The logic is that we are the sum of our experiences, and

if our experiences are different, then we are different people. If we did this second

agent splitting, we would have the game in what is called agent normal form. In

this game, instead of putting 0’s as the utilities for the strangers’ when they are

not breakfasting in this town, we could have made 1st’s utility equal to 1wk’s even

when they are out of town. Since we are changing utilities by adding a function that

depends only on what someone else is doing, this cannot change anything about the

equilibrium set.
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Problem 7. At the end of this problem, you will have found that only one equilibrium

outcome of the Beer-Quiche game survives the self-referential tests.

(1) Show that 2 has a dominated strategy, (p, p).

(2) Show that by varying 2’s strategy amongst the remaining 3, we can make either Beer

or Quiche be a strict best response for both strangers. [This means that no strategies

are dominated for the strangers, and iterated deletion of dominated strategies stops

after one round.]

(3) Show that the equilibrium set for this game can be partitioned into two sets, E1 and

E2, but note that we must now specify 3 strategies,

E1 = {((q), (q), (0, β, 0, 1− β)) : 21 ≥ 12β + 30(1− β), i.e. β ≥ 1

2
},

and

E2 = {((b), (b), (0, 0, β, 1− β)) : 29 ≥ 28β + 30(1− β) i.e. β ≥ 1

2
}.

Note that the outcome function, O(·), is constant on the two closed and connected

sets E1 and E2.

(4) Show that the self-referential tests do eliminate E1. [For 1wk, Beer is dominated

relative to E1, after removing Beer for 1wk, (p, n) is weakly dominated for 2, implying

that no σ ∈ E1 survives the iterative steps. ]

(5) Show that E2 does survive the iterative steps of the self-referential tests.
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4. Some optional stuff

Here are a variety of signaling games to practice with if you are so inclined. I am not

requiring that you do these. I offer them in case you get hooked on signaling games.

The presentation of the games is a bit different than the extensive form games we gave

above, part of your job is to draw extensive forms. Recall that a pooling equilibrium in a

signaling game is an equilibrium in which all the different types send the same message, a

separating equilibrium is one in which each types sends a different message (and can thereby

be separated from each other), a hybrid equilibrium has aspects of both behaviors.

The presentation method is taken directly from Banks and Sobel’s (1987) treatment of

signaling games. Signaling games have two players, a Sender S and a Receiver R. The Sender

has private information, summarized by his type, t, an element of a finite set T . There is

a strictly positive probability distribution ρ on T ; ρ(t), which is common knowledge, is the

ex ante probability that S’s type is t. After S learns his type, he sends a message, m, to R;

m is an element of a finite set M . In response to m, R selects an action, a, from a finite set

A(m); S and R have von Neumann-Morgenstern utility functions u(t,m, a) and v(t,m, a)

respectively. Behavioral strategies are q(m|t), the probability that S sends the message m

given that his type is t, and r(a|m), the probability that R uses the pure strategy a when

message m is received. R’s set of strategies after seeing m is the #A(m) − 1 dimensional

simplex ∆m, and utilities are extended to r ∈ ∆m in the usual fashion. For each distribution

λ over T , the receiver’s best response to seeing m with prior λ is

(1) Br(λ, m) = arg maxr(m)∈∆m

∑
t∈T

v(t,m, r(m))λ(t).

Examples are represented with a bi-matrix B(m) for each m ∈ M . There is one column

in B(m) for each strategy in A(m) and one row for each type. The (t, a)’th entry in B(m) is

(u(t,m, a), v(t,m, a)). With t1 being the strong type, t2 the weak, m1 being beer, m2 being

quiche, a1 being pick a fight, and a2 being not, the Beer-Quiche game is

B(m1) a1 a2

t1 10,−10 30, 0

t2 0, 10 20, 0

B(m2) a1 a2

t1 0,−10 20, 0

t2 10, 10 30, 0

You should carefully match up the parts of this game and the extensive form of B-Q given

above.

Here is a simple example to start on:

B(m1) a1

t1 2, 2

t2 2, 2

B(m2) a1 a2

t1 3, 3 0, 0

t2 0, 0 3, 3
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Problem 8. Draw the extensive form for the game just specified. Find the 3 connected sets

of equilibria. Show that all equilibria for this game are sequential. Show that the 3 connected

sets of equilibria satisfy the self-referential tests.

The following game is Cho’s (1987, Example 2.1): the types are A, B, and C, ρ(A) =

ρ(C) = 3/8, ρ(B) = 1/4, the messages are L and R, and the actions are as given.

B(L) U D

A 2, 1 −1, 0

B 2, 1 0, 0

C 2, 0 0, 1

B(R) U M D

A 0, 2 0, 0 0, 2

B 0, 2 4, 3 1,−1

C 0,−3 1,−2 4, 0

Problem 9. Draw the extensive form for the game just specified and analyze the equilibrium

set.

The following is a sequential settlement game of a type analyzed by Sobel (1989): There

are two types of defendants, S: type t2 defendants are negligent, type t1 defendants are not,

ρ(t1) = 1/2. S offers a low settlement, m1, or a high settlement, m2. R, the plaintiff, either

accepts, a1, or rejects a2. If R accepts, S pays R an amount that depends on the offer but

not S’s type. If R rejects the offer, S must pay court costs and a transfer depending only

on whether or not S is negligent. With payoffs, the game is

B(m1) a1 a2

t1 −3, 3 −6, 0

t2 −3, 3 −11, 5

B(m2) a1 a2

t1 −5, 5 −6, 0

t2 −5, 5 −11, 5

Problem 10. Draw the extensive form for the game just specified. Analyze the equilibria

of the above game.

One more game! This one has ρ(t1) = 0.4.

B(m1) a1

t1 0, 0

t2 0, 0

B(m2) a1 a2 a3 a4

t1 −1, 3 −1, 2 1, 0 −1,−2

t2 −1,−2 1, 0 1, 2 −2, 3

Problem 11. Draw the extensive form for the game just specified and analyze the equilib-

rium set.
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