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The standard criterion used to compare streams of payoffs in the undiscounted
case is lim infT � � 1�T �T

t=1 u(xt). In this paper we approach the problem
axiomatically. This sheds light on the behavioral underpinnings of such a rule and
leads to a novel choice criterion, the Polya Index. Journal of Economic Literature
Classification Numbers: C72, C73, D90. � 1998 Academic Press

1. INTRODUCTION

In some intertemporal problems it is important to consider agents who
do not discount future utilities but instead attach the same importance to
all periods, no matter how far apart they are. This is the case for a social
planner who allocates resources among different generations, or for players
who greatly value a long time horizon in a repeated strategic interaction.
For instance, the celebrated folk theorems of Aumann and Shapley [1]
and Rubinstein [20] consider complete patient players, as well as earlier
works on infinitely repeated stochastic games (see, e.g., Blackwell and
Ferguson [3]). Complete patient social planners have been considered in
growth theory by the literature pioneered by Ramsey [19].

In the discounted case, the standard criterion used to compare infinite
streams of payoffs [x1 , ..., xn , ...] is (1&$) ��

t=1 $t&1 u(xt) for 0<$<1.
Without discounting, it seems natural to focus on the limit of the time
averages limT � � 1�T �T

t=1 u(xt). In particular, the following classic
result shows that this criterion can be thought of as the limiting case of
discounting.1
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Theorem 1. Let [u(x1), ..., u(xn), ...] be a bounded stream of utilities. Then
limT � � 1�T �T

t=1 u(xt) exists if and only if lim$ � 1 (1&$) ��
t=1 $t&1 u(xt)

exists. In this case

lim
T � �

1
T

:
T

t=1

u(xt)= lim
$ � 1

(1&$) :
�

t=1

$t&1 u(xt).

However, these limits often do not exist, as the following simple example
shows.

Example. Let u(xt) be the following sequence of zeros and ones:

1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, ... .

It is easy to check that limT � � 1�T �T
t=1 u(xt) does not exist, and, in

particular, we have2

lim inf
T � �

1
T

:
T

t=1

u(xt)=
1
3

and lim sup
T � �

1
T

:
T

t=1

u(xt)=
2
3

.

Because of this existence problem, the limit of time averages criterion is
often replaced by the more general

lim inf
T � �

1
T

:
T

t=1

u(xt). (1)

However, no behavioral underpinning for this more general criterion has
been provided. As there are many other methods which can be used to
rank non-convergent sequences (see, e.g., Hardy [11]), it is not clear why
(1), a rather crude alternative, should be preferred. Moreover, the limit of
time averages itself lacks a clear behavioral underpinning; Theorem 1,
however interesting, falls short of providing one.

1.1. Our approach

In this paper we approach the problem axiomatically. In particular, we
look at complete patience and time invariance, the two main features of
these time averaging criteria that have been discussed in the literature (see,
e.g., Fudenberg and Tirole [9] pp. 148�149). For convenience, we briefly
summarize the intuitive meanings of these two properties:

1. A time preference reflects complete patience if all periods of time
are equally weighted.
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2. A time preference is time invariant if the payoffs obtained in any
finite number of periods do not matter.

In the paper we first study the second property. In particular, we prove
that time invariance per se would deliver the following criterion:

lim
T � � _ inf

j�1 \
1
T

:
T

t=1

u(xj+t)+& .

Notice that such a limit always exists.
After having established this result, we focus on patience. Unlike time

invariance, complete patience is much trickier to axiomatize. In the finite
case there is a natural definition of complete patience: we have complete
patience when the ordering of any two payoff streams does not change by
taking arbitrary permutations of their respective time indexes. However,
we show that a literal translation of this definition to the infinite case is
highly unsatisfactory. In particular, it delivers the following criterion:

lim inf
t � �

u(xt),

where only instantaneous utilities are considered.
To provide a more interesting definition of complete patience we use

natural densities. For a given subset of points of time A, its natural density
$(A) is defined by

lim
t � �

|A & [1, ..., t]|
t

whenever the limit exists, which is not always the case. Loosely speaking,
a permutation x? of a payoff stream x=[xt]t�1 preserves the upper sets'
densities if $([t: u(xt)�:])=$([t: u(x?

t )�:]) for all real numbers :.
These permutations do not change the relative frequencies with which the
different payoffs come up in the stream (in section 6 a simple example is
provided).

We say that an agent is completely patient when the ordering of two
payoff streams does not change by taking permutations that preserve the
upper sets' densities. This more compelling definition of patience delivers,
up to a technical condition, the following criterion:

lim
= � 0 _lim inf

T � �

1
=T

:
T

t=(1&=) T

u(xt)& . (2)
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We call this criterion the Polya Index. It is well defined for every possible
bounded payoff stream. In particular,

lim
= � 0 _lim inf

T � �

1
=T

:
T

t=(1&=) T

u(xt)&= lim
T � �

1
T

:
T

t=1

u(xt)

when the limit of time averages exists, so that the Polya Index extends the
standard limit criterion. This implies that our representation theorem
provides a foundation for the limit criterion as well.

The Polya Index has an interesting characterization. Let F be the set of
all bounded payoff streams, o

t a time preference on F that can be
represented by the Polya Index, and u(xt) its corresponding instantaneous
utility. Let

Fa={x=[xt] t�1 # F: lim
T � �

1
T

:
T

t=1

u(xt) exists= ,

that is, Fa is the set of all payoff streams that have a well defined limit of
time averages. For any given stream x=[xt]t�1 , it holds that

P(x)=sup { lim
T � �

1
T

:
T

t=1

u(x$t): x$ # Fa and xo
tx$= , (3)

where P(x) denotes the Polya Index of the stream x. That is, the Polya
Index of x is the supremum of the time average limits taken over all
streams x$ for which such a limit is well defined, and such that xo

tx$.
Besides its intrinsic interest, this characterization, together with the

original form (2), seems to provide the Polya Index with an interesting
analytic tractability.3

1.2. Lim inf

Instead of deriving the standard lim inf criterion, our axiomatic
approach led us to the Polya Index. However, our analysis also sheds new
light on the lim inf criterion. To see why this is the case we have to make
a short digression. This work started as a dividend of the analysis of
Marinacci [15]. In that paper it was shown that for any bounded sequence
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P(x)=sup { lim
T � �

1
T

:

T

t=1

u(x$t): x$ # Fa and u(x$t)�u(xt) for all t�1= .

This representation seems especially useful in terms of analytical tractability.



f : N � R there exists a non-additive normalized measure &: 2N � [0, 1]
such that

lim inf
n

f (n)=| f (n) d&,

where an appropriate notion of integral, due to Choquet [5], is used (see
the appendix for details).

As Choquet integrals have been used to model vague subjective beliefs in
Schmeidler [21], this observation suggested the possibility of using that
framework to study time preferences. It turned out, however, that the most
appropriate framework was the closely connected multiple priors model of
Gilboa and Schmeidler [10].

We now illustrate this point. In our temporal context we have weights
instead of priors, which represent how much the agents value the different
points of time. Combined with utilities, different weights deliver different
rankings of the payoff streams. In particular, a natural weight for complete
patience would be the natural density defined above. However, this density
fails to exist for many sets, and so we cannot use it as a weight. Lacking
this ``ideal'' weight, we assume that agents replace it with sets of weights,
in particular with those weights that coincide with the natural density
whenever it exists. This is why the multiple priors model is useful for our
purposes.4

By using this model as our set-up we derive the Polya Index. Moreover,
we show that there exists a strict subset Cl of the set of weights just
described such that

lim inf
T � �

1
T

:
T

t=1

u(xt)=min
+ # Cl

| u(xt) d+. (4)

Even though we have not been able to determine which further
requirements on preferences are needed to move to the strict subset Cl , the
equality (4) sheds light on the nature of the lim inf criterion, and on the
way in which it combines weights and utilities. In particular, it provides a
novel behavioral perspective on the lim inf criterion: an agent who uses
such a criterion can be viewed as using a set of weights, all coinciding with
the natural density when this ``ideal'' weight exists. The set is then sum-
marized through the minimum min+ # Cl

� u(xt) d+.
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In sum, our axiomatic approach to time invariance and complete
patience led to some new criteria to rank streams of payoffs, notably the
Polya Index, and shed new light on the lim inf criterion, the most used in
the non discounted case. As a secondary contribution, we provide a con-
nection between the two apparently unrelated issues of modelling vague-
ness in subjective beliefs and complete patience in time preferences. Finally,
in a companion paper, Marinacci [16], we show that our axiomatic
approach leads to a considerable generalization of the undiscounted Folk
Theorems. Specifically, we show that they can be proved by imposing only
conditions on preferences, without relying on any particular evaluation
functionals. In so doing, we generalize and unify several important results
obtained in the case of complete patience, included the classic results of
Aumann and Shapley [1] and Rubinstein [20]. Moreover, our results are
based only on properties of preferences and this makes transparent their
behavioral foundation.

The rest of the paper is organized as follows. Section 2 describes the set-
up, and reports the representation theorem of Gilboa and Schmeidler [10].
Section 3 examines time invariance, and proves a representation result
for this property. Section 4 considers the ``naive'' definition of complete
patience, and shows what kind of representation result it entails. Section 5
shows how unsatisfactory the naive definition is and argues that natural
densities have to be considered. It also shows that a form of patience is
already incorporated in the time invariance axiom. Section 6 formally
defines patience by means of densities, and proves the relative representa-
tion theorem, where the Polya Index first occurs. Section 7 provides two
interesting characterizations of the Polya Index. Finally, section 8 considers
the lim inf criterion, and shows that our analysis sheds new light on this
criterion as well. All the proofs, and the most technical analysis, are
relegated to the appendix. A glossary of the more relevant notation is
provided at the beginning of the appendix.

2. SET-UP

We use the generalization of the Anscombe�Aumann model introduced
in Gilboa and Schmeidler [10] and Schmeidler [21].

Let X be a nonempty set of consequences and P the set of all probability
distributions with finite support on X, i.e.,

P={ p: X � [0, 1] : p(c){0 for finitely many c's in X and :
c # X

p(c)=1= .
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Let T=[1, ..., t, ...] be the set of points of time, and 2T its power set.
An act f is a function from T into P. For p # P, p* denotes the constant
act p*(t)= p for all t # T.

The set of all acts is endowed with a preference ordering o
t . In par-

ticular, F denotes the set of all bounded acts, i.e., f # F if there are
p1 , p2 # P such that p*1 O

t f O
t p*2 for all t # T.

We now present several axioms on o
t .

A.1. Weak Order. o
t is complete and transitive.

A.2. Monotonicity. For all acts f, g # F we have f o
t g whenever

f (t)o
t g(t) for all t # T.

A.3. Continuity. For all f, g, h # F, if f o g and goh, then there are
:, ; # (0, 1) such that :f +(1&:) ho go;f +(1&;) h.

A.4. Nondegeneracy. There exist f, g # F such that f o g.

All the above axioms are standard, and have a simple interpretation. The
next axiom is a weak version of the Independence Axiom, which only
requires independence with respect to constant acts.

A.5. Certainty Independence. For all acts f and g, for all constant acts
c, and all 0<:<1, f o

t g if and only if :f +(1&:) co
t:g+(1&:) c.

Next we introduce a smoothing axiom: the agent always weakly prefers
to smooth his payoff stream by mixing two indifferent acts rather than have
only one of them all the time.

A.6. Intertemporal Smoothing. For all f and g in F, f t g implies
:f +(1&:) go

t f for all 0<:<1.

Finally, a key ingredient in a temporal decision is how the agents weight
the different points of time. In this set-up, where infinite points of time are
considered, formally a weight is a set function +: 2T � [0, 1] that satisfies
the following conditions:

(i) +(<)=0;

(ii) +(A _ B)=+(A)++(B) whenever A & B=<;

(iii) +(T)=1.

We can now report the Gilboa and Schmeidler Theorem for our set-up
(Chateauneuf [4] proved independently a similar result).
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Theorem 2. The following two statements are equivalent:

(i) The preference relation o
t on F satisfies the axioms A.1�A.6.

(ii) There exists an affine real valued function u on P and a unique
non-empty weak*-compact and convex set C of weights on 2T such that, for
all f and g in F,

f o
t g if and only if min

+ # C
|

T

u( f (t)) d+�min
+ # C

|
T

u(g(t)) d+.

Finally, the function u is unique up to a positive linear transformation.

Interpreted in our temporal context, this representation means that the
agent does not evaluate the payoff streams through a single weight,
but instead uses a set of weights, summarized by the minimum
min+ # C �T u( f (t)) d+.

By Theorem 2, every preference relation o
t that satisfies axioms A.1-A.6

is associated with a pair (u, C), the utility function on P and the set of
multiple weights. Using these pairs it is possible to introduce a natural par-
tial order R on the set of preference relations satisfying axioms A.1�A.6:
We write o

tRo
t $ if the two following conditions are satisfied:

(i) the utility functions u and u$ on P are equal, up to positive linear
transformations;

(ii) the set C$ is contained in C, i.e., C$�C.

The partial order R is reflexive, transitive, and antisymmetric. It is easy
to see that for two preferences o

t and o
t $ satisfying axioms A.1�A.6, the

following two statements are equivalent:

(i) o
tRo

t $

(ii) for all f # F and all constant acts p* it holds that

p*o
t $f implies p*o

t f
p*o $f implies p*o f.

Definition 3. Let o
t be a preference relation that satisfies a given set

of axioms, which includes A.1�A.6. We call o
t canonical if o

tRo
t $ for all

other preferences o
t $ that satisfy the same set of axioms.

In other words, a preference relation o
t that satisfies a given set of

axioms is canonical if it holds that C$�C for all preferences o
t $ which

satisfy the same set of axioms and have the same utility function on P.

112 MASSIMO MARINACCI



It is important to keep in mind that o
t is canonical with respect to a

given set of axioms. Indeed, different sets of axioms may be associated with
different canonical preference relations.

2.1. Comonotonic Independence

In the sequel we will need another axiom, due to Schmeidler [21]. Two
acts f and g in F are comonotonic if for no t, t$ # T it holds f (t)o f (t$)
and g(t)O g(t$). In other words, f (t)o f (t$) implies g(t)o

t g(t$), i.e., two
comonotonic acts have the same kind of monotonicity. Consequently, their
intertemporal payoff profile has a similar shape and the mixture of two
comonotonic acts does not alter the shape. It therefore seems natural to
require that this mixture does not change the original preference ordering
between the two acts. This motivates the next axiom, a stronger version
of A.5.

A.7. Comonotonic Independence. For all pairwise comonotonic acts
f, g, h # F and all : # (0, 1), f o

t g implies :f +(1&:) ho
t:g+(1&:) h.

This axiom plays an important role in the representation theorem for
non-additive measures proved in Schmeidler [21], which is reported in the
appendix.

3. TIME INVARIANCE

We first study time invariance. Given an act f # F, define

f k (t)= f (t+k) for all t�1.

A.8*. Time Invariance. For every f # F and every k>0 it holds that
f t f k.

According to this axiom, the agent puts zero weight on the consequences
obtained on all past and present periods, and full weight to the future
periods. In other words, it does not matter what happens in any finite set
of points of time.

A crucial implication of Theorem 1 is that Time Invariance must be
satisfied by any preference relation that aims to model the undiscounted
case as a limit case of discounting as $ goes to 1, when such a limit exists.
This is a very important feature of Time Invariance.

In the sequel we will sometimes need a very weak independence axiom
related to time invariance. A bit of notation: For a set of points of time
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A�T, and for a pair p1 , p2 # P, with p2o p1 , let fA be the act defined
by:

fA (t)={ p2 if t # A
p1 if t � A.

In other words, fA is any binary act which gives a higher payoff on A
than on Ac. In the notation fA we omit explicit reference to p1 and p2 since
what matters is only their relative order, not their specific values.

A.8. Time Invariance Independence. For all A�T there exist a fA # F

such that

1
2 fA+ 1

2 fAc t
1
2 f k

A+ 1
2 fAc

for all k�1.

This is a very weak notion of independence, and it only involves time
invariance. Interestingly, it turns out that A.8 implies A.8* (this is why we
have used the star in A.8*).

Proposition 4. Suppose the preference relation o
t on F satisfies

axioms A.1�A.6 and A.8. Then, it satisfies A.8*. The converse is false (that
is, there exist preference relations o

t on F that satisfy axioms A.1�A.6 and
A.8*, but not A.8).

An example of a utility functional that satisfies A.8* but not A.8 is

lim inf
t � �

u( f (t)),

i.e., the lim inf of instantaneous utilities.

3.1. A Representation

As will be proved in the appendix, A.8 implies in terms of multiple
weights that all the weights have to be invariant.5 As there is no a priori
reason to exclude any of these invariant weights, we focus on the maximal
set of invariant weights. In other words, we focus on the canonical
preference relation that satisfies the set of axioms A.1�A.6 and A.8.

For the canonical preference relation we obtain the following representa-
tion result, which provides a complete characterization of time invariance
for this natural case.
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Theorem 5. The following two statements are equivalent:

(i) The preference relation o
t on F is canonical and satisfies axioms

A.1�A.6 and A.8.

(ii) There exists an affine real valued function u on P such that, for all
f and g in F, we have, f o

t g if and only if

lim
T � � _ inf

j�1 \
1
T

:
T

t=1

u( f ( j+t))+&� lim
T � � _ inf

j�1 \
1
T

:
T

t=1

u(g( j+t))+& .

Finally, the function u is unique up to a positive linear transformation.

3.2. Time Averages

For some payoff streams, the above representation reduces to the com-
parison of the limits of time averages. Indeed, suppose the time average
limT � � 1�T �T

t=1 u( f (t)) converges to some l # R. This implies
limT � � 1�T �T

t=1 u( f ( j+t))=l for all j�1. In particular,

lim
T � �

inf
j�1 _

1
T

:
T

t=1

u( f ( j+t))&= lim
T � �

1
T

:
T

t=1

u( f (t))

whenever limT � � 1�T �T
t=1 u( f ( j+t))=l uniformly in j. This proves the

following corollary.6

Corollary 6. Suppose that the preference relation o
t on F satisfies

axioms A.1�A.6 and A.8. Then

f o
t g if and only if lim

T � �

1
T

:
T

t=1

u( f (t))� lim
T � �

1
T

:
T

t=1

u(g(t))

whenever both limT � � 1�T �T
t=1 u( f ( j+t)) and limT � � 1�T �T

t=1 u(g( j+t))
converge uniformly in j.
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1
T

:

T

t=1

u( f (t))= lim
T � �

1
T

:

T

t=1

u( f ( j+t))

for all j�1.



4. PATIENCE

We now move to the analysis of patience. As was mentioned in the intro-
duction, there is a natural definition of complete patience in the finite case:
we have complete patience when the ordering of any two acts does not
change by taking arbitrary permutations of their respective time indexes.

It is therefore natural to first look at the direct counterpart in the infinite
case of this notion, which is so compelling in the finite case. To do so, let
6 be the set of all one-to-one and onto maps ?: T � T. Given an act
f # F and a map ? # 6, define

f ? (t)= f (?(t)) for all t�1.

The act f ? is obtained from f through a rearrangement of its elements f (t).

A.9. Naive Patience. For every f # F and every ? # 6, it holds that
f t f ?.

This axioms states that the agent evaluates the consequences per se,
regardless of the points of time where he gets them. This axiom charac-
terizes an agent with ``infinite'' patience for whom all the points of time, no
matter how remote, have the same weight. We use the adjective naive
because this is the literal translation in the infinite case of the natural
notion of patience for finite sets. As will be seen, axiom A.9 is not at all
satisfactory. However, before moving on, we show what kind of representa-
tion it entails.

Theorem 7. The following two statements are equivalent:

(i) The preference relation o
t on F satisfies the axioms A.1�A.4, A.6,

A.8*, and A.9.

(ii) There exists an affine utility u: P � R such that, for all f and g in F,

f o
t g if and only if lim inf

t � �
u( f (t))�lim inf

t � �
u(g(t)). (5)

The function u is unique up to a positive linear transformation.

Notice that we use the lim inf of the instantaneous utilities and not of
their time averages. It is worth noting that we obtain lim sup instead of
lim inf in Eq. (5) if we replace A.6 with the dual axiom in which f t g
implies :f +(1&:) gO

t f for all 0<:<1. Similar dual versions hold for all
the representation results in the paper in which lim inf and min occur.
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5. PATIENCE REVISITED

Axiom A.9, which is the literal translation of complete patience from the
finite to the infinite horizon, is much stronger than it might seem at a first
glance. For example, consider the two acts f and g defined as follows

f (t)={ p2 if t # [2k]k�1

p1 if t � [2k]k�1

and g(t)={ p2 if t # [4k]k�1

p1 if t � [4k]k�1

(6)

where p2 o p1 . It is easy to check that, according to A.9, it holds that
f t g. However, the relative frequency limt � � ( |[2k]k�1 & [1, ..., t]| )�
t=1�2 with which the agent gets the higher consequence p2 under act f,
is twice than that under g, i.e., limt � � ( |[4k]k�1 & [1, ..., t]| )�t=1�4.
Nevertheless, by A.9, f t g because this axiom does not take into account
the relative frequencies with which payoffs come up.

As this example suggests, we must modify A.9 in order to take care of
the relative frequencies. In order to do this, we have to introduce densities.

Definition 8. Let A�T. The lower natural density of A is

$
*

(A)=lim inf
t � �

|A & [1, ..., t]|
t

,

while the upper natural density is

$*(A)=lim sup
t � �

|A & [1, ..., t]|
t

.

Finally, a set A�T has natural density $(A) if $
*

(A)=$*(A)=$(A).

The collection Ad=[A�T: $(A) exists] has the following properties:

1. A # Ad implies Ac # Ad ;

2. if A, B # Ad and A & B=<, then A _ B # Ad .

However, Ad is not an algebra.

5.1. Patience and Time Invariance

A form of patience based on frequencies is already implicit in the Time
Invariance axiom A.8. To see it, we need the following definition.
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Definition 9. The lower Banach density of a set A�T is

;
*

(A)= lim
T � � _ inf

j�1

|A & [ j, ..., j+T&1] |
T & ,

while the upper Banach density is

;*(A)= lim
T � � _sup

j�1

|A & [ j, ..., j+T&1]|
T & .

Finally, a set A�T has Banach density ;(A) if ;
*

(A)=;*(A)=;(A).

It holds that

;
*

(A)�$
*

(A)�$*(A)�;*(A)

for all A�T. In particular, ;(A)=$(A) whenever ;(A) exists.
Ab is the collection of all sets that have a Banach density, i.e.

Ab=[A�T: ;(A) exists], and Fb is the set of all acts f # F such that
[t: f (t)o

t p] # Ab for all p # P.
Given an act f # Fb , we are interested in permutations ? # 6 which are

invariant under Banach densities, i.e., ;([t: f (t)o
t p])=;([t: f ? (t)o

t p])
for all p # P. We denote them by 6 f

b .
We can now state the notion of patience that comes with Time

Invariance.

Theorem 10. Suppose the preference relation o
t on F satisfies axioms

A.1�A.6, and A.8. Then, for every f # Fb and every ? # 6 f
b , it holds that

f t f ?.

6. PATIENCE AND DENSITIES

We have seen how Time Invariance implies a form of patience based on
Banach densities. A natural step is to replace Banach densities with natural
densities in the notion of patience implied by Time Invariance.

To do this, we need a bit of notation. Denote by Fd be the set of all acts
f # F such that [t: f (t)o

t p] # Ad for all p # P. For a given f # Fd , denote
by 6 f

d the set of all permutations ? # 6 invariant under natural densities,
that is, $([t: f (t)o

t p])=$([t: f ? (t)o
t p]) for all p # P.

We are now in a position to state the new patience axiom.

A.10. Cardinal Patience. For every f # Fd and every ? # 6 f
d , it holds

that f t f ?.
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Of course, A.9 implies A.10, while the converse is not true. Moreover, if
we replace Fd and 6 f

d with, respectively, their subsets Fb and 6 f
b , by

Theorem 10 the axiom becomes a consequence of Time Invariance.
The following simple example further illustrates the nature of this axiom.

Example. Let f # F be an act such that

f (t)={ p1 if t is even,
p2 if t is odd,

with p1 o p2 . Clearly, f # Fd . Let ? be the permutation defined as follows:
?(2t&1)=2t and ?(2t)=2t&1 for t�1. Then

f ? (t)={ p1 if t is odd,
p2 if t is even.

This permutation preserves the upper sets' densities, i.e., ? # 6 f
d . In fact

$([t: f (t)o
t p])=$([t: f ? (t)o

tp])=1 if pO
t p2

$([t: f (t)o
t p])=$([t: f? (t)o

t p])= 1
2 if p2 O pO

t p1

$([t: f (t)o
t p])=$([t: f? (t)o

t p])=0 if po p1

6.1. A Technical Condition

For the representation result we need a technical condition, called
regularity. It is introduced in this subsection, which can be skipped at a
first reading.

For any p̂ # P, let [ p̂]=[ p: pt p̂], i.e., [ p̂] is the indifference class con-
taining p̂. Similarly, for A�P set [A]=[[ p]: p # A].

Definition 11. For a given f # F, let Af=[ p: [t: f (t)o
t p] � A$]. We

denote by F$ the set of all acts f # F such that the set [Af] is at most
countable.

In other words, if u: P � R is an affine utility associated with o
t , F$ is

the set of all acts f such that [t: u( f (t))�:] � Ad for an at most countable
set of : # R. Loosely speaking, F$ is the set of acts ``measurable'' w.r.t. A$ .
Notice that Fd �F$ .

As will be seen in the appendix, if f # F$ , and p0 # P is such that
u( p0)=0, then f t p0 whenever

:
�

t=1

u( f (t))
t
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converges (i.e., limT � � �T
t=1 u( f (t))�t) exists7 and is finite). For our next

representation theorem, a similar property must hold for all acts in F. To
this end we introduce the following technical condition, called regularity.

Definition 12. Let o
t be a preference ordering that satisfies A.1�A.6,

and u: P � R an affine utility provided by Theorem 2. Let p0 # P be such
that u( p0)=0. We say that o

t is regular if, for all acts f # F�F$ such that

:
�

t=1

u( f (t))
t

converges and such that inft�1 u( f (t))<0<supt�1 u( f (t)), it holds that
f t p0 .8

We conclude by presenting an interesting class of acts in F$ .

Proposition 13. Let o
t be a preference ordering that satisfies A.1�A.6,

and u: P � R an affine utility provided by Theorem 2. Let f # F. If there
exists an l # R such that

lim
T � �

1
T

:
T

t=1

|u( f (t))&l |=0, (7)

then f # F$ .

Remarks. (i) It is easy to check that (7) holds whenever limt � � u( f (t))
exists. Hence, by Proposition 13, in this special case f # F$ . (ii) If
u( f (t))�0 for all t�1 and ��

t=1 u( f (t))�t converges, then, by Kronecker's
Lemma

lim
T � �

1
T

:
T

t=1

u( f (t))= lim
T � �

1
T

:
T

t=1

|u( f (t))|=0.

Hence, f # F$ by Proposition 13. This is why in Definition 12 we require
that inft�1 u( f (t))<0<supt�1 u( f (t)). Otherwise, as just proved, f would
automatically be in F$ .
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t=1 u( f (t))�t implies limT � � 1�T

�T
t=1 u( f (t))=0. However, the converse is false. For example, let u( f (t))=1�lgt. Then

��
t=1 1�tlgt=�, but limT � � 1�T �T

t=1 1�lgt=0.
8 It is important to note that, as shown in the last footnote, the convergence of

��
t=1 u( f (t))�t is a much stronger requirement on f than limT � � 1�T �T

t=1 u( f (t))=0.
Therefore, regularity is a much weaker condition than assuming f t p0 when
limT � � 1�T �T

t=1 u( f (t))=0.



6.2. Representation Theorem

We can now state the representation result.

Theorem 14. The following two statements are equivalent:

(i) The preference relation o
t on F is canonical, satisfies axioms

A.1�A.6, A.8�A.10, and is regular.

(ii) There exists an affine utility u: P � R such that, for all f and g in
F, we have f o

t g if and only if

lim
= � 0 _lim inf

T � �

1
=T

:
T

t=(1&=) T

u( f (t))&� lim
= � 0 _lim inf

T � �

1
=T

:
T

t=(1&=) T

u(g(t))& .

Finally, the function u is unique up to a positive linear transformation.

Given its importance in this work, we now give a name to the functional
that comes up in Theorem 14.

Definition 15. Let f # F and u: P � R an affine utility function. The
functional P : F � R defined by

P( f )= lim
= � 0 _lim inf

T � �

1
=T

:
T

t=(1&=) T

u( f (t))&
is called the Polya Index.

Remark. We call P the Polya Index because for the special case of acts
f such that u( f (t)) # [0, 1] for all t�1, P( f ) is equal to the Polya minimal
density of the set [t: u( f (t))=1]. These densities have been introduced by
Polya [18, pp. 556�568].

Notice that

lim
= � 0 _lim inf

T � �

1
=T

:
T

t=(1&=) T

u( f (t))&= lim
T � �

1
T

:
T

t=1

u( f (t)) (8)

whenever the limit on the r.h.s. exists. Therefore, the Polya Index is an
extension of the limit of time average criterion to streams that do not have
well defined time average limits.

Using the equality (8), we get the following interesting consequence of
Theorem 14. It provides a behavioral underpinning for the use of time
averages, provided they exist.
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Corollary 16. Suppose the preference relation o
t on F satisfies

axioms A.1�A.6, A.8, and A.10, and regularity. Then there exists an affine
utility u: P � R such that, for all f and g in F,

f o
t g if and only if lim

T � �

1
T

:
T

t=1

u( f (t))� lim
T � �

1
T

:
T

t=1

u(g(t)),

provided the two limits exist. The function u is unique up to a positive linear
transformation.

7. THE POLYA INDEX

We now provide two further characterizations of the Polya Index.

7.1. Polya Index as an Inner Approximation

We first characterize the Polya Index as an inner approximation. For a
given f # F, let Fa=[ f # F: limT � � 1�T �T

t=1 u( f (t)) exists].

Theorem 17. Let o
t be the preference ordering of Theorem 14, and

u: P � R its corresponding affine utility. If u(P)=R (i.e., the range of u is
R), for all f # F it holds that

P( f )=sup { lim
T � �

1
T

:
T

t=1

u(g(t)): g # Fa and f o
t g= .

This characterization shows that the Polya Index can be viewed as an
inner approximation taken over the less preferred acts that have well
defined time average limits. In other words, comparing two acts through
the Polya Index is equivalent to comparing them by taking the supremum
over the set of all less preferred acts which have well defined time average
limits.

The proof of Theorem 17 rests on the following Lemma, which is inter-
esting in itself because it provides the Polya Index with further analytical
tractability.

Lemma 18. Let u: P � R be the affine utility provided by Theorem 14. If
u(P)=R, then, for all f # F, it holds that

P( f )=sup { lim
T � �

1
T

:
T

t=1

u(g(t)): g # Fa and u( f (t))�u(g(t)) for all t�1= .
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7.2. Polya Index and Weights

Next we characterize the Polya Index in terms of sets of weights. Let
{: T � T be the shift transformation defined by

{(t)=t+1.

We denote by Nd the set of all normalized finitely additive measures + on
2T such that

1. +(A)=$(A) for all A # Ad .

2. +(A)=+({(A)) for all A�T, i.e., + is invariant w.r.t. {.

Besides being invariant, the weights in Nd coincide with the natural den-
sity when it exists. They are the natural weights for complete patience (see
the discussion below), and the next result shows that the Polya Index can
be justified through them.

Theorem 19. Let u: P � R be the affine utility provided by Theorem 14.
Then there exists a unique weak*-compact and convex set Cp�Nd such that

P( f )=min
+ # Cp

| u( f (t)) d+

for all f # F.

Notice that up to a mild technical condition (i.e., regularity), the set Cp

coincides with Nd . The set Nd consists of all invariant weights that coincide
with the natural density $ whenever it exists. The density $ would be the
natural weight for complete patience, but it fails to exist for many sets and
cannot be used as a weight. Lacking this ``ideal'' weight, we can think of
an agent using the Polya Index as replacing it with the set of all invariant
weights that coincide with $ whenever it exists, i.e., with the set Nd .9

This interpretation of the Polya Index was already outlined in the intro-
duction and it is important because it provides the Polya Index with a
behavioral foundation. Interestingly, this interpretation is completely dif-
ferent from that used in the multiple priors model of Gilboa and
Schmeidler, whose aim is to model vagueness in subjective beliefs.
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8. LIM INF OF TIME AVERAGES

In the last Theorem we have seen how the Polya Index can be represen-
ted in terms of weights in Nd . We now show that the same is true for the
lim inf of time averages.

Theorem 20. Let o
t be a preference relation on F that satisfies axioms

A.1�A.6, A.8, and A.10, and regularity. Then there exists an affine utility
u: P � R and a unique non-empty weak*-compact and convex set Cl �Nd of
weights on 2T such that, for all f and g in F,

f o
t g if and only if min

+ # Cl
|

T

u( f (t)) d+�min
+ # Cl

|
T

u(g(t)) d+

and

min
+ # Cl

|
T

u( f (t)) d+=lim inf
T � �

1
T

:
T

t=1

u( f (t)).

Finally, the function u is unique up to a positive linear transformation.

This result shows that we can justify lim infT � � 1�T �T
t=1 u( f (t))

through a set of weights Cl contained in Nd . In particular, Cl % Cp , as the
following result shows.

Proposition 21. Cl % Cp .

The set Cl is therefore strictly smaller than Cp . Some weights in Cp have
to be eliminated in order to represent lim infT � � 1�T �T

t=1 u( f (t)).
However, it is not clear what conditions on o

t , on top of A.1�A.6, A.8,
A.10 and regularity, would lead to this elimination. In other words, it is not
clear which further axiom to impose on o

t in order to move from Cp to the
smaller set Cl .

Therefore, the behavioral underpinning of the liminf criterion is less
transparent than that of the Polya Index. Nevertheless, Theorem 20 is
interesting because it sheds light on the liminf criterion by providing a
representation where weights and utilities are clearly separated.

9. PROOFS AND RELATED ANALYSIS

9.1. Glossary of notation

T set of points of time (sect. 2)
X set of consequences (sect. 2)
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P set of all probability distributions with finite support (sect. 2)
F set of all bounded acts (sect. 2)
C set of weights (sect. 2)

Fb set of all bounded acts that preserve the upper sets'
Banach densities (sect. 5.1)

Fd set of all bounded acts that preserve the upper sets'
natural densities (sect. 6)

Fa set of all bounded acts that have a well defined limit
of time averages (sect. 7.1)

f k shift (sect. 3)
; Banach density (sect. 5.1)
$ natural density (sect. 5)

6 set of all one-to-one and onto permutations on T (sect. 4)
6 f

b set of all permutations invariant under Banach densities (sect. 5.1)
6 f

d set of all permutations invariant under natural densities (sect. 6)
Ab collection of all sets that have a Banach density (sect. 5.1)
Ad collection of all sets that have a natural density (sect. 6)
Nd invariant weights that coincide with the natural density

when it exists (sect. 7.2)

9.2. Example

In the introduction we presented an example of a sequence whose limit
average does not exist. We now give a more general result that includes the
example as a special case. It shows how far apart can be the upper and
lower bounds of the partial sums 1�T �T

t=1 xt .

Proposition 22. For any positive integer N there exists a sequence x
such that xt # [0, 1] for all t�1, and

lim inf
T � �

1
T

:
T

t=1

xt=
1

1+N
and lim sup

T � �

1
T

:
T

t=1

xt=
N

1+N
.

Notice that the difference

lim sup
T � �

1
T

:
T

t=1

xt&lim inf
T � �

1
T

:
T

t=1

xt=
N&1
N+1

tends to 1 as N gets larger and larger. As x takes on only the values 0 and
1, this means that there are sequences for which the lim inf and lim sup are
very far away.

Proof. Given N, let x be the sequence whose first N elements are 1, the
second N2 elements are 0, the third N 3 elements are 1, and so forth. It is
easy to check that
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lim sup
T � �

1
T

:
T

t=1

xt= lim
T � �

�T
t=0 N2t+1

�T
t=0 N 2t+1+:T

t=0 N2t&1
=

N
N+1

lim inf
T � �

1
T

:
T

t=1

xt= lim
T � �

�T
t=0 N2t+1

�T
t=0 N 2t+1+:T

t=0 N2t&1+N2T+2

=
1

N+1

as wanted. K

9.3. Proposition 4 and Theorem 5

Let l� be the set of real sequences x=[xn]n�1 bounded w.r.t. the sup-
norm &x&=supn |xn |, and let {: l� � l� be the shift transformation defined
by

({(x))n=xn+1 .

A linear functional L: l� � R is a Banach limit if it satisfies the following
conditions.

1. L(x)�0 if x�0.

2. L({(x))=L(x) for all x # l�.

3. L(1)=1, where 1 denotes the sequence [1, ..., 1, ...].

We denote by L the set of all Banach limits on l�.
A finitely additive measure +: 2T � [0, 1] is invariant if +(A)=+({(A))

for all A�T. We denote by N the set of all finitely additive invariant
measures. Let F: T � R be a sequence in l�. Set M=[� F d+: + # N]. We
have

Lemma 23. L=M.

Proof. We first notice that, by Sucheston [22], limn supj�1

[1�n �n
j=1 F(i+ j)] exists for all F # l�. We now prove that M�L. For all

A�T, let {&1 (A)=[t # T: {(t) # A]. We have {&1 ({(A))=A for all
A�T, {({&1 (A))=A if [1] / A, and {({&1 (A)) _ [1]=A if [1]�A
(notice that {({&1 (A)) & [1]=< in this last case). For every + # N it
holds that +(A)=+({({&1 (A)))=+({&1 (A)) because +([1])=0. We have
1A ({(t))=1{&1(A) (t), so that

| 1A ({(t)) d+=| 1A (t) d+ for all A�T. (9)
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Let F # l� be a simple function. Using (9), it is easy to check that for
every invariant measure in N it holds that

| F d+=| _1
n

:
n

i=1

F(i+ j)& d+ for all j�1.

Therefore, � F d+�sup j�1 1�n �n
j=1 F(i+ j), so that

| F d+�lim
n

sup
j�1 _

1
n

:
n

i=1

F(i+ j)& . (10)

Let F # l�. There exists a sequence of simple functions Fk that converges
uniformly to F. We can write

lim
n

sup
j�1 _

1
n

:
n

i=1

F(i+ j)&=lim
n

sup
j�1 _

1
n

:
n

i=1

lim
k

Fk (i+ j)&
=lim

n
sup
j�1

lim
k _1

n
:
n

i=1

Fk (i+ j)& .

For every =>0 there exists K=>0 such that |F(i)&Fk (i)|<= for all k�K=

and all i�1. Hence

} 1n :
n

i=1

Fk ( j+i)&
1
n

:
n

i=1

F( j+i) }
�

1
n

:
n

i=1

|Fk ( j+i)&F( j+i)|==

for all k�K= and all j�1. This implies that

lim
n

sup
j�1

lim
k _1

n
:
n

i=1

Fk (i+ j)&=lim
n

lim
k

sup
j�1 _

1
n

:
n

i=1

Fk (i+ j)& .

On the other hand, assume supj�1 1�n �n
i=1 F(i+ j)�supj�1 1�n �n

i=1 Fk(i+j).
Then

sup
j�1

1
n

:
n

i=1

F(i+ j)&sup
j�1

1
n

:
n

i=1

Fk (i+ j)

=sup
j�1

1
n

:
n

i=1

[F(i+ j)&Fk (i+ j)+Fk (i+ j)]&sup
j�1

1
n

:
n

i=1

Fk (i+ j)

�sup
j�1

1
n

:
n

i=1

[F(i+ j)&Fk (i+ j)]<=
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for all k�K= and all n�1. The same holds if sup j�1 1�n �n
i=1 F(i+ j)<

supj�1 1�n �n
i=1 Fk (i+ j), so that

} sup
j�1

1
n

:
n

i=1

F(i+ j)&sup
j�1

1
n

:
n

i=1

Fk (i+ j) }<=

for all k�K= and all n�1. In turn, this implies

lim
n

lim
k

sup
j�1 _

1
n

:
n

i=1

Fk (i+ j)&=lim
k

lim
n

sup
j�1 _

1
n

:
n

i=1

Fk (i+ j)&
and we conclude that

lim
n

sup
j�1 _

1
n

:
n

i=1

F(i+ j)&=lim
k

lim
n

sup
j�1 _

1
n

:
n

i=1

Fk (i+ j)& . (11)

Putting together (10) and (11), we get

| F d+=lim
k | Fk d+�lim

k
lim

n
sup
j�1 _

1
n

:
n

i=1

Fk (i+ j)&
=lim

n
sup
j�1 _

1
n

:
n

i=1

F(i+ j)& .

Sucheston [22] proves that

lim
n

sup
j�1 _

1
n

:
n

i=1

F(i+ j)&= sup
m1, ..., ms _lim inf

j � �

1
s

:
s

k=1

F(mk+ j)& .

As � F d+ is a linear functional on l�, by Banach [2]

| F d+� sup
m1, ..., ms _lim inf

j � �

1
s

:
s

k=1

F(mk+ j)&
implies that � F d+ is a Banach limit. This proves that M�L.

As to the converse, for any L # L there exists a finitely additive measure
on 2T such that L(F )=� F d+ for all F # l� (cf. Dunford and Schwartz [6,
p. 258]). But L(1A)=L(1{(A) ({(t)))=L(1{(A)), so that +(A)=+({(A)), i.e.
+ # N. This implies L�M. K

Lemma 24. Suppose the preference relation o
t satisfies axioms A.1�A.6,

and let C be the convex and compact set provided by Theorem 2. Then
C�N if and only if o

t satisfies A.8.

Proof. ``If '' part: A.8 implies
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min
+ # C

| ( 1
2u( fA)+ 1

2 u( fAc)) d+=min
+ # C

| (u( 1
2 fA+ 1

2 fAc)) d+

=min
+ # C

| (u( 1
2 f 1

A+
1
2

fAc)) d+

=min
+ # C

| ( 1
2u( f 1

A)+ 1
2 u( fAc)) d+

that is

min
+ # C

| (u( fA)+u( fAc)) d+=min
+ # C

| (u( f 1
A)+u( fAc)) d+. (12)

Without loss of generality, set u( p1)=0 and u( p2)=1. Then (12)
becomes:

min
+ # C

(+(A)++(Ac))=min
+ # C

(+({&1(A))++(Ac))

so that

min
+ # C

(+({&1 (A))++(Ac))=1,

that is

min
+ # C

(+({&1 (A))&+(A))=0.

This implies

+({&1 (A))�+(A)

for all + # C.
Now, let us consider fAc . Proceeding as above we get

+({&1 (Ac))�+(Ac)

for all + # C. As +({&1 (Ac))=+(({&1 (A))c), we have

+(({&1 (A))c)�+(Ac)
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for all + # C, so that +(A)�+({&1 (A)) for all + # C. We conclude that

+(A)=+({&1 (A))

for all + # C, so that C�N.
As to the ``only if '' part, assume C�N. Then, by Lemma 23,

� u( f ) d+=� u( f k) d+ for all + # C and k�1, so that

| ( 1
2 u( fA)+ 1

2 u( fAc)) d+=| ( 1
2 u( f k

A)+ 1
2 u( fAc)) d+

for all + # C and k�1. This implies

min
+ # C

| ( 1
2 u( fA)+ 1

2 u( fAc)) d+=min
+ # C

| ( 1
2 u( f k

A)+ 1
2 u( fAc)) d+

so that

1
2 fA+ 1

2 fAc t
1
2 f k

A+ 1
2 fAc

for all k�1. K

Lemma 25. Suppose the preference relation o
t satisfies axioms A.1�A.4,

A.8 and A.6, and let C be the convex and compact set provided by
Theorem 2. Then C=N if and only if o

t is canonical.

Proof. Suppose o
t satisfies A.9. Define a preference o

t N as follows

f o
tN g if and only if min

+ # N
| u( f ) d+� min

+ # N
| u(g) d+

where u is the utility function derived from o
t using Theorem 2. It is easy

to check that o
t N # I. As o

t is canonical, N�C. However, C�N by
Lemma 24, so that N=C. The converse is obvious. K

9.3.1. Proof of Proposition 4

By Lemma 24, C�N, so that, by Lemma 23, min+ # C � u( f ) d+=
min+ # C � u( f k) d+. In turn, this implies f t f k.

We now show that the converse is false, i.e., there exists a preference
relation o

t that satisfies the axioms A.1�A.6 and A.8*, but not A.8. Let
u: P � R be a von Neumann-Morgenstern utility function on P. Define o

t

as follows

f o
t g if and only if lim inf

t � �
u( f (t))�lim inf

t � �
u(g(t)) (13)
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for all f, g # F. This ordering o
t satisfies axioms A.1�A.6 and A.8. We now

show that it does not satisfy A.8*. Let A be the set of odd integers. Set

fA (t)={ p2 if t # A
p1 if t � A

with p1 , p2 # P, p2o p1 . W.l.o.g., set u( p2)=1 and u( p1)=0. Then

u( fA)=[1, 0, 1, 0, ...]

u( fAc)=[0, 1, 0, 1, ...]

u( f 1
A)=[0, 1, 0, 1, ...]

so that

lim inf
t � �

u( 1
2 fA+ 1

2 fAc)=lim inf
t � �

( 1
2u( fA)+ 1

2u( fAc))= 1
2

while

lim inf
t � �

u( 1
2 f 1

A+ 1
2 fAc)=lim inf

t � �
u( fAc)=0.

Therefore, by (13)

1
2 fA+ 1

2 fAc o 1
2 f 1

A+ 1
2 fAc

which violates A.8. K

9.3.2. Proof of Theorem 5

By Lemma 24,

f o
t Ng if and only if min

+ # N
| u( f ) d+� min

+ # N
| u(g) d+.

By Lemma 23, min+ # N � u( f ) d+=minL # L L(u( f )). By Lorentz [14]

min
L # L

L(u( f ))= sup
m1, ..., ms _lim inf

j � �

1
s

:
s

k=1

u( f (mk+ j))&
and by Sucheston [22]

sup
m1, ..., ms _lim inf

j � �

1
s

:
s

k=1

u( f (mk+ j))&=lim
n

sup
j�1 _

1
n

:
n

i=1

u( f (i+ j))&
and this proves the result. K
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9.3.3. Proof of Corollary 6

If 1�n �n
i=1 u( f (i+ j)) converges uniformly in j, then

lim
n

inf
j�1 _

1
n

:
n

i=1

u( f (i+ j))&=lim
n

1
n

:
n

i=1

u( f (i))

as wanted. K

9.4. Theorem 7

A non-additive set function &: 2T � [0, 1] is a capacity if it satisfies:

(i) &(<)=0.

(ii) &(A)�&(B) whenever A�B�T.

(iii) &(T )=1.

Of course, all additive measures are capacities, while the converse is false.
Let f : T � R be a bounded real-valued function on T. The Choquet

integral of f with respect to a capacity & is

|
T

f d&=|
�

0
&([t: f (t)�:]) d:+|

0

&�
[&([t: f (t)�:])&1] d:

where the right hand side is a Riemann integral. The integral is well defined
because & is monotone. When & is additive, the Choquet integral becomes
a standard additive integral.

We can now report Schmeidler's Theorem.

Theorem 26. The following two statements are equivalent:

(i) The preference relation o
t on F satisfies the axioms A.1�A.4,

and A.7.

(ii) There exists a unique capacity & on 2T and an affine real valued
function u on P such that for all f and g in F

f o
t g if and only if |

T

u( f (t)) d&�|
T

u(g(t)) d&.

Finally, the function u is unique up to a positive linear transformation.

We are now in a position to prove Theorem 7.
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9.4.1. Proof of Theorem 7

The implication (ii) O (i) is easy. As to the converse, since o
t satisfies

A.1�A.4 and A.7, by Schmeidler's Theorem there exists a unique capacity
& on 2T and an affine real valued function u on P such that for all f and
g in F

f o
t g if and only if |

T

u( f (t)) d&�|
T

u(g(t)) d&. (14)

Let p1 , p2 # P with p2 o p1 . Let A�T be a cofinite set, and fA an act
defined as follows

fA (t)={ p2 if t # A
p1 if t � A

Let k be a positive integer such that t<k for all t � A. Then

f k
A(t)= p2 for all t # T.

By A.8, fA t f k
A . By (14), this implies

u( p1)+[u( p2)&u( p1)] &(A)=u( p2)

so that &(A)=1.
Next, let A�T be a finite set. By (14) and A.8,

u( p1)+[u( p2)&u( p1)] &(A)=u( p1)

so that &(A)=0.
Let A, B�T be two infinite sets which are not cofinite. Define two acts

fA and fB as follows

fA (t)={ p2 if t # A
p1 if t � A

and fB(t)={p2 if t # B
p1 if t � B

.

As both A and B are not cofinite, there exists a map ? # 6 such that
f ?

A(t)= fB(?(t)) for all t # T. By A.9, fAt fB . By (14), this implies

u( p1)+[u( p2)&u( p1)] &(A)=u( p1)+[u( p2)&u( p1)] &(B)

so that &(A)=&(B). Every infinite set A not cofinite can be decomposed in
two infinite sets A1 , A2 not cofinite. By what has been just proved,
&(A1)=&(A2)=&(A). By Schmeidler's Theorem, fA1

t fA2
. By A.6,

1
2 fA1

+ 1
2 fA2

o
t fA1

, so that &(A)�&(A1)+&(A2). Hence, &(A)=0 for all
infinite set which are not cofinite.
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To summarize, the capacity v has the following form

&(A)={1 if A is cofinite,
0 if A is not cofinite

.

In other words, & is a filter game defined on the free filter of cofinite sets
(see Marinacci [15]). It can be checked that for the filter game & it holds

|
T

u( f (t)) d&=lim inf
t � �

u( f (t))

for each f # F. By (14), we conclude that (i) O (ii), as wanted. K

9.5. Proof of Theorem 10

By Lemmas 23 and 24

lim
T � �

inf
j�1 _

1
T

:
T

t=1

u( f ( j+t))&�| u( f ) d+� lim
T � �

sup
j�1 _

1
T

:
T

t=1

u( f ( j+t))&
for all + # C, so that

;
*

(A)�+(A)�;*(A).

Therefore, +(A)=;(A) for all A # Ab . W.l.o.g., assume u( f ) is non-
negative. Hence

| u( f ) d+=|
�

0
+(u( f )�:) d:=|

�

0
;(u( f )�:) d:

=|
�

0
;(u( f ?)�:) d:=| u( f ?) d+

for all + # C. This implies min+ # C � u( f ) d+=min+ # C � u( f ?) d+, so that
f t f ?. K

9.6. Proof of Proposition 13

By a result due to Koopman and von Neumann [12],
limT � � 1�T �T

t=1 |u( f (t))&l |=0 implies the existence of a set J�T, with
$(J)=0, such that limt � J u( f (t))=l. We can write

[t: u( f (t))�:]=[t: u( f (t))�: and t # J] _ [t: u( f (t))�: and t � J].
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If :>l, then [t: u( f (t))�: and t � J] is finite, while if :<l, then
[t: u( f (t))�: and t � J] is cofinite. In both cases, it belongs to Ad . As
[t: u( f (t))�: and t # J] # Ad , we conclude that [t: u( f (t))�:] # Ad when-
ever :{l. K

9.7. Theorems 14, 17, and 19

Let Lc be the set of all linear functionals L on l� such that

1. L(x)�0 if x�0.

2. L(x)=limT � � 1�T �T
t=1 xt whenever this limit exists.

3. L(1)=1, where 1 denotes the sequence [1, ..., 1, ...].

In other words, Lc is the set of all positive functionals that coincide with
the Cesaro limit of the sequence x when this limit exists. We now prove
that all these functionals are Banach limits. This is a simple, but important
result, for our purposes.

Proposition 27. Lc �L.

Proof. Let L # Lc . Notice that for all x # l� the sequence x&{(x) has
a Cesaro limit. For,

1
T

:
T

t=1

(xt&{(xt))=
1
T

(xT+1&x1)

so that

0= lim
T � �

&
1
T

&x&� lim
T � �

1
T

:
T

t=1

(xt&{(xt))� lim
T � �

1
T

&x&=0.

Therefore

L(x)&L({(x))=L(x&{(x))=0

which shows that L # L. K

As Lc is a convex and weak*-compact set, we can define the lower
envelope Ic on l� as follows:

Ic (x)=min[L(x): L # Lc].

Let V=[x: limT � � 1�T �T
t=1 xt exists]. We now prove a characterization

of the envelope.
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Theorem 28. For all x # l� we have

Ic (x)=sup[L(x$): L # Lc , x$ # V and x$�x].

Proof. For each x # l� define

I
*

(x)=sup[L(x$): L # Lc , x$ # V and x$�x].

It is easy to check that I
*

is a positive homogeneous sublinear functional.
Moreover, &�<&&x&�I

*
(x)�&x&<�. I

*
is a linear functional on V.

For a given x~ # l�, let us look at the linear subspace V _ [x~ ] generated by
V and x~ . A typical element of V _ [x~ ] has the form x+tx~ , with x # V and
t # R. Define L� on V _ [x~ ] by

L� (x+tx~ )=I
*

(x)+tI
*

(x~ ).

As I
*

is a linear functional on V, L� as well is a linear functional on
V _ [x~ ]. We show that it is positive. Let x+tx~ �0. There are two cases to
consider according to the sign of t:

1. Suppose t�0. Then

L� (x+tx~ )=I
*

(x)+tI
*

(x~ )=I
*

(x)+I
*

(tx~ )

�I
*

(x+tx~ )�0.

2. Suppose t<0. Then x+tx~ �0 implies x�&tx~ , so that

I
*

(x)�I
*

(&tx~ )=&tI
*

(x~ ).

In turn, this implies I
*

(x)+tI
*

(x~ )�0. Hence L� (x+tx~ )�0.
We conclude that L� is a positive linear functional on V _ [x~ ]. By well

ordering the set l��V _ [x~ ], a similar argument proves that for every linear
subspace V _ [x~ ]�M�l� there exists a positive linear functional L� M

such that L� M (x)=I
*

(x) for all x # V, and L� M (x~ )=I
*

(x~ ). A standard
application of Zorn's lemma finally shows that there exists a positive linear
functional L� on l� such that L� (x)=I

*
(x) for all x # V, and L� (x~ )=I

*
(x~ ).

Hence L� # Lc , so that L� (x)�Ic(x)�I
*

(x) for all x # l�. This implies

L� (x~ )=Ic (x~ )=I
*

(x~ )

and this proves the result because x~ was arbitrary. K

Corollary 29. Let u: P � R be an affine utility. If u(P)=R, for every
f # F

Ic (u( f ))=sup { lim
T � �

1
T

:
T

t=1

u(g(t)): g # F, u(g) # V, g(t)O
t f (t) for all t�1= .
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For a given set of weights C, let IC : F � R be defined by IC ( f )=
min+ # C � u( f ) d+.

Theorem 30. The following two statements are equivalent:

(i) The preference relation o
t on F is canonical, satisfies the axioms

A.1�A.6, A.8, A.9, and A.10, and is regular.

(ii) There exists an affine utility u: P � R and a unique weak*-com-
pact and convex set of weights C�Nd such that for all f and g in F we have
f o

t g if and only if IC ( f )�IC (g).

Proof. By Theorem 5 we know that C�N. We want to show that
C�Nd . We first show that

lim
t � �

|[mk+s]m�0 & [1, ..., t]|
t

=
1
k

for all 0�s�k&1.

For every t�s, there exists m�0 such that mk+s�t�(m+1)k+s.
Hence

mk+s
k

(m+1) k+s
�

|[mk+s]m�0 & [1, ..., t]|
t

�

(m+1) k+s
k

mk+s

so that

1
k

= lim
m � �

mk+s
k

(m+1) k+s
�lim inf

t � �

|[mk+s]m�0 & [1, ..., t]|
t

�lim sup
t � �

|[mk+s]m�0 & [1, ..., t]|
t

� lim
m � �

(m+1) k+s
k

mk+s
=

1
k

as wanted. In this way, for every k�1 we have a partition [Ak
i ]k

i=1 of T

with

lim
t � �

|Ak
i & [1, ..., t] |

t
=

1
k

for all 1�i�k.
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It is easy to check that {(Ak
i )=Ak

i+1 for all 1�i�k&1. Therefore, being
C�N, for all + # C

+(Ak
1)=+(Ak

2)= } } } =+(Ak
k&1)=

1
k

so that

+(Ak
i )=$ (Ak

i ) for all 1�i�k&1 and all + # C.

Using additivity we can construct a chain 1q=[Aq]q # Q & [0, 1] such that
$(Aq)=+(Aq)=q for all q # Q & [0, 1] and all + # C.

Suppose [q� ]l�1 and [q
�

l] l�1 are two sequences in Q & [0, 1] such that
q� l a r and q

�
l A r. It holds that

r= lim
l � �

q
�

l= lim
l � �

+(Aq
� l
)

�+ \.
l�1

Aq
� l+�+ \,

l�1

Aq� l+� lim
l � �

+(Aq� l
)= lim

l � �
q
�

l=r

for all + # C. Set Ar=�l�1 Aq� l
, and 1=[Ar]r # [0, 1] . Then +(Ar)=r for all

r # [0, 1] and all + # C. Proceeding in a similar way, one gets
$
*

(A)=$*(A)=r for all �l�1 Aq
� l

�A�� l�1 Aq� l
. This implies that $(A)

exists and $(A)=r. Hence, $(Ar)=+(Ar) for all Ar # 1.
Let A # Ad . Let A$ , Ac

$ # 1 be such that $(A)=$(A$) and $(Ac)=$(Ac
$).

By A.10, fA t fA$
and fAc t fAc

$
. Therefore, min+ # C +(A)=min+ # C +(A$)

and min+ # C (Ac)=min+ # C (Ac
$). Since A$ , Ac

$ # 1, $(A$)=min+ # C +(A$)
and $(Ac

$)=min+ # C +(Ac
$). Hence, min+ # C +(A)=$ (A) and min+ # C

+(Ac)=$(Ac), so that

+(A)�$(A) and +(Ac)�$(Ac)

for all + # C. This implies +(A)=$(A), and we conclude that +(A)=$(A)
for all A # Ad and all + # C. Hence, C�Nd . K

Theorem 31. Suppose the preference relation o
t on F is canonical,

satisfies the axioms A.1�A.6, A.8, A.9, and A.10, and is regular. Then
IC ( f )=Ic (u( f )).

Proof. We first show that IC ( f )=limT � � 1�T �T
t=1 u( f (t)) whenever

this limit exists. We first consider f # F$ . W.l.o.g., assume u( f (t))�0 for all
t # T. Except for a set of Lebesgue measure zero M, for every :�0 the
natural density $([t: u( f (t))�:]) exists. For each A�T and each T # T,

138 MASSIMO MARINACCI



let $T (A)=|A & [1, ..., T]|�T. The set function $T (A) is a finitely additive
probability on 2T, and

|
T

u( f ) d $T=|
�

0
$T ([t: u( f (t))�:]) d:=

1
T

:
T

t=1

u( f (t)).

For every 0�: � M, limT � � $T ([t: u( f (t))�:])=$([t: u( f (t))�:]). As f
is bounded, there exists K>0 such that 0�u( f (t))�K for all t # T. There-
fore, for every t�1, we have

0�$T ([t: u( f (t))�:])�1 for all 0�:�K,

$T ([t: u( f (t))�:])=0 for :>K.

By the Arzela� Bounded Convergence Theorem, this implies

lim
T � �

1
T

:
T

t=1

u( f (t))= lim
T � � |

�

0
$T ([t: u( f (t))�:]) d:

= lim
T � � |

Mc
$T ([t: u( f (t))�:]) d:

=|
Mc

$([t: u( f (t))�:]) d:=|
Mc

+([t: u( f (t))�:]) d:

=|
�

0
+([t: u( f (t))�:]) d:

for all + # C as C�Nd . Therefore,

lim
T � �

1
T

:
T

t=1

u( f (t))=| u( f (t)) d+ for all + # C.

In turn, this implies

lim
T � �

1
T

:
T

t=1

u( f (t))=min
+ # C

| u( f (t)) d+.

We now consider f # F�F$ . W.l.o.g., assume inft�1 u( f (t))<0<
supt�1 u( f (t)). We first decompose u( f (t)) as

u( f (t))=x(t)+x$(t)
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where x, x$#l�, limt�� xt=limT�� 1�T �T
t=1 u( f (t)), and ��

t=1 x$(t)�t<�.
Set x$(t)=t[1�t �t

k=1 u( f (k))&1�(t&1) � t&1
k=1 u( f (k))]. Simple algebra

shows that

u( f (t))&x$(t)=
1

t&1
:

t&1

k=1

u( f (k))

and, by setting x(t)=u( f (t))&x$(t), we have limt � � x(t)=limT � � 1�T
�T

t=1 u( f (t)). On the other hand,

:
�

t=1

x$(t)
t

= lim
T � �

:
T

t=1 _
1
t

:
t

k=1

u( f (k))&
1

t&1
:

t&1

k=1

u( f (k))&
= lim

T � � \1
T

:
T

t=1

u( f (t))&u( f (1))+= lim
T � �

1
T

:
T

t=1

u( f (t))

so that ��
t=1 x$(t)�t is a convergent series.

As xt is such that inft�1 u( f (t))�x(t)�supt�1 u( f (t)), there exists an
act g # F such that u(g(t))=x(t) for all t�1. As limT � � u(g(t))
=limT � � 1�T �T

t=1 u( f (t)), g # F$ (cf. the Remarks after Proposition 13).
Hence, � u(g(t)) d+=limT � � 1�T �T

t=1 u( f (t)) for all + # C, so that

min
+ # C

| u( f (t)) d+=min
+ # C

| [u(g(t))+x$(t)] d+

= lim
T � �

1
T

:
T

t=1

u( f (t))+min
+ # C

| x$(t) d+.

As inft�1 u( f (t))<0<sup �1 u( f (t)), there exist p*1 , p*2 # P such that
u( p*1)<0<u( p*2). Therefore, there exists :>0 such that

:u( p*1)� inf
t�1

x$(t)�sup
t�1

x$(t)�:u( p*2).

As u is affine on P, there exists a 0�*x, t�1 such that :u(*x, tp*1+
(1&*x, t) p*2)=x$(t). Set g$(t)=*x, tp*1+(1&*x, t) p*2 so that g$ # F and
:u(g$(t))=x$(t) for all t�1. Clearly, ��

t=1 u(g$(t))�t converges. If
u(g$(t))�0 for all t�1, g$ # F$ (cf. the Remarks after Proposition 13) and

min
+ # C

| u(g2 (t)) d+= lim
T � �

1
T

:
T

t=1

u(g$(t))=0.
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Suppose, instead, that inft�1 u(g$(t))<0<supt�1 u(g$(t)). By regularity
min+ # C � u(g$(t)) d+=0. In both cases we can conclude that
min+ # C � x$(t) d+=0, so that

IC ( f )=min
+ # C

| u( f (t)) d+= lim
T � �

1
T

:
T

t=1

u( f (t))

as wanted.
Let Cc be the set of weights associated with Ic . By regularity, Cc �C, so

that

Ic ( f )�IC ( f ) for all f # F.

Suppose that for some f it holds Ic ( f )>IC ( f ). As

Ic (u( f ))=sup { lim
T � �

1
T

:
T

t=1

u(g(t)): g # F, u(g) # V, g(t)O
t f (t) for all t�1=

for any =>0, there exists u(g) # V such that g(t)O
t f (t) for all t�1, and

Ic(u( f ))&=� lim
T � �

1
T

:
T

t=1

u(g(t)).

Put =<Ic ( f )&IC ( f ). We have

Ic (u( f ))&=� lim
T � �

1
T

:
T

t=1

u(g(t))=Ic (u(g))=IC (u(g))�IC (u( f ))

so that Ic(u( f ))&IC (u( f ))�=, a contradiction. We conclude that
Ic (u( f ))=IC (u( f )), and this completes the proof. K

Theorem 32. Ic (x)=P(x) for all x # l�.

Proof. If x # V, then Ic (x)=P(x)=limT � � 1�T �T
t=1 xt . By Theorem

28, this implies that Ic (x)�P(x) for all x # l�. We now show that
Ic (x)�P(x) for all x # l�. It suffices to show that for all k # R we have
Ic (x)�k whenever P(x)>k. Without loss, assume k=0 and x�0. We now
elaborate on an argument used in Peres [17]. Suppose P(x)>0. It is easy
to check that this implies lim= � 0 lim inf 1�=T �T(1+=)

t=T xt>0. This means that

lim inf
N, M � �

1
N&M

:
M

t=N+1

xt>0 as 1�
M
N

� 1.
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Equivalently, for all $>0 there exists #=>0 and N$ such that 1�(N&M)
�M

t=N+1 xt>0 whenever N�N$ and N�M�(1+$) N. As M&N>0,

:
M

t=N+1

xt>0

whenever N�N$ and N�M�(1+$) N. Let N1=1 and

Nk=min {N>Nk&1 : :
N

Nk&1

xt>0= .

By (15), limk � � Nk �Nk&1 =1. Set

x$t=xt&
1

Nk+1&Nk
:

Nk+1

Nk+1

xt for Nk�t<Nk+1 .

As 1�(Nk+1&Nk) �Nk+1
Nk+1 xt�0, x$�x. Moreover, it can be checked that

limT � � 1�T �T
t=1 x$t=0. Hence, by Theorem (28), Ic(x)�0, as wanted. K

Corollary 33. Let u : P � R be an affine utility. Then for every f # F

IC ( f )=Ic(u( f ))=P( f ).

All this proves Theorem 14 and Lemma 18, and the Polya Index's charac-
terizations in Theorems 17 and 19.

10. THEOREM 20

The result is a simple consequence of Theorems 2 and 19 once one
observes that the functional Ii (x)=lim infT � � 1�T �T

t=1 xt satisfies the
following properties:

(i) Ii (x+x$)�Ii (x)+Ii (x$) for all x, x$ # l�.

(ii) Ii (:x)=:Ii (x) for all :�0 and x # l�.

(iii) Ii (x)=Ii ({(x)) for all x # l�.

(iv) Ii (x)=Ii (x?) for all x # l�. K
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11. PROPOSITION 21

It suffices to prove that there exists x # l� such that

lim
= � 0

lim inf
1

=T
:
T

t=T(1&=)

xt<lim inf
T� �

1
T

:
T

t=1

xt .

Let x be the sequence considered in the introduction, i.e,

1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ....

Then

lim
= � 0

lim inf
1

=T
:
T

t=T(1&=)

xt=0,

while

lim inf
T � �

1
T

:
T

t=1

xt=1�3. K
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